JP5099480B2 - Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder - Google Patents

Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder Download PDF

Info

Publication number
JP5099480B2
JP5099480B2 JP2007030303A JP2007030303A JP5099480B2 JP 5099480 B2 JP5099480 B2 JP 5099480B2 JP 2007030303 A JP2007030303 A JP 2007030303A JP 2007030303 A JP2007030303 A JP 2007030303A JP 5099480 B2 JP5099480 B2 JP 5099480B2
Authority
JP
Japan
Prior art keywords
soft magnetic
metal powder
powder
magnetic metal
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007030303A
Other languages
Japanese (ja)
Other versions
JP2008195986A (en
Inventor
直美 光野
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007030303A priority Critical patent/JP5099480B2/en
Publication of JP2008195986A publication Critical patent/JP2008195986A/en
Application granted granted Critical
Publication of JP5099480B2 publication Critical patent/JP5099480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、チョークコイルやトランス、リアクトル、モーターなどの電気電子部品の圧粉磁心として用いた際、低鉄損で良好な電気絶縁性を有する、軟磁性金属粉末や圧粉体、およびその製造方法に関する。   The present invention relates to a soft magnetic metal powder and a green compact having a low iron loss and good electrical insulation when used as a powder magnetic core of an electric and electronic component such as a choke coil, a transformer, a reactor, and a motor, and a production thereof. Regarding the method.

近年、モーターコアやトランスコアなどの電気電子部品において高密度化および小型化と、より精密な制御を小電力で行えることが求められている。このため、これらの電気電子部品に使用される軟磁性材料であって、特に中高周波領域において優れた磁気的特性を有する軟磁性材料の開発が進められている。軟磁性金属粉末を用いて作製される圧粉磁心は、従来から使用されていたフェライト磁心よりも高い飽和磁束密度を有しているため電子部品の小型化には有利である。   In recent years, electrical and electronic parts such as motor cores and transformer cores are required to be capable of high density and miniaturization and more precise control with low power. For this reason, development of soft magnetic materials that are used in these electric and electronic parts and that have excellent magnetic properties particularly in the mid-high frequency region has been underway. A dust core made of a soft magnetic metal powder has a higher saturation magnetic flux density than a conventionally used ferrite core, and is therefore advantageous for downsizing electronic components.

しかし、軟磁性金属粉末による圧粉磁心はフェライトと比較して電気抵抗率が低いため渦電流損失が大きい。それ故に、金属系圧粉磁心をコアとして用いた場合特に中高周波域での損失がフェライトコアと比較し大きくなる。またコアの発熱による温度上昇の問題もあり、電子部品としての実用化が困難であった。従来この問題を解決する手段として、損失を低減するために、例えば特許文献1のようにリン酸塩等の絶縁物で被覆することで軟磁性金属粉末表面を高電気抵抗率化し、コア内の渦電流の発生を抑制するという試みが提案されている。また非特許文献1においては、金属粉末の表面をMgO等の酸化物で被覆することにより粉末表面を高抵抗化し渦電流損失を低減する方法が提案されている。これらは、いずれも、粉末表面の電気抵抗を向上させることにより、渦電流損失を低減しコア損失を低減することを目的としている。   However, a dust core made of soft magnetic metal powder has a low eddy current loss because it has a lower electrical resistivity than ferrite. Therefore, when a metal-based powder magnetic core is used as the core, the loss particularly in the mid-high frequency region is larger than that of the ferrite core. In addition, there was a problem of temperature rise due to heat generation of the core, and it was difficult to put it into practical use as an electronic component. Conventionally, as a means for solving this problem, in order to reduce the loss, the surface of the soft magnetic metal powder is made high in resistivity by coating with an insulator such as phosphate as in Patent Document 1, for example. Attempts have been made to suppress the generation of eddy currents. Non-Patent Document 1 proposes a method of increasing the resistance of the powder surface by coating the surface of the metal powder with an oxide such as MgO and reducing eddy current loss. All of these are intended to reduce eddy current loss and core loss by improving the electrical resistance of the powder surface.

ところで、コア全体の鉄損は一般にヒステリシス損失と渦電流損失の和で表される。一般的には、ヒステリシス損失は周波数の一乗、渦電流損失は周波数の二乗にそれぞれ比例して変化する。したがって、高周波域では渦電流損失の寄与がヒステリシス損失の寄与に比較し大きく渦電流損失を低減することがコアの損失を低減するためには効果的な手段となる。一方モーターコアやリアクトルコアなど比較的低中周波で用いられる機器については、渦電流損失だけでなくヒステリシス損失からの寄与も無視することが出来ない。
したがって低中周波域では、渦電流損失だけでなくヒステリシス損失を低減することが、コア損失低減に有効である。
By the way, the iron loss of the entire core is generally represented by the sum of hysteresis loss and eddy current loss. In general, the hysteresis loss changes in proportion to the first power of the frequency, and the eddy current loss changes in proportion to the second power of the frequency. Therefore, in the high frequency region, the eddy current loss contribution is larger than the hysteresis loss contribution, and reducing the eddy current loss is an effective means for reducing the core loss. On the other hand, for devices used at relatively low and medium frequencies such as motor cores and reactor cores, the contribution from hysteresis loss as well as eddy current loss cannot be ignored.
Therefore, in the low and medium frequency range, reducing not only eddy current loss but also hysteresis loss is effective in reducing core loss.

磁性コアのヒステリシス損失は、コアに磁界をオンオフした際のヒステリシスの大きさにより決定される。ヒステリシス損失を低減するためには、磁性粉末の保磁力を出来るだけ小さくすることが必要である。軟磁性粉末の保磁力は、磁界を印加した際の磁壁の
移動の容易さを反映したものであり、粒界や不純物介在物、圧粉磁心の成形時に生じた塑性変形による歪み、転位などがこれを妨げる要因となる。このため低ヒステリシス損失のコアを得るためには、Fe系の磁性粉末においては本来低保磁力の粉末を低圧で成形し、
700℃以上、好ましくは900℃以上の高温において歪取り焼鈍を行うことが望まれる。
The hysteresis loss of a magnetic core is determined by the magnitude of hysteresis when a magnetic field is turned on / off in the core. In order to reduce the hysteresis loss, it is necessary to make the coercive force of the magnetic powder as small as possible. The coercive force of soft magnetic powder reflects the ease of movement of the domain wall when a magnetic field is applied, and includes distortions, dislocations, etc. due to plastic deformation generated during the formation of grain boundaries, impurity inclusions, and dust cores. This is a factor that prevents this. For this reason, in order to obtain a low hysteresis loss core, in the Fe-based magnetic powder, a low coercivity powder is originally molded at a low pressure,
It is desired to perform strain relief annealing at a high temperature of 700 ° C. or higher, preferably 900 ° C. or higher.

しかしながら、特許文献1や非特許文献1等に記載の従来技術においては、800℃以上の高温で熱処理すると、渦電流の発生を抑制するために被覆した絶縁性物質が磁性粉末と反応したり、熱分解等を起こすことにより絶縁皮膜が変質破壊し絶縁性が劣化するために、高温での熱処理を行うことができず、結晶粒径を大きくしたり、加工歪を完全に除去することが出来ないため、ヒステリシス損失を十分に低減させることができないという課題がある。   However, in the prior art described in Patent Document 1, Non-Patent Document 1, etc., when heat treatment is performed at a high temperature of 800 ° C. or higher, the insulating material coated to suppress the generation of eddy current reacts with the magnetic powder, Insulation film is altered and destroyed due to thermal decomposition, etc., and insulation properties deteriorate, so heat treatment at high temperature cannot be performed, crystal grain size can be increased, and processing strain can be completely removed. Therefore, there is a problem that hysteresis loss cannot be sufficiently reduced.

原料粉末に添加されるCrは粉末製造に際し防錆効果と成形時の加工歪低減に有効な元素であるが、一方で粒内に炭化物や酸化物などの非金属介在物を形成し粉末の保磁力を増加させるという欠点も有する。
特開2003―282316号 魚住学司ほか, 粉体粉末冶金協会平成17年度秋季大会講演概要(2005), p136
Cr added to the raw material powder is an element effective for rust prevention and reduction of processing strain during molding during powder production. On the other hand, non-metallic inclusions such as carbides and oxides are formed in the grains to maintain the powder. It also has the disadvantage of increasing the magnetic force.
JP 2003-282316 A Gakuji Uozumi et al., Outline of the 2005 Fall Meeting of the Powder and Powder Metallurgy Association (2005), p136

以上のように圧粉磁心のコア鉄損低減にはヒステリシス損失と渦電流損失双方の低減が必要であり、そのために低保磁力な磁性粉末と高温熱処理に耐える絶縁被覆技術が要求されている。しかしながら未だ必要十分な、低コア損失を実現する低ヒステリシス損失で高温熱処理に耐える表面高抵抗の軟磁性金属粉末は得られていない。   As described above, in order to reduce the core iron loss of the dust core, it is necessary to reduce both hysteresis loss and eddy current loss. For this reason, low coercive magnetic powder and insulation coating technology that can withstand high-temperature heat treatment are required. However, a soft magnetic metal powder with a high surface resistance that can withstand high-temperature heat treatment with a low hysteresis loss that realizes a low core loss has yet to be obtained.

本発明の目的は上記問題を解決するため、高温熱処理が可能で低ヒステリシス損失、かつ、高電気抵抗の軟磁性金属粉末、圧粉体およびその製造方法を提供することである。   In order to solve the above problems, an object of the present invention is to provide a soft magnetic metal powder, a green compact, and a method for producing the same, which can be heat-treated at a high temperature, have a low hysteresis loss, and have a high electrical resistance.

本発明者らは、Cr添加された軟磁性金属粉末に耐熱性絶縁性酸化物を付着させ、好ましくは高温で焼鈍することなどにより、粉末表面にCrリッチな絶縁性被膜を形成することで、上記目的が達成できることを見出した。   The present inventors attach a heat-resistant insulating oxide to a soft magnetic metal powder to which Cr is added, and preferably form a Cr-rich insulating film on the powder surface by annealing at a high temperature. It has been found that the above object can be achieved.

即ち、本発明の軟磁性金属粉末は、組成式でFe100−a−bSiCr(重量%で、0≦a≦8)で表される軟磁性金属粉末の表面の一部もしくは全体がSi、Ti、Zr、Alから選ばれる少なくとも一種の絶縁性酸化物により被覆されており、前記軟磁性金属粉末表面のCr濃度が粉末中心部より高いことを特徴とする。また、別の本発明の軟磁性金属粉末は、組成式でFe 100−a−b Si Cr (重量%で、0≦a≦8、0<b≦3)で表される軟磁性金属粉末の表面の一部もしくは全体がSi、Ti、Zr、Alから選ばれる少なくとも一種の絶縁性酸化物により被覆されており、前記軟磁性金属粉末表面のCrがSi、Ti、Zr、Alから選ばれる少なくとも一種と複合酸化物を形成しており、粉末表面のCr濃度が粉末中心部より高いことを特徴とする。 That is, the soft magnetic metal powder of the present invention is a part or the whole of the surface of the soft magnetic metal powder represented by the composition formula Fe 100-ab Si a Cr b (by weight, 0 ≦ a ≦ 8). Is covered with at least one insulating oxide selected from Si, Ti, Zr, and Al, and the Cr concentration on the surface of the soft magnetic metal powder is higher than the powder center. Another soft magnetic metal powder of the present invention is a soft magnetic metal represented by a composition formula of Fe 100-ab Si a Cr b (% by weight, 0 ≦ a ≦ 8, 0 <b ≦ 3). Part or all of the surface of the powder is coated with at least one insulating oxide selected from Si, Ti, Zr, and Al, and Cr on the surface of the soft magnetic metal powder is selected from Si, Ti, Zr, and Al. A composite oxide is formed with at least one of the above, and the Cr concentration on the powder surface is higher than that of the powder center.

この軟磁性金属粉末の表面の一部もしくは全体が絶縁性酸化物により被覆されており、絶縁性酸化物を含む軟磁性金属粉末全体の酸素量が10質量%以下であることが好ましく、0.6質量%以上がより好ましい。 The part or the whole of the soft magnetic metal powder of the surface is covered with an insulating oxide, rather preferable that the oxygen content of the entire soft magnetic metal powder containing an insulating oxide is not more than 10 wt%, more than 0.6 mass% is not more preferable.

絶縁性酸化物の厚さが、1μm以下であるものが好ましい。   It is preferable that the thickness of the insulating oxide is 1 μm or less.

本発明の軟磁性金属粉末の製造方法は、組成式でFeThe method for producing the soft magnetic metal powder of the present invention is represented by the composition formula Fe 100−a−b100-ab SiSi a CrCr b (重量%で、0≦a≦8、0<b≦3)で表される軟磁性金属粉末をアルコキシド溶液に浸して前記軟磁性金属粉末の表面に酸化物を析出させる工程と、前記工程で得られた軟磁性金属粉末を900℃以上で熱処理することで粉末表面のCr濃度が粉末中心部より高い軟磁性金属粉末を得る工程とを有することを特徴とする。Immersing a soft magnetic metal powder represented by (% by weight, 0 ≦ a ≦ 8, 0 <b ≦ 3) in an alkoxide solution to deposit an oxide on the surface of the soft magnetic metal powder; and The obtained soft magnetic metal powder is heat-treated at 900 ° C. or higher to obtain a soft magnetic metal powder having a Cr concentration higher than that at the center of the powder.

本発明により製造した軟磁性金属粉末を用いることにより、圧粉磁心(磁性コア)の渦電流損失とヒステリシス損失の双方を大幅に低減することが可能である。   By using the soft magnetic metal powder produced according to the present invention, it is possible to significantly reduce both eddy current loss and hysteresis loss of the dust core (magnetic core).

上述の製造方法により絶縁性酸化物を付着させることに加えて、軟磁性金属粉末中に固溶する添加元素であるCrが高温での熱処理により粉末表面へ逆拡散し、粉末表面でCrリッチな酸化物を形成することにより、良好な電気絶縁性が得られる。したがって、従来の絶縁被覆技術と異なり、700℃以上、好ましくは900℃以上の高温焼鈍によっても絶縁被覆が破壊されず、むしろその形成が促進される。   In addition to depositing the insulating oxide by the above manufacturing method, Cr, which is an additive element dissolved in the soft magnetic metal powder, is diffused back to the powder surface by heat treatment at high temperature, and Cr is rich on the powder surface. By forming the oxide, good electrical insulation can be obtained. Therefore, unlike the conventional insulating coating technology, the insulating coating is not destroyed even by high-temperature annealing at 700 ° C. or higher, preferably 900 ° C. or higher, but rather its formation is promoted.

高温焼鈍を行うことによりコア成形時に軟磁性金属粉末に加わった歪みの除去が十分になされるとともに、結晶粒径が大きくなり粉末内での磁壁移動が容易となりヒステリシス損失が大幅に低減される。さらに、上述のとおり軟磁性金属粉末中のCrがその表面に析出することにより、粉末内部のCr濃度は低くなる。したがって、ヒステリシス損失のうち、不可避と考えられていた原料粉末に由来する損失分の低減効果が得られる。   By performing the high temperature annealing, the distortion applied to the soft magnetic metal powder during the core forming is sufficiently removed, the crystal grain size is increased, the domain wall movement in the powder is facilitated, and the hysteresis loss is greatly reduced. Further, as described above, Cr in the soft magnetic metal powder precipitates on the surface, so that the Cr concentration inside the powder becomes low. Therefore, the effect of reducing the loss derived from the raw material powder that has been considered inevitable among the hysteresis loss can be obtained.

以下に本発明の軟磁性金属粉末およびその製造方法を具体的に説明する。
本発明で用いる軟磁性金属粉末は、組成式でFe100−a−bSiCr(重量%で、0≦a≦8、0<b≦3)で表されるものが好ましい。該当合金組成中のSiは無くてもよいが、コア損失を低減するために有効な元素であり1重量%以上添加することでその効果が得られる。一方、Si量が増大すると、合金粉末が堅くもろくなり成形性が低下するため8%を上限とする。好ましくは2重量%以上、7重量%以下である。また、Crは酸素との親和力が強く、自身が酸化しやすいために粉末製造プロセスでのFeの防錆と成形時の加工歪低減に効果がある添加元素である。添加料は微量でもよいが、添加量が0.1重量%以上なら十分な防錆効果が得られ好ましい。一方、添加量が3%を超えると粒内に酸化物や炭化物を形成し保磁力が増加して磁気特性上好ましくない。そのため、添加量は3%以下、より好ましくは1.5%以下であることが望ましい。
The soft magnetic metal powder of the present invention and the production method thereof will be specifically described below.
The soft magnetic metal powder used in the present invention is preferably represented by a composition formula of Fe 100-ab Si a Cr b (by weight, 0 ≦ a ≦ 8, 0 <b ≦ 3). Si in the alloy composition may be omitted, but it is an effective element for reducing core loss, and its effect can be obtained by adding 1% by weight or more. On the other hand, if the amount of Si increases, the alloy powder becomes hard and brittle and the formability is lowered, so 8% is made the upper limit. Preferably they are 2 weight% or more and 7 weight% or less. In addition, Cr is an additive element that has a strong affinity for oxygen and is easily oxidized, so that it is effective for rust prevention of Fe in the powder manufacturing process and for reducing processing strain during molding. Although a small amount of additive may be used, a sufficient rust prevention effect is obtained if the added amount is 0.1% by weight or more. On the other hand, if the addition amount exceeds 3%, oxides and carbides are formed in the grains and the coercive force is increased, which is not preferable in terms of magnetic characteristics. Therefore, the addition amount is desirably 3% or less, more preferably 1.5% or less.

表面の一部もしくは全体を被覆する絶縁性酸化物の酸素量により、電気抵抗率、圧粉体の強度、ヒステリシス損失が変わる。特に、残留磁束密度などの軟磁気特性とヒステリシス損失の低減を両立させるためには、絶縁性酸化物を含む軟磁性金属粉末全体の酸素量が、粉末全体の質量に比べて10重量%以下となることが好ましい。
球状(アスペクト比が2以下)のFe6.5%Si粉末を用いた場合には、酸素量が0.1〜1.0質量%の範囲の時に、高電気抵抗率、高強度、および低いヒステリシス損失の圧粉体を得ることが可能である。酸素量が0.15〜0.3質量%であると、なお好ましい圧粉体を得ることができる。
偏平形状(アスペクト比が2超)の軟磁性金属粉末を用いた場合、酸素量が1質量%以上であると、高い電気抵抗を持つ圧粉体を得ることができる。2質量%以上がなお好ましい。
この酸素量は、He気流中、黒鉛るつぼ内で絶縁性酸化物が被覆された軟磁性金属粉末を溶解し、発生したCOガスを赤外線吸収法により測定することで求められる。
The electrical resistivity, the strength of the green compact, and the hysteresis loss vary depending on the amount of oxygen in the insulating oxide that covers part or all of the surface. In particular, in order to achieve both the soft magnetic characteristics such as residual magnetic flux density and the reduction of hysteresis loss, the oxygen amount of the entire soft magnetic metal powder including the insulating oxide is 10% by weight or less compared to the mass of the entire powder. It is preferable to become.
When using a spherical Fe6.5% Si powder (with an aspect ratio of 2 or less), a powder with high electrical resistivity, high strength, and low hysteresis loss when the oxygen content is in the range of 0.1 to 1.0 mass% It is possible to get a body. When the oxygen amount is 0.15 to 0.3% by mass, a more preferable green compact can be obtained.
When a soft magnetic metal powder having a flat shape (aspect ratio of more than 2) is used, a green compact having high electrical resistance can be obtained when the oxygen content is 1% by mass or more. More preferably 2% by mass or more.
This amount of oxygen is obtained by dissolving a soft magnetic metal powder coated with an insulating oxide in a graphite crucible in a He stream and measuring the generated CO gas by an infrared absorption method.

本発明の軟磁性金属粉末は、不可避不純物として(C、N、P、S、Ni、Mo、Mn、Cu、Al等)が1重量%以下含まれていてもよい。   The soft magnetic metal powder of the present invention may contain 1 wt% or less of (C, N, P, S, Ni, Mo, Mn, Cu, Al, etc.) as inevitable impurities.

図5に本発明により製造される軟磁性金属粉末の模式図を示す。
図中1は原料となるFe−Si−Cr系の軟磁性金属粉末である。製造方法としてはガスアトマイズ法、水アトマイズ法、その他の方法などいずれの方法でも構わない。
なお、この模式図中においては粉末形状は球形に模されているが、実際にはその粉末形状や大きさに寄るものではない。球形、扁平形、異形状などいずれの形状においても、本発明の効果は有効である。
図中2は絶縁性酸化物であり、粉末表面全体を覆っている。但し、原料粉末の形状、組成、表面状態やこの製造の条件等により部分的に絶縁性酸化物がなくても絶縁の効果は十分である。逆に、絶縁物酸化物の層の厚みが薄く、金属粉末成分の占める割合が高い方が、圧粉磁心とした場合に高密度となる。したがって高磁束密度のコアが得られるうえに、処理条件も平易で有益である。
FIG. 5 shows a schematic diagram of the soft magnetic metal powder produced according to the present invention.
In the figure, reference numeral 1 denotes an Fe—Si—Cr soft magnetic metal powder as a raw material. As a manufacturing method, any method such as a gas atomizing method, a water atomizing method, and other methods may be used.
In this schematic diagram, the powder shape is modeled as a sphere, but it does not actually depend on the powder shape or size. The effect of the present invention is effective in any shape such as a spherical shape, a flat shape, and an irregular shape.
In the figure, 2 is an insulating oxide, which covers the entire powder surface. However, the insulating effect is sufficient even if there is no insulating oxide partially depending on the shape, composition, surface state of the raw material powder, conditions of the production, and the like. Conversely, the thinner the oxide oxide layer and the higher the proportion of the metal powder component, the higher the density of the dust core. Accordingly, a core having a high magnetic flux density is obtained, and the processing conditions are simple and beneficial.

絶縁性酸化物の原料としては、Mを金属元素として、メトキシドM(OCH3)n、エトキシドM(OC2H5)n、プロポキシドM(O・n−、i−C3H7)nのようなアルキル鎖長が短いアルコキシドを用いる。金属元素MはMg、Al、Si、Ca、Ti、Sr、Ba、Li、Na、K、St、Ge、Bi、Cu、Y、Zr、Taから選ばれる少なくとも一種の元素である。金属アルコキシドは、1種を単独に用いてもよいし、2種以上を組み合わせて用いてもよい。安定した酸化物を形成する元素として、Si、Ti、Zr、Alが特に好ましい。
本発明の製造方法におけるアルコキシド溶液とは、これらの金属アルコキシドをIPA、エタノールなどのアルコールに溶解させたものである。具体的にはSiのアルコキシド溶液であるテトラエトキシシランやテトラメトキシシラン、Tiのアルコキシド溶液であるチタンアルコキシドが好ましい。
As a raw material of the insulating oxide, M is a metal element and has an alkyl chain length such as methoxide M (OCH3) n, ethoxide M (OC2H5) n, propoxide M (O.n-, i-C3H7) n. Use short alkoxides. The metal element M is at least one element selected from Mg, Al, Si, Ca, Ti, Sr, Ba, Li, Na, K, St, Ge, Bi, Cu, Y, Zr, and Ta. A metal alkoxide may be used individually by 1 type, and may be used in combination of 2 or more type. Si, Ti, Zr, and Al are particularly preferable as an element that forms a stable oxide.
The alkoxide solution in the production method of the present invention is a solution obtained by dissolving these metal alkoxides in an alcohol such as IPA or ethanol. Specifically, tetraethoxysilane or tetramethoxysilane which is an alkoxide solution of Si, or titanium alkoxide which is an alkoxide solution of Ti is preferable.

金属アルコキシド溶液にアルミナ(Al2 3 )、シリカ(SiO2 )、マグネシア(MgO)等のセラミックス粒子が入っていても良いが、これらの含有量が多いと圧粉磁心の磁気特性が悪化するため、適宜選択して使用する必要がある。
また、金属アルコキシド溶液に絶縁性粘性物質を添加しても良い。この絶縁性粘性物質は、セラミックス粒子と共に添加することでその沈殿を防ぎ、金属アルコキシド溶液中に均一分散させる。その結果、軟磁性粉末の絶縁性が高まるという効果が得られる。絶縁性粘性物質には、合成粘性物質や、半合成粘性物質、天然粘性物質など、いずれも適宜用いることができる。合成粘性物質は、陽イオン系、陰イオン系、非イオン系などいずれも使用可能である。半合成粘性物質には、例えばセルロール誘電体系粘性物質であるメチルセルロースなどが使用できる。天然粘性物質には植物粘質物と動物粘質物のどちらでも使用可能であり、アラビアゴムやゼラチンなどが使用できる。
The metal alkoxide solution may contain ceramic particles such as alumina (Al 2 O 3 ), silica (SiO 2 ), and magnesia (MgO). However, if these contents are large, the magnetic properties of the powder magnetic core deteriorate. Therefore, it is necessary to select and use as appropriate.
Further, an insulating viscous substance may be added to the metal alkoxide solution. The insulating viscous substance is added together with the ceramic particles to prevent its precipitation and uniformly disperse in the metal alkoxide solution. As a result, an effect that the insulating property of the soft magnetic powder is improved is obtained. As the insulating viscous substance, any of a synthetic viscous substance, a semi-synthetic viscous substance, a natural viscous substance, and the like can be used as appropriate. As the synthetic viscous material, any of a cation system, an anion system, and a nonionic system can be used. As the semi-synthetic viscous material, for example, methylcellulose which is a cellulose dielectric system viscous material can be used. As the natural viscous substance, either plant mucilage or animal mucilage can be used, such as gum arabic or gelatin.

これらのアルコキシド溶液と前記原料粉末を混合する。混合の際、アルコキシド溶液の濃度が極端に小さいと金属粉末表面に付着する酸化物が十分ではなくなるため本発明の効果が得られない。したがって、アルコキシド溶液の濃度は10mmol/L以上必要である。濃度に上限はないが、あまり高いと金属粉末に付着せずに廃棄される分が増えるため、製造コスト上問題がある。さらにより均一で緻密な酸化物を付着させるには、現実的には5mol/L程度以下が望ましい。また、処理時間は前記アルコキシド溶液と原料粉末とを混合する時間のことであるが、短すぎると反応がほとんど進まず絶縁物を付着させることが出来ないため、30分以上が好ましい。処理時間に上限はないが、反応が平衡に達するとそれ以上の付着はあまりのぞめないため効果がない。したがって、現実的には30分から5時間の範囲が好ましい。上述するアルコキシド溶液はpHにより反応の形態と速度が変化する。本目的にはpH6.0から12、好ましくはpH8.3から10.5であることがより望ましい。pHが6以下では、磁性粉末より溶液中にFeの溶出が起こるため好ましくない。またpHが10.5以上では、付着量が過剰になり膜厚が増大し過ぎてしまう。この付着量は軟磁性金属粉末の酸素量とほぼ比例するため、合金組成や粉末形状により好ましい量を被覆する必要がある。   These alkoxide solutions and the raw material powder are mixed. At the time of mixing, if the concentration of the alkoxide solution is extremely small, the oxide attached to the surface of the metal powder is not sufficient, and the effect of the present invention cannot be obtained. Therefore, the concentration of the alkoxide solution needs to be 10 mmol / L or more. There is no upper limit to the concentration, but if it is too high, the amount of waste that does not adhere to the metal powder increases, resulting in a problem in manufacturing cost. Further, in order to deposit a more uniform and dense oxide, it is practically preferable to be about 5 mol / L or less. The treatment time is the time for mixing the alkoxide solution and the raw material powder. However, if the treatment time is too short, the reaction hardly proceeds and the insulator cannot be deposited, and therefore it is preferably 30 minutes or longer. There is no upper limit on the treatment time, but when the reaction reaches equilibrium, no further adhesion is expected, so there is no effect. Therefore, practically, a range of 30 minutes to 5 hours is preferable. The form and speed of the reaction of the alkoxide solution described above vary depending on the pH. For this purpose, it is more desirable that the pH is 6.0 to 12, preferably pH 8.3 to 10.5. A pH of 6 or less is not preferable because Fe elution occurs in the solution from the magnetic powder. On the other hand, if the pH is 10.5 or more, the amount of adhesion becomes excessive and the film thickness increases excessively. Since the adhesion amount is substantially proportional to the oxygen amount of the soft magnetic metal powder, it is necessary to coat a preferable amount depending on the alloy composition and the powder shape.

軟磁性粉末をアルコキシド溶液から取り出した後、粉末を乾燥させる。成形後に熱処理をする際、金属粉末に残留した溶媒や水などの蒸発による密度低下等を防ぐ効果がある。温度で10分〜5時間程度行うことが好ましい。乾燥工程は一般的なもので、大気中、真空中、不活性雰囲気中いずれでもよく、溶媒や水が蒸発する温度(50℃〜300℃)で30分から10時間乾燥させれば良い。   After removing the soft magnetic powder from the alkoxide solution, the powder is dried. When heat treatment is performed after molding, there is an effect of preventing a decrease in density due to evaporation of a solvent or water remaining in the metal powder. It is preferable to carry out at a temperature for about 10 minutes to 5 hours. The drying process is general and may be performed in the atmosphere, in a vacuum, or in an inert atmosphere, and may be performed at a temperature at which the solvent or water evaporates (50 ° C. to 300 ° C.) for 30 minutes to 10 hours.

上記工程により原料粉末とアルコキシド溶液を混合した時点ではCrの濃度勾配は生じない。900℃以上における熱処理工程を経て、中心部よりも表面側のCr濃度が高い本発明の軟磁性金属粉末を得ることが可能である。Cr濃化部位のイメージを図5中番号3で示す。熱処理温度は、原料粉末の焼結温度よりも低く、1000℃以上であるとより有効である。粉末表面に濃化したCrは酸化し、酸化物を形成する。この粉末を圧粉磁心に用いると、コア強度の向上が見られる。アルコキシド溶液により付着させた酸化物と前述のCrとが互いに混ざり合い、複合酸化物を形成することによると考えられる。
なお、圧粉磁心として本発明の軟磁性金属粉末を用いる場合、成形後に700℃以上の熱処理工程を行うことが可能である。これにより、本発明の軟磁性金属粉末製造のための熱処理工程とコアの歪取り焼鈍工程を同一にして、高温で歪取り焼鈍を行うことが可能である。熱処理の時間は粉末状態、コア成形後いずれも30分から2時間程度でよい。熱処理雰囲気は非酸化性雰囲気が好ましい。
At the time when the raw material powder and the alkoxide solution are mixed by the above process, no Cr concentration gradient occurs. Through the heat treatment step at 900 ° C. or higher, the soft magnetic metal powder of the present invention having a higher Cr concentration on the surface side than the center part can be obtained. An image of the Cr-concentrated site is indicated by reference numeral 3 in FIG. The heat treatment temperature is lower than the sintering temperature of the raw material powder, and is more effective when it is 1000 ° C. or higher. Cr concentrated on the powder surface is oxidized to form an oxide. When this powder is used for a dust core, the core strength is improved. It is considered that the oxide deposited by the alkoxide solution and the aforementioned Cr are mixed with each other to form a composite oxide.
In addition, when using the soft magnetic metal powder of this invention as a powder magnetic core, it is possible to perform the heat processing process of 700 degreeC or more after shaping | molding. This makes it possible to perform strain relief annealing at a high temperature by making the heat treatment step for producing the soft magnetic metal powder of the present invention the same as the strain relief annealing step for the core. The heat treatment time may be about 30 minutes to 2 hours both in the powder state and after the core molding. The heat treatment atmosphere is preferably a non-oxidizing atmosphere.

(実施例1)
Fe−6.5%Si−1%Crからなる組成で、平均粒径が40μmの軟磁性原料粉末500gを、テトラアルコキシシラン(関東化学)/IPA溶液100mLと混合し、プロペラ攪拌機を用いて、3時間攪拌した。その後、軟磁性粉末とテトラアルコキシシラン/IPA溶液を分離し、100℃で1時間乾燥させた。得られた軟磁性粉末に、バインダーとして3%PVA水溶液を0.5wt%、潤滑剤としてステアリン酸亜鉛を0.3wt%混合した。こうして得られた軟磁性粉末を室温下で1200MPaで圧縮成形し、外径14mm、内径8mm、高さ4.5mmのリング試料を作製し、これを窒素ガス中、1000℃で2時間の熱処理を行った。
また、比較として、実施例1と同じ原料粉末を製造し、テトラアルコキシシラン/IPA溶液を用いた絶縁処理の代わりに、水ガラス1.4wt%、カオリン1.3wt%、及び、潤滑剤としてステアリン酸亜鉛を0.3wt%混合したもの(比較例1)、および、アモルファスシリカ1.5wt%、カオリン0.5wt%、及び、潤滑剤ステアリン酸亜鉛を0.3wt%混合したもの(比較例2)を用意した。こうして得られた軟磁性粉末を、実施例1と同様に圧縮成形および熱処理を行った。こうして得られた圧粉磁心のコア損失を測定した。コア損失の測定には岩崎通信機社製BHアナライザー(製品名SY8232)を用い、励起磁束密度50mT、周波数50kHzにおける値を測定した。表1に記す。
Example 1
A composition composed of Fe-6.5% Si-1% Cr, 500 g of soft magnetic raw material powder having an average particle size of 40 μm, is mixed with 100 mL of tetraalkoxysilane (Kanto Chemical) / IPA solution, and using a propeller stirrer, Stir for 3 hours. Thereafter, the soft magnetic powder and the tetraalkoxysilane / IPA solution were separated and dried at 100 ° C. for 1 hour. The obtained soft magnetic powder was mixed with 0.5 wt% of 3% PVA aqueous solution as a binder and 0.3 wt% of zinc stearate as a lubricant. The soft magnetic powder thus obtained was compression molded at 1200 MPa at room temperature to produce a ring sample having an outer diameter of 14 mm, an inner diameter of 8 mm, and a height of 4.5 mm, and this was heat-treated at 1000 ° C. for 2 hours in nitrogen gas. went.
For comparison, the same raw material powder as in Example 1 was manufactured, and instead of the insulation treatment using the tetraalkoxysilane / IPA solution, 1.4 wt% of water glass, 1.3 wt% of kaolin, and stearin as a lubricant. A mixture of 0.3 wt% zinc oxide (Comparative Example 1) and a mixture of 1.5 wt% amorphous silica, 0.5 wt% kaolin and 0.3 wt% lubricant zinc stearate (Comparative Example 2) ) Was prepared. The soft magnetic powder thus obtained was subjected to compression molding and heat treatment in the same manner as in Example 1. The core loss of the dust core thus obtained was measured. The core loss was measured using a BH analyzer (product name SY8232) manufactured by Iwasaki Tsushinki Co., Ltd., and the values at an excitation magnetic flux density of 50 mT and a frequency of 50 kHz were measured. It is described in Table 1.

また、リング状試料を樹脂に埋め込み研磨し、その断面の元素分析を行った。実施例1のEPMAによる線分析結果を図1(a)に、比較例1の線分析結果を図1(b)にそれぞれ示す。図1(a)、図1(b)共に、Feの濃度が減少している部分が軟磁性粉末の端部を測定したものであり、その間の測定部分は軟磁性粉末の内部を測定した部分である。軟磁性粉末の端部でFeが減少してCrが多く検出されている。Crのピーク間、即ち粉末内部を示す領域を拡大するとCr濃度に若干の勾配があり、また、Crのピークが見られる位置でOが検出されていることから金属粉末の表面側に濃化したCrが酸化物として存在していると考えられる。
一方、図1(b)に示したように、比較例1の軟磁性粉末はむしろ金属粉末の表面側でCr量がわずかに減少している。
Moreover, the ring-shaped sample was embedded and polished in resin, and elemental analysis of the cross section was performed. The line analysis result by EPMA of Example 1 is shown in FIG. 1 (a), and the line analysis result of Comparative Example 1 is shown in FIG. 1 (b). In both FIG. 1 (a) and FIG. 1 (b), the portion where the Fe concentration is reduced is the end portion of the soft magnetic powder, and the measurement portion in between is the portion where the inside of the soft magnetic powder is measured. It is. Fe is decreased and a large amount of Cr is detected at the end of the soft magnetic powder. When the area between the Cr peaks, that is, the region showing the inside of the powder is enlarged, there is a slight gradient in the Cr concentration, and since O is detected at the position where the Cr peak is seen, it is concentrated on the surface side of the metal powder. It is considered that Cr exists as an oxide.
On the other hand, as shown in FIG. 1B, the soft magnetic powder of Comparative Example 1 has a slightly reduced Cr content on the surface side of the metal powder.

表1に示したように、同じ1000℃で熱処理をしたにもかかわらず、比較例1に比べて実施例1はコア鉄損が低く、高密度である。これは、本発明の軟磁性金属粉末およびその製造方法によるものである。高温熱処理による成形歪みの除去と粉末内部のCr濃度減少によるヒステリシス損失の減少、および、アルコキシド溶液により付着させた絶縁性酸化物(実施例1ではシリカ)と粉末表面のCr濃度が増加し酸化物を形成することによる渦電流損失の減少の効果であると考えられる。   As shown in Table 1, despite the heat treatment at the same 1000 ° C., Example 1 has a lower core iron loss and a higher density than Comparative Example 1. This is due to the soft magnetic metal powder of the present invention and the production method thereof. Removal of molding distortion by high-temperature heat treatment and reduction of hysteresis loss due to reduction of Cr concentration inside the powder, and insulation oxide (silica in Example 1) deposited by alkoxide solution and Cr concentration on the surface of the powder increase. This is considered to be an effect of reducing eddy current loss due to the formation of.

(実施例2,3)
実施例1で用いたテトラアルコキシシランのアルコキシド溶液の代わりに、テトラメトキシシラン、チタンイソプロポキシドのアルコキシド溶液を用いて実験を行った。実施例1と同様の原料粉末500gを、それぞれテトラメトキシシラン(関東化学)/IPA溶液100mL、チタンイソプロポキシド(関東化学)/IPA溶液100mLと混合し、プロペラ攪拌機を用いて3時間攪拌した。その後、軟磁性粉末とそれぞれの溶液を分離し、100℃で1時間乾燥させた。得られた軟磁性粉末に、バインダーとして3%PVA水溶液を0.5wt%、潤滑剤としてステアリン酸亜鉛を0.3wt%混合した。
以降は実施例1と同様にして圧粉磁心を圧縮成形し、コア損失を測定した。測定した結果を表1に併記する。実施例1と同様にコア鉄損が低く、高密度であることが解る。
(Examples 2 and 3)
In place of the tetraalkoxysilane alkoxide solution used in Example 1, experiments were performed using tetramethoxysilane and titanium isopropoxide alkoxide solutions. 500 g of the same raw material powder as in Example 1 was mixed with 100 mL of tetramethoxysilane (Kanto Chemical) / IPA solution and 100 mL of titanium isopropoxide (Kanto Chemical) / IPA solution, respectively, and stirred for 3 hours using a propeller stirrer. Thereafter, the soft magnetic powder and each solution were separated and dried at 100 ° C. for 1 hour. The obtained soft magnetic powder was mixed with 0.5 wt% of 3% PVA aqueous solution as a binder and 0.3 wt% of zinc stearate as a lubricant.
Thereafter, the dust core was compression molded in the same manner as in Example 1, and the core loss was measured. The measured results are also shown in Table 1. It can be seen that the core iron loss is low and the density is high as in Example 1.

(実施例4,5)
成形後の熱処理温度によるヒステリシス損失の影響を調べた。実施例1と同じ原料粉末500gを、テトラアルコキシシラン/IPA溶液100mLと混合し、プロペラ攪拌機を用いて3時間攪拌した。その後、軟磁性粉末とテトラアルコキシシラン/IPA溶液を分離し、100℃で1時間乾燥させた。得られた軟磁性粉末に、バインダーとして3%PVA水溶液を0.5wt%、潤滑剤としてステアリン酸亜鉛を0.3wt%混合した。こうして得られた軟磁性粉末を室温下で1200MPaで圧縮成形し、外径14mm、内径8mm、高さ4.5mmのリング試料を作製し、これを窒素ガス中、800℃、850℃、900℃、1000℃、1100℃の条件で2時間の熱処理を行った。結果を図4に示す。
熱処理温度が900℃以上になるとヒステリシス損失はより小さくなり、1000℃以上ではその傾向が顕著である。なお、800℃で熱処理を行った場合でも、他の粉末処理方法と比較すればヒステリシス損失は小さい値である。
(Examples 4 and 5)
The effect of hysteresis loss due to heat treatment temperature after molding was investigated. 500 g of the same raw material powder as in Example 1 was mixed with 100 mL of a tetraalkoxysilane / IPA solution and stirred for 3 hours using a propeller stirrer. Thereafter, the soft magnetic powder and the tetraalkoxysilane / IPA solution were separated and dried at 100 ° C. for 1 hour. The obtained soft magnetic powder was mixed with 0.5 wt% of 3% PVA aqueous solution as a binder and 0.3 wt% of zinc stearate as a lubricant. The soft magnetic powder thus obtained was compression-molded at 1200 MPa at room temperature to produce a ring sample having an outer diameter of 14 mm, an inner diameter of 8 mm, and a height of 4.5 mm, which was 800 ° C., 850 ° C., 900 ° C. in nitrogen gas. , 1000 ° C., 1100 ° C. for 2 hours. The results are shown in FIG.
When the heat treatment temperature is 900 ° C. or higher, the hysteresis loss becomes smaller, and when the temperature is 1000 ° C. or higher, the tendency is remarkable. Even when heat treatment is performed at 800 ° C., the hysteresis loss is a small value as compared with other powder processing methods.

(実施例6)
表2に被覆の厚さと損失の関係を示した。アルコキシド/IPA溶液のアルコキシド濃度を変えることにより、皮膜の厚さを変えた。皮膜厚さが0.2μmのものが図2(a)、皮膜厚さが1.0μmのものが図2(b)に示すものである。図3は図2の模式図である。通常であれば、被覆が厚い方が絶縁性を確保できるため、渦電流損失を抑えることができるが、本発明の軟磁性粉末は、渦電流損失は被覆厚さに因らず一定であるため、被覆は薄い方が好ましいという特徴を持つ。特に皮膜の厚さが1μm以下になると、顕著にその効果が得られる。被覆が厚くなると密度が減少し、それに伴いヒステリシス損失がわずかに増加する傾向が見られる。
(Example 6)
Table 2 shows the relationship between coating thickness and loss. The film thickness was changed by changing the alkoxide concentration of the alkoxide / IPA solution. A film having a film thickness of 0.2 μm is shown in FIG. 2A, and a film having a film thickness of 1.0 μm is shown in FIG. 2B. FIG. 3 is a schematic diagram of FIG. Normally, the thicker the coating, the better the insulation, so the eddy current loss can be suppressed. However, the soft magnetic powder of the present invention has a constant eddy current loss regardless of the coating thickness. The thin coating is preferable. In particular, when the thickness of the film is 1 μm or less, the effect is remarkably obtained. As the coating becomes thicker, the density decreases, with a tendency to increase hysteresis loss slightly.

(実施例7)
アルコキシド溶液による絶縁性酸化物の被覆処理と、それによる酸素量との関係を調べた。実施例1で行ったように、Fe−6.5%Si−1%Crからなる組成で、平均粒径が40μmの球状な軟磁性原料粉末500gを、テトラアルコキシシラン(関東化学)/IPA溶液100mLと混合し、プロペラ攪拌機を用いて、3時間攪拌した。軟磁性粉末とテトラアルコキシシラン/IPA溶液を分離し、100℃で1時間乾燥させた。この軟磁性原料粉末とテトラアルコキシシランの混合および攪拌を繰り返し、酸素量の増加について測定した。図6に示すとおり、処理回数にほぼ比例して酸素量が増加する。
また、軟磁性原料粉末の表面を絶縁性酸化物が覆った面積率(被覆率)と酸素量との関係について調べたところ、図7に示すように、酸素量が0.6wt%であればほぼ全体を覆った絶縁性酸化物が得られていることが解った。
(Example 7)
The relationship between the coating treatment of the insulating oxide with the alkoxide solution and the resulting oxygen amount was investigated. As performed in Example 1, 500 g of a spherical soft magnetic raw material powder having a composition of Fe-6.5% Si-1% Cr and an average particle size of 40 μm was added to a tetraalkoxysilane (Kanto Chemical) / IPA solution. It mixed with 100 mL and stirred for 3 hours using the propeller stirrer. The soft magnetic powder and the tetraalkoxysilane / IPA solution were separated and dried at 100 ° C. for 1 hour. The mixing and stirring of this soft magnetic raw material powder and tetraalkoxysilane were repeated, and the increase in oxygen content was measured. As shown in FIG. 6, the amount of oxygen increases almost in proportion to the number of treatments.
Further, when the relationship between the area ratio (coverage ratio) of the surface of the soft magnetic raw material powder covered with the insulating oxide and the amount of oxygen was examined, as shown in FIG. It was found that an insulating oxide covering the whole was obtained.

コア断面のEPMA線分析結果である。It is an EPMA line analysis result of a core section. 本発明の軟磁性金属粉末の断面観察写真である。It is a cross-sectional observation photograph of the soft magnetic metal powder of this invention. 図2の模式図である。FIG. 3 is a schematic diagram of FIG. 2. 熱処理温度とヒステリシス損失との関係を示す図である。It is a figure which shows the relationship between heat processing temperature and a hysteresis loss. 本発明による軟磁性金属粉末の模式図である。It is a schematic diagram of the soft magnetic metal powder by this invention. 絶縁性酸化物の被覆状態と、軟磁性粉末全体の酸素量との関係を示す図である。It is a figure which shows the relationship between the covering state of an insulating oxide, and the oxygen amount of the whole soft-magnetic powder. 絶縁性酸化物の被覆状態と、軟磁性粉末全体の酸素量との関係を示す図である。It is a figure which shows the relationship between the covering state of an insulating oxide, and the oxygen amount of the whole soft-magnetic powder.

符号の説明Explanation of symbols

1 原料粉末(軟磁性粉末)、2 絶縁性酸化物、3 Cr濃化部位   1 Raw material powder (soft magnetic powder), 2 insulating oxide, 3 Cr concentration site

Claims (5)

組成式でFe100−a−bSiCr(重量%で、0≦a≦8、0<b≦3)で表される軟磁性金属粉末の表面の一部もしくは全体がSi、Ti、Zr、Alから選ばれる少なくとも一種の絶縁性酸化物により被覆されており、前記軟磁性金属粉末表面のCr濃度が粉末中心部より高いことを特徴とする軟磁性金属粉末。 A part or the whole of the surface of the soft magnetic metal powder represented by the compositional formula Fe 100-ab Si a Cr b (by weight, 0 ≦ a ≦ 8, 0 <b ≦ 3) is Si, Ti, A soft magnetic metal powder which is coated with at least one insulating oxide selected from Zr and Al, and has a Cr concentration higher than that of a powder center portion on the surface of the soft magnetic metal powder. 組成式でFeFe in the composition formula 100−a−b100-ab SiSi a CrCr b (重量%で、0≦a≦8、0<b≦3)で表される軟磁性金属粉末の表面の一部もしくは全体がSi、Ti、Zr、Alから選ばれる少なくとも一種の絶縁性酸化物により被覆されており、前記軟磁性金属粉末表面のCrがSi、Ti、Zr、Alから選ばれる少なくとも一種と複合酸化物を形成しており、粉末表面のCr濃度が粉末中心部より高いことを特徴とする軟磁性金属粉末。At least one insulating oxide in which part or all of the surface of the soft magnetic metal powder represented by (% by weight, 0 ≦ a ≦ 8, 0 <b ≦ 3) is selected from Si, Ti, Zr, and Al. The Cr on the surface of the soft magnetic metal powder forms a composite oxide with at least one selected from Si, Ti, Zr, and Al, and the Cr concentration on the surface of the powder is higher than the center of the powder. Characteristic soft magnetic metal powder. 前記絶縁性酸化物の厚さが、1μm以下であるとともに、前記絶縁性酸化物を含む軟磁性金属粉末全体の酸素量が0.6〜10質量%であることを特徴とする請求項1又は請求項2に記載の軟磁性金属粉末。 The thickness of the insulating oxide is 1 μm or less, and the oxygen content of the entire soft magnetic metal powder containing the insulating oxide is 0.6 to 10% by mass. The soft magnetic metal powder according to claim 2. 請求項1乃至請求項3のいずれか一項に記載の軟磁性金属粉末を用いたことを特徴とする圧粉体。 A green compact using the soft magnetic metal powder according to any one of claims 1 to 3. 組成式でFeFe in the composition formula 100−a−b100-ab SiSi a CrCr b (重量%で、0≦a≦8、0<b≦3)で表される軟磁性金属粉末をアルコキシド溶液に浸して前記軟磁性金属粉末の表面に酸化物を析出させる工程と、Immersing a soft magnetic metal powder represented by (% by weight, 0 ≦ a ≦ 8, 0 <b ≦ 3) in an alkoxide solution to deposit an oxide on the surface of the soft magnetic metal powder;
前記工程で得られた軟磁性金属粉末を900℃以上で熱処理することで粉末表面のCr濃度が粉末中心部より高い軟磁性金属粉末を得る工程とを有することを特徴とする軟磁性金属粉末の製造方法。  A soft magnetic metal powder obtained by heat-treating the soft magnetic metal powder obtained in the above step at 900 ° C. or higher to obtain a soft magnetic metal powder having a Cr concentration higher than that at the center of the powder. Production method.
JP2007030303A 2007-02-09 2007-02-09 Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder Active JP5099480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030303A JP5099480B2 (en) 2007-02-09 2007-02-09 Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030303A JP5099480B2 (en) 2007-02-09 2007-02-09 Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder

Publications (2)

Publication Number Publication Date
JP2008195986A JP2008195986A (en) 2008-08-28
JP5099480B2 true JP5099480B2 (en) 2012-12-19

Family

ID=39755200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030303A Active JP5099480B2 (en) 2007-02-09 2007-02-09 Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder

Country Status (1)

Country Link
JP (1) JP5099480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615566B1 (en) * 2014-12-12 2016-04-26 한국과학기술연구원 FeSiCr Soft magnetic composite powder on which an heat-resisting oxide insulation film is formed, and powder core thereof

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036566A1 (en) 2006-08-09 2008-02-14 Andrzej Klesyk Electronic Component And Methods Relating To Same
JP4866971B2 (en) * 2010-04-30 2012-02-01 太陽誘電株式会社 Coil-type electronic component and manufacturing method thereof
JP5492155B2 (en) * 2010-04-30 2014-05-14 太陽誘電株式会社 Coil type electronic components
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US8362866B2 (en) 2011-01-20 2013-01-29 Taiyo Yuden Co., Ltd. Coil component
JP6081051B2 (en) 2011-01-20 2017-02-15 太陽誘電株式会社 Coil parts
JP5027945B1 (en) 2011-03-04 2012-09-19 住友電気工業株式会社 Dust compact, manufacturing method of compact compact, reactor, converter, and power converter
JP2012199568A (en) * 2011-03-04 2012-10-18 Sumitomo Electric Ind Ltd Green compact, production method of green compact, reactor, converter, and power converter
JP4906972B1 (en) 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
JP2012238840A (en) 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Multilayer inductor
JP2012238841A (en) 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component
JP5032711B1 (en) * 2011-07-05 2012-09-26 太陽誘電株式会社 Magnetic material and coil component using the same
JP5926011B2 (en) 2011-07-19 2016-05-25 太陽誘電株式会社 Magnetic material and coil component using the same
JP5048155B1 (en) 2011-08-05 2012-10-17 太陽誘電株式会社 Multilayer inductor
JP5048156B1 (en) 2011-08-10 2012-10-17 太陽誘電株式会社 Multilayer inductor
JP5280500B2 (en) * 2011-08-25 2013-09-04 太陽誘電株式会社 Wire wound inductor
JP5082002B1 (en) 2011-08-26 2012-11-28 太陽誘電株式会社 Magnetic materials and coil parts
JP6091744B2 (en) * 2011-10-28 2017-03-08 太陽誘電株式会社 Coil type electronic components
JP5960971B2 (en) 2011-11-17 2016-08-02 太陽誘電株式会社 Multilayer inductor
JP6012960B2 (en) * 2011-12-15 2016-10-25 太陽誘電株式会社 Coil type electronic components
JP6218468B2 (en) * 2012-07-26 2017-10-25 山陽特殊製鋼株式会社 Powder for dust core
CN105474334B (en) * 2013-09-03 2018-05-01 山阳特殊制钢株式会社 Magnetic component insulating wrapped powder
JP6348694B2 (en) * 2013-09-03 2018-06-27 山陽特殊製鋼株式会社 Insulation coating powder for magnetic materials
JP6051128B2 (en) * 2013-09-03 2016-12-27 山陽特殊製鋼株式会社 Insulation coating powder for magnetic materials
JP2015126096A (en) * 2013-12-26 2015-07-06 Ntn株式会社 Dust core and method for producing the same
JP6358491B2 (en) * 2013-12-26 2018-07-18 日立金属株式会社 Dust core, coil component using the same, and method for manufacturing dust core
JP6436172B2 (en) * 2014-10-10 2018-12-12 株式会社村田製作所 Soft magnetic material powder and manufacturing method thereof, and magnetic core and manufacturing method thereof
JP7015647B2 (en) * 2016-06-30 2022-02-03 太陽誘電株式会社 Magnetic materials and electronic components
JP6922044B2 (en) * 2017-11-20 2021-08-18 太陽誘電株式会社 Electronic components
JP6748626B2 (en) * 2017-11-20 2020-09-02 太陽誘電株式会社 Electronic parts
JP6924881B2 (en) * 2017-11-20 2021-08-25 太陽誘電株式会社 Electronic components
KR102007898B1 (en) * 2017-12-26 2019-08-06 주식회사 포스코 Soft magnetic powders for inductor core and method for manufacturing of the same
JP6460505B2 (en) * 2018-06-22 2019-01-30 日立金属株式会社 Manufacturing method of dust core
JP7420534B2 (en) * 2019-02-28 2024-01-23 太陽誘電株式会社 Soft magnetic alloy powder and its manufacturing method, coil parts made from soft magnetic alloy powder and circuit board mounted thereon
JP7459639B2 (en) * 2020-04-28 2024-04-02 Tdk株式会社 Composite particles, cores and electronic components
JP7177893B2 (en) * 2020-06-30 2022-11-24 太陽誘電株式会社 electronic components
WO2022009502A1 (en) 2020-07-10 2022-01-13 Jfeミネラル株式会社 Metal powder and pressed powder body thereof, and production methods therefor
KR102237022B1 (en) * 2020-08-07 2021-04-08 주식회사 포스코 Soft magnetic iron-based powder and its manufacturing method, soft magnetic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158482A (en) * 2000-11-16 2002-05-31 Kitagawa Ind Co Ltd Metallic powder for electromagnetic wave absorber, electromagnetic wave absorber, and paint
JP2006336061A (en) * 2005-06-01 2006-12-14 Hitachi Metals Ltd Soft magnetic member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615566B1 (en) * 2014-12-12 2016-04-26 한국과학기술연구원 FeSiCr Soft magnetic composite powder on which an heat-resisting oxide insulation film is formed, and powder core thereof

Also Published As

Publication number Publication date
JP2008195986A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
JP5263653B2 (en) Powder magnetic core and manufacturing method thereof
US8323725B2 (en) Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP4707054B2 (en) Soft magnetic material, method for producing soft magnetic material, dust core, and method for producing dust core
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP2007019134A (en) Method of manufacturing composite magnetic material
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
EP2589450B1 (en) Composite magnetic material and process for production thereof
JP5682723B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
JP2006128663A (en) Soft magnetic material, dust core and method of producing soft magnetic material
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP2004297036A (en) Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method
JP5439888B2 (en) Composite magnetic material and method for producing the same
JP2019201155A (en) Powder magnetic core and inductor element
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4534523B2 (en) Method for producing composite sintered magnetic material
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP6582745B2 (en) Composite soft magnetic material and manufacturing method thereof
JP2006245183A (en) Iron powder covered with laminated oxide film
CN114373621A (en) Process for coating soft magnet silicon aluminum by limited-area insulation and product thereof
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JPH10208923A (en) Composite magnetic material and production thereof
JP2013079412A (en) Method for producing metal powder, metal powder, and dust core
JP4480627B2 (en) Composite soft magnetic powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350