JP2006336061A - Soft magnetic member - Google Patents

Soft magnetic member Download PDF

Info

Publication number
JP2006336061A
JP2006336061A JP2005160937A JP2005160937A JP2006336061A JP 2006336061 A JP2006336061 A JP 2006336061A JP 2005160937 A JP2005160937 A JP 2005160937A JP 2005160937 A JP2005160937 A JP 2005160937A JP 2006336061 A JP2006336061 A JP 2006336061A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic member
flux density
oxide film
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005160937A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoyama
紳一郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005160937A priority Critical patent/JP2006336061A/en
Publication of JP2006336061A publication Critical patent/JP2006336061A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft magnetic member having all of high magnetic flux density, high corrosion resistance and high electrical resistivity. <P>SOLUTION: The soft magnetic member includes at least 0.10-3.0% Al and 10.0-55.0% Co by mass%, and the balance substantially Fe; and has the surface covered with an oxide film containing Al and O as main components. The soft magnetic member preferably includes 0.10-3.0% Cr by mass%, and further preferably includes one or two of 0.10-3.0% V and 0.10-3.0% Si by mass%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高磁束密度、高耐食性、高電気抵抗率を兼ね備えた軟磁性部材に関するものである。   The present invention relates to a soft magnetic member having high magnetic flux density, high corrosion resistance, and high electrical resistivity.

磁気回路を利用した製品には、軟磁性材料で成る部材(以下、軟磁性部材)が使用されている。この磁気回路製品に使用される軟磁性部材には、高い磁力を得るために高磁束密度であることが望まれる。
また、軟磁性部材に錆が発生すると、部材の形状変化によって磁気回路の作動に悪影響を及ぼすことから、長期間使用しても錆びることの無い耐食性に優れた軟磁性部材が望まれる。更に、磁気回路を高速駆動させた際に発生する渦電流を低く抑えて応答性の良い磁気回路とするためには、電気抵抗率の高い軟磁性部材が好ましい。
工業的には、純鉄、珪素鋼(質量%でSi:3%、残部Feの合金)、パーマロイ(質量%でNi:40〜90%、残部Feの合金)、パーメンダー(質量%でCo:49%、V:2%、残部Feの合金)、電磁ステンレス(質量%でCr:13〜18%、残部Fe)等の材料が軟磁性材料として用いられている。
この内、最も優れた耐食性を示す部材は電磁ステンレスで成る軟磁性部材であるが、Crを13〜18%含む電磁ステンレス製の部材においては、その磁束密度が低いという欠点がある。また、磁束密度が最も高い軟磁性部材は、FeとCoを主成分とするパーメンダー製の部材においては耐食性に乏しいという欠点がある。
In products using magnetic circuits, members made of soft magnetic materials (hereinafter referred to as soft magnetic members) are used. The soft magnetic member used in this magnetic circuit product is desired to have a high magnetic flux density in order to obtain a high magnetic force.
In addition, when rust occurs in the soft magnetic member, the change in the shape of the member adversely affects the operation of the magnetic circuit. Therefore, a soft magnetic member excellent in corrosion resistance that does not rust even after long-term use is desired. Furthermore, a soft magnetic member having a high electrical resistivity is preferable in order to suppress the eddy current generated when the magnetic circuit is driven at a high speed to obtain a magnetic circuit with good response.
Industrially, pure iron, silicon steel (mass% Si: 3%, balance Fe alloy), permalloy (mass% Ni: 40-90%, balance Fe alloy), permender (mass% Co: Materials such as 49%, V: 2%, balance Fe alloy), electromagnetic stainless steel (Cr: 13-18% in mass%, balance Fe), etc. are used as soft magnetic materials.
Among them, the member exhibiting the most excellent corrosion resistance is a soft magnetic member made of electromagnetic stainless steel, but a member made of electromagnetic stainless steel containing 13 to 18% of Cr has a drawback that its magnetic flux density is low. In addition, the soft magnetic member having the highest magnetic flux density has a drawback that it is poor in corrosion resistance in a member made of a permender mainly composed of Fe and Co.

これらの欠点を改善するため、軟磁性部材の素材である軟磁性材料の化学組成を改良することが提案されている。
例えば、特許文献1には、質量%でCo:10〜35%、Si,Al,Cr,V,Nb,Tiの内の1種または2種以上を合計で10%以下含み、残部が実質的にFeで成る軟磁性材料が開示されている。この特許文献1において選択元素として各合金元素(Si,Al,Cr,V,Nb,Ti)を添加する目的は主に電気抵抗率を高めることにある。
また、特許文献2には、質量%でCr:4〜18%、Co:4〜26%を主体として、Si:0.5〜8%、Mo:0.5〜8%、Mn:0.5〜8%、Ti:0.2〜2%、Al:0.2〜2%、Nb:0.2〜2%の内の1種以上を含み、残部がFeから成る軟磁性材料が開示されている。
In order to improve these defects, it has been proposed to improve the chemical composition of the soft magnetic material that is the material of the soft magnetic member.
For example, Patent Document 1 includes Co: 10 to 35% by mass and one or more of Si, Al, Cr, V, Nb, and Ti in total of 10% or less, and the balance is substantially the same. Discloses a soft magnetic material made of Fe. In this Patent Document 1, the purpose of adding each alloy element (Si, Al, Cr, V, Nb, Ti) as a selective element is mainly to increase electrical resistivity.
Patent Document 2 discloses that mass: Cr: 4 to 18%, Co: 4 to 26%, Si: 0.5 to 8%, Mo: 0.5 to 8%, Mn: 0.00. A soft magnetic material containing at least one of 5 to 8%, Ti: 0.2 to 2%, Al: 0.2 to 2%, Nb: 0.2 to 2%, and the balance being Fe is disclosed. Has been.

特開昭61−253348号公報JP-A-61-253348 特開昭51−92097号公報JP-A-51-92097

本発明者の検討によると、上述した特許文献1に開示される軟磁性材料は、電気抵抗率を高めることができる点では有利である。しかしながら、選択元素として記載された元素の添加の効果のみでは、Crを多量に(約4%以上)含む場合以外に耐食性を向上させることができなかった。また、優れた耐食性を得るためにCr含有量を高めると磁束密度が低下するという問題が生じた。
また、特許文献2に開示される軟磁性材料は、高い電気抵抗率と優れた耐食性を有しているが、Cr含有量が4〜18質量%と高いので、特許文献1と同様に磁束密度が低下するという問題があった。
本発明の目的は、高い磁束密度、高い耐食性、高い電気抵抗率を兼ね備えた軟磁性部材を提供することである。
According to the study of the present inventor, the soft magnetic material disclosed in Patent Document 1 described above is advantageous in that the electrical resistivity can be increased. However, the corrosion resistance cannot be improved only by the effect of addition of the element described as the selective element, except in the case of containing a large amount of Cr (about 4% or more). Further, when the Cr content is increased in order to obtain excellent corrosion resistance, there arises a problem that the magnetic flux density is lowered.
Moreover, although the soft magnetic material disclosed in Patent Document 2 has high electrical resistivity and excellent corrosion resistance, the Cr content is as high as 4 to 18% by mass. There was a problem that decreased.
An object of the present invention is to provide a soft magnetic member having high magnetic flux density, high corrosion resistance, and high electrical resistivity.

本発明者は、軟磁性部材として求められる高い磁束密度特性、高い電気抵抗率を得ながら、耐食性を高める方法を検討した結果、軟磁性部材の表面をAlとOを主成分とする酸化皮膜で被覆することによって耐食性を大きく改善できること、そして、熱処理によってAlとOを主成分とする酸化皮膜を生成させ、かつ高磁束密度と高電気抵抗率を得るための軟磁性部材の組成範囲を見出し、本発明に到達した。
即ち本発明は、少なくとも、質量%でAl:0.10〜3.0%、Co:10.0〜55.0%とを含有し、残部が実質的にFeで成る軟磁性部材であって、該軟磁性部材の表面がAlとOとを主成分とする酸化皮膜で覆われている軟磁性部材である。
好ましくは、上記の軟磁性部材は、更に質量%でCr:0.10〜3.0%を含む軟磁性部材である。
更に好ましくは、上記の軟磁性部材は、更に質量%でV:0.10〜3.0%、Si:0.10〜3.0%の1種または2種を含む軟磁性部材である。
As a result of studying a method for improving the corrosion resistance while obtaining high magnetic flux density characteristics and high electrical resistivity required for a soft magnetic member, the present inventor has found that the surface of the soft magnetic member is an oxide film mainly composed of Al and O. Corrosion resistance can be greatly improved by coating, and an oxide film mainly composed of Al and O is generated by heat treatment, and a composition range of a soft magnetic member for obtaining a high magnetic flux density and a high electrical resistivity is found, The present invention has been reached.
That is, the present invention is a soft magnetic member containing at least Al: 0.10 to 3.0% and Co: 10.0 to 55.0% by mass, with the balance being substantially Fe. The soft magnetic member is covered with an oxide film containing Al and O as main components.
Preferably, the soft magnetic member is a soft magnetic member further containing Cr: 0.10 to 3.0% by mass.
More preferably, the soft magnetic member is a soft magnetic member further including one or two of V: 0.10 to 3.0% and Si: 0.10 to 3.0% by mass%.

本発明の軟磁性部材は、従来兼ね備えることができなかった、高い磁束密度、高い電気抵抗率、高い耐食性を兼備するため、磁気回路の基本性能向上に効果があり、磁気回路の応答性向上の効果も奏するものである。   The soft magnetic member of the present invention has high magnetic flux density, high electrical resistivity, and high corrosion resistance, which could not be conventionally combined. Therefore, the soft magnetic member is effective in improving the basic performance of the magnetic circuit and improving the response of the magnetic circuit. There is also an effect.

本発明の軟磁性部材は、高い磁束密度、高い電気抵抗率、高い耐食性を兼備する。これを実現するために、FeとCoとを主成分として磁束密度を高め、これに、高い磁束密度を劣化させることなく、高い電気抵抗率と高い耐食性とを付与するために適量のAlを添加するものである。
以下、本発明における規定理由を述べる。なお、特に記載の無い限り各元素の含有量は質量%として記す。
Al:0.10〜3.0%
Alは、適量添加することで高い電気抵抗率を付与し、且つ熱処理によって軟磁性部材の表面に外方拡散し、AlとOを主成分とする酸化皮膜を生成させて高い耐食性を付与するために必要な本発明の必須元素である。但し、0.10%未満では高い電気抵抗率の付与及び高い耐食性の付与の効果が小さく、逆に3.0%を超える範囲では軟磁性部材の磁束密度を低下させるので0.10〜3.0%の範囲に規定した。より好ましくは、0.50〜2.0%であると良い。
The soft magnetic member of the present invention has high magnetic flux density, high electrical resistivity, and high corrosion resistance. In order to achieve this, the magnetic flux density is increased with Fe and Co as the main components, and an appropriate amount of Al is added to impart high electrical resistivity and high corrosion resistance without deteriorating the high magnetic flux density. To do.
Hereinafter, the reason for the definition in the present invention will be described. Unless otherwise specified, the content of each element is expressed as mass%.
Al: 0.10 to 3.0%
Al is added in an appropriate amount to give a high electrical resistivity and to diffuse outwardly on the surface of the soft magnetic member by heat treatment to produce an oxide film composed mainly of Al and O to give high corrosion resistance. It is an essential element of the present invention necessary for the above. However, if it is less than 0.10%, the effect of imparting high electrical resistivity and imparting high corrosion resistance is small, and conversely if it exceeds 3.0%, the magnetic flux density of the soft magnetic member is lowered, so that it is 0.10-3. It was specified in the range of 0%. More preferably, it is 0.50 to 2.0%.

Co:10.0〜55.0%
Coは、高磁束密度を得るために必要な本発明の必須元素である。また、Coは、熱処理時にAlの表面への外方拡散を助長する効果も併せ持っている。但し、10.0%未満では磁束密度を高める効果が小さく、逆に55.0%を超える範囲では磁束密度を低下させるので、含有量を10.0〜55.0%に規定した。Co量のより望ましい範囲は20.0〜50.0%であり、更に望ましくは、25.0〜50.0%であると良い。
残部:実質的にFe
本発明の軟磁性部材では、上記の必須添加する元素以外の残部は実質的にFeとして、Fe及びCoが主成分の合金系として高い磁束密度を実現する。なお、本発明では残部は実質的にFeとするが、C,Si,Mn,P,S,N,O等の不可避不純物は当然ながら含まれる。
この不純物元素のうち、特に制限が必要なものはAlと非金属介在物を形成するOとNであり、過度に含有すれば耐酸化性向上に寄与するAlとOとを主成分とする酸化皮膜形成に悪影響を及ぼす。そのため、OとNはそれぞれ0.03%以下(0を含む)とし、好ましくは0.01%以下とすれば良い。
また、OとN以外の不可避不純物は、軟磁性部材の磁束密度と耐食性に悪影響を及ぼさない範囲として、それぞれC≦0.10%(0を含む)、Mn≦1.0%(0を含む)、P≦0.10%(0を含む)、S≦0.10%(0を含む)の範囲で含有しても良い。
Co: 10.0-55.0%
Co is an essential element of the present invention necessary for obtaining a high magnetic flux density. Co also has the effect of promoting outward diffusion of Al to the surface during heat treatment. However, if the content is less than 10.0%, the effect of increasing the magnetic flux density is small, and conversely, if the content exceeds 55.0%, the magnetic flux density is lowered. Therefore, the content is defined as 10.0 to 55.0%. A more desirable range of the amount of Co is 20.0 to 50.0%, and further desirably 25.0 to 50.0%.
The rest: substantially Fe
In the soft magnetic member of the present invention, the remainder other than the above essential elements is substantially Fe, and a high magnetic flux density is realized as an alloy system mainly composed of Fe and Co. In the present invention, the balance is substantially Fe, but naturally unavoidable impurities such as C, Si, Mn, P, S, N, and O are included.
Of these impurity elements, the elements that need to be particularly restricted are O and N that form non-metallic inclusions with Al, and oxidation containing Al and O as main components that contribute to improving oxidation resistance if excessively contained. It adversely affects film formation. Therefore, O and N are each 0.03% or less (including 0), preferably 0.01% or less.
In addition, inevitable impurities other than O and N are C ≦ 0.10% (including 0) and Mn ≦ 1.0% (including 0) as ranges that do not adversely affect the magnetic flux density and corrosion resistance of the soft magnetic member. ), P ≦ 0.10% (including 0), S ≦ 0.10% (including 0).

本発明では、上述した化学組成を有する軟磁性材料の素材表面にAlとOを主成分とする酸化皮膜を形成してAlとOとを主成分とする酸化皮膜により優れた耐食性を確保する。
AlとOを主成分とする酸化皮膜は緻密な酸化物で構成され、かつ基地との密着性も良好であることから、耐食性保護皮膜として有効な役割を果たす。このような酸化皮膜は、本発明範囲の組成をもつ軟磁性部材を熱処理することによって生成することができる。
この熱処理時の温度と保持時間は、それぞれ温度:700〜950℃、保持時間:0.5〜5hであることが望ましい。その理由は、温度が700℃未満や保持時間が0.5h未満の場合には、Alを表面に外方拡散させてAlとOを主成分とする皮膜を生成させる効果が小さく、逆に温度が950℃を超える場合や保持時間が5hを超える場合には、AlとOを主成分とする酸化皮膜は生成するものの、高温・長時間の熱処理で形成した酸化皮膜によってより一層の耐酸化性向上の効果は期待できず、熱処理に必要とされるエネルギー消費量も増して経済的ではない。そのため、温度:700〜950℃、保持時間:0.5〜5hであることが望ましい。
In the present invention, an oxide film mainly composed of Al and O is formed on the surface of the soft magnetic material having the above-described chemical composition, and excellent corrosion resistance is ensured by the oxide film mainly composed of Al and O.
Since the oxide film containing Al and O as main components is composed of a dense oxide and has good adhesion to the matrix, it plays an effective role as a corrosion-resistant protective film. Such an oxide film can be produced by heat-treating a soft magnetic member having a composition within the range of the present invention.
The temperature and holding time during the heat treatment are desirably temperature: 700 to 950 ° C. and holding time: 0.5 to 5 h, respectively. The reason for this is that when the temperature is less than 700 ° C. or the holding time is less than 0.5 h, the effect of causing Al to diffuse outwardly to form a film mainly composed of Al and O is small. When the temperature exceeds 950 ° C. or the holding time exceeds 5 hours, an oxide film composed mainly of Al and O is produced, but the oxidation film formed by heat treatment for a long time at a high temperature further enhances the oxidation resistance. The improvement effect cannot be expected, and the energy consumption required for the heat treatment increases, which is not economical. Therefore, it is desirable that the temperature is 700 to 950 ° C. and the holding time is 0.5 to 5 hours.

また、熱処理を行う雰囲気は、例えば酸素と窒素が合計で0.1vol%以下、残部が実質的に水素(純度3N以上)の還元性雰囲気中で、露点−20℃以下で処理すると良い。
その理由は、このような酸素分圧の低い雰囲気で熱処理を行うと、最も酸化し易いAlのみが酸化されるからであり、例えば大気中や、純度3N以下の水素雰囲気等、酸素分圧の高い雰囲気で熱処理を行うと、Alの他にFeも酸化する結果、AlとOを主成分とする緻密な酸化皮膜が生成せず、FeとOを主成分とする疎な形態の酸化物が生成するために耐食性向上の効果が得られ難いからである。また、酸素分圧の高い雰囲気下での熱処理は、部材の軟磁性にも悪影響を及ぼす。それ故、上述の雰囲気が望ましい。
また、本発明で言うAlとOを主成分とする酸化皮膜とは、軟磁性部材の表面濃度を光電子分光装置(ESCA)で測定した際、原子%でAl量が30%以上であり且つO量が50%以上である酸化皮膜を指す。なお、形成するAlとOとを主成分とする酸化皮膜の好ましい厚みについては、SiO標準試料を用いた光電子分光装置(ESCA)で測定した場合、その下限は5nm以上(好ましくは20nm以上)、上限は500nm以下(好ましくは300nm以下)であればよい。
また、AlとOとを主成分とする酸化皮膜の色は、分光測色計により測定される反射率Yが30〜40%、x色度が0.3以下(好ましくは0.2〜0.3)、y色度が0.35以下(好ましくは0.2〜0.3)の範囲内にある薄青〜青色部分となるのが望ましい。
The atmosphere for the heat treatment is preferably a dew point of −20 ° C. or less in a reducing atmosphere in which oxygen and nitrogen are combined in a total amount of 0.1 vol% or less and the balance is substantially hydrogen (purity 3N or more).
The reason is that when heat treatment is performed in an atmosphere having such a low oxygen partial pressure, only the most easily oxidized Al is oxidized. For example, in the air or a hydrogen atmosphere having a purity of 3N or less, the oxygen partial pressure is low. When heat treatment is performed in a high atmosphere, Fe is oxidized in addition to Al. As a result, a dense oxide film mainly composed of Al and O is not formed, and a sparse form oxide mainly composed of Fe and O is formed. This is because it is difficult to obtain the effect of improving the corrosion resistance. In addition, heat treatment under an atmosphere having a high oxygen partial pressure adversely affects the soft magnetism of the member. Therefore, the above atmosphere is desirable.
The oxide film mainly composed of Al and O in the present invention means that when the surface concentration of a soft magnetic member is measured by a photoelectron spectrometer (ESCA), the Al content is 30% or more in atomic% and O It refers to an oxide film whose amount is 50% or more. Note that the preferred thickness of the oxide film mainly composed of Al and O to form, when measured by SiO 2 photoelectron spectrometer using a standard sample (ESCA), the lower limit of more than 5 nm (preferably at least 20 nm) The upper limit may be 500 nm or less (preferably 300 nm or less).
The color of the oxide film mainly composed of Al and O has a reflectance Y measured by a spectrocolorimeter of 30 to 40% and an x chromaticity of 0.3 or less (preferably 0.2 to 0). .3), it is desirable that the y chromaticity is a light blue to blue portion in the range of 0.35 or less (preferably 0.2 to 0.3).

次に、より望ましい組成範囲を規定した理由を述べる。
Cr:0.10〜3.0%
Crは、軟磁性部材の耐食性を向上させ、かつ電気抵抗率を高める元素である。但し、含有量が0.10%未満の場合には、いずれの効果も小さく、逆に3.0%を超える場合には、磁束密度を顕著に低下させるので上述の範囲に規定した。Cr量のより望ましい範囲は、0.50〜2.0%である。
V:0.10〜3.0%
Vは、軟磁性部材の電気抵抗率を高め、更に冷間加工性を向上させる効果を持っている。但し、0.10%未満では、いずれの効果も小さく、逆に3.0%を超える範囲では、磁束密度を顕著に低下させるので、上述の範囲に規定した。より望ましい範囲は、0.50〜2.50%である。
Si:0.05〜3.0%
Siも、軟磁性部材の電気抵抗率を高めるのに有効な元素である。但し、その含有量が0.05%未満では効果が小さく、逆に3.0%を超える範囲では磁束密度を顕著に低下させるので上述の範囲に規定した。Si量のより望ましい範囲は、0.10〜2.50%であり、更に望ましくは0.50〜2.0%である。
Next, the reason for defining a more desirable composition range will be described.
Cr: 0.10 to 3.0%
Cr is an element that improves the corrosion resistance of the soft magnetic member and increases the electrical resistivity. However, when the content is less than 0.10%, all the effects are small. On the contrary, when the content exceeds 3.0%, the magnetic flux density is remarkably lowered. A more desirable range of the Cr content is 0.50 to 2.0%.
V: 0.10 to 3.0%
V has the effect of increasing the electrical resistivity of the soft magnetic member and further improving the cold workability. However, if the content is less than 0.10%, all the effects are small. Conversely, if the content exceeds 3.0%, the magnetic flux density is remarkably lowered. A more desirable range is 0.50 to 2.50%.
Si: 0.05-3.0%
Si is also an effective element for increasing the electrical resistivity of the soft magnetic member. However, if the content is less than 0.05%, the effect is small. Conversely, if the content exceeds 3.0%, the magnetic flux density is remarkably lowered, so the above range is specified. A more preferable range of the amount of Si is 0.10 to 2.50%, and more preferably 0.50 to 2.0%.

以下の実施例で本発明を更に詳しく説明する。
真空溶解炉を用いて、10kgの材料を12種類溶製した。各溶製材の化学組成を表1に示す。
なお、No.1〜5は、Al量を約1%に固定し、Co量を12.02〜49.01%の範囲で変動させた材料である。これら5種類の材料では、CrとVは無添加とし、Siは0.10%以下とした。
また、No.6は、No.3のAl量を高めた材料である。No.7〜9は、No.3の組成を基本として、それぞれ1.96%Cr(No.7)、2.11%V+1.48%Si(No.8)、2.04%Cr+1.49%Si(No.9)の各元素を加えた材料である。
No.10は、Al量を0.55%、Co量を25.02%、Si量を0.51%とし、Cr量を8.21%まで高めた材料であり、化学組成は本発明の範囲外である。
更にNo.11は、Fe−13%Crを主成分とする電磁ステンレスに相当し、No.12は、Fe−49%Co−2%Vを主成分とするパーメンダーに相当し、化学組成は本発明の範囲外である。
The following examples further illustrate the present invention.
Using a vacuum melting furnace, 12 kinds of 10 kg materials were melted. Table 1 shows the chemical composition of each melted material.
In addition, No. Nos. 1 to 5 are materials in which the Al amount is fixed to about 1% and the Co amount is varied in the range of 12.02 to 49.01%. In these five types of materials, Cr and V were not added, and Si was 0.10% or less.
No. 6 is No.6. 3 is a material with an increased amount of Al. No. 7 to 9 are No. 3, each of 1.96% Cr (No. 7), 2.11% V + 1.48% Si (No. 8), 2.04% Cr + 1.49% Si (No. 9), respectively. It is a material with added elements.
No. 10 is a material in which the Al amount is 0.55%, the Co amount is 25.02%, the Si amount is 0.51%, and the Cr amount is increased to 8.21%, and the chemical composition is outside the scope of the present invention. It is.
Furthermore, no. No. 11 corresponds to an electromagnetic stainless steel mainly composed of Fe-13% Cr. No. 12 corresponds to a permender whose main component is Fe-49% Co-2% V, and the chemical composition is outside the scope of the present invention.

これら12種類の溶製材を1100℃に加熱して熱間鍛造を行い、直径25mmの丸棒材を得た。これらの丸棒材から、以下に示す2種類の工程(A,B)により、諸特性評価用の各軟磁性部材を作製した。
<工程A>
熱間鍛造後の丸棒材から、磁束密度と電気抵抗率測定用の1mm×8mm×80mmの板状部材と塩水噴霧試験と表面濃度プロファイル測定用の1mm×φ20mmの円板状部材を放電加工機により切り出し、各部材の表面をエメリー紙で#500まで一方向研磨した。これらの部材を純度4N、露点−40℃の水素雰囲気(雰囲気中に含まれる不純物は、酸素0.01ppm,窒素2.04ppm)において、温度850℃、保持3時間の条件で熱処理した後に炉冷して軟磁性部材とした。
These 12 kinds of melted materials were heated to 1100 ° C. and hot forged to obtain round bars with a diameter of 25 mm. From these round bars, soft magnetic members for evaluating various properties were produced by the following two steps (A, B).
<Process A>
From a round bar after hot forging, a 1 mm x 8 mm x 80 mm plate member for measuring magnetic flux density and electrical resistivity and a 1 mm x φ20 mm disk member for salt spray test and surface concentration profile measurement are electrodischarge machined. The surface of each member was unidirectionally polished up to # 500 with emery paper. These members were heat-treated in a hydrogen atmosphere with a purity of 4N and a dew point of −40 ° C. (impurities contained in the atmosphere were oxygen 0.01 ppm and nitrogen 2.04 ppm) at a temperature of 850 ° C. and a holding time of 3 hours. Thus, a soft magnetic member was obtained.

<工程B>
熱間鍛造後の丸棒材の一部を切断して850℃に保持した大気炉中で3時間保持後に炉冷し、この熱処理後の丸棒材から磁束密度と電気抵抗率測定用の1mm×8mm×80mmの板状部材と塩水噴霧試験と表面濃度分析用の1mm×φ20mmの円板状部材を放電加工機により切り出し、各部材の表面をエメリー紙で#500まで一方向研磨して軟磁性部材とした。
工程Aと工程Bでは、熱処理雰囲気を除いて熱間鍛造後の加工方法、熱処理温度、保持時間、冷却方法は同じであるが、部材の加工(切り出し)と熱処理の順序が異なっている。以下、表1に示したNo.1〜12の数字と工程A,Bを組み合わせ、1A,1B,〜12A,12Bの24種類の記号を用いて各軟磁性部材を表記する。
<Process B>
A portion of the round bar material after hot forging was cut and held in an atmospheric furnace maintained at 850 ° C. for 3 hours and then cooled in the furnace. From the round bar material after the heat treatment, 1 mm for measuring magnetic flux density and electrical resistivity. A plate-shaped member of × 8 mm × 80 mm and a disk-shaped member of 1 mm × φ20 mm for salt spray test and surface concentration analysis are cut out with an electric discharge machine, and the surface of each member is unidirectionally polished to # 500 with emery paper and softened. A magnetic member was used.
In step A and step B, the processing method after hot forging, the heat treatment temperature, the holding time, and the cooling method are the same except for the heat treatment atmosphere, but the order of member processing (cutting) and heat treatment is different. Hereinafter, No. 1 shown in Table 1. Each of the soft magnetic members is described using a combination of the numbers 1 to 12 and the processes A and B, using 24 kinds of symbols 1A, 1B, to 12A, and 12B.

工程Aで作製した軟磁性部材の内、1A〜10Aの10種類の軟磁性部材は、表面が薄青く着色していた。この内、軟磁性部材8Aの表面の反射率Y、x色度、y色度を分光測色計(ミノルタ製CM−2002)により測定したところ、Y=34.79%、x=0.265、y=0.2915であった。また、着色した軟磁性部材の表面を電界放射型走査型電子顕微鏡(FE−SEM)により加速電圧5kVの条件で観察した例として、軟磁性部材8Aの観察結果を図1に示す。図1から、軟磁性部材8Aの表面は、粒径100nm程度の緻密な微粒子で被覆されていることが分かる。
この軟磁性部材8Aの表面からの濃度プロファイルを光電子分光分析装置(ESCA)により1200秒間スパッタして測定した結果を図2に示す。なお、測定時のスパッタ速度は、SiO標準試料が毎分1nmの速さでスパッタされる速度に調整されている。
図2より、軟磁性部材8Aの表面濃度は、原子%でAl量が30%以上、O量が50%以上となっており、AlとOを主成分とする酸化皮膜で被覆されており、AlとOを主成分とする酸化皮膜の厚みは20nm以上であることが分かる。実際に、軟磁性部材8Aの酸化皮膜の断面を電界放射型走査電子顕微鏡により、加速電圧15kVで観察したところ、図5に示すように、約100nmの酸化皮膜が生成していた。
この内、30秒間スパッタ後、および1200秒間スパッタ後の状態において、酸化皮膜の結合エネルギーのピーク位置を図3に示す。図3より、AlとOの結合エネルギーのピーク位置がAl(アルミナ)と一致することから、軟磁性部材の表面を被覆する上記の酸化皮膜は、Alであることが分かる。
他の着色した軟磁性部材1A〜7Aと9A〜10Aにおいても、同様にAl皮膜が生成していた。それ故、表面が薄青く着色した10種類の軟磁性部材の内、化学組成が本発明の範囲に含まれるNo.1A〜9Aは本発明例である。
Among the soft magnetic members produced in step A, 10 types of soft magnetic members 1A to 10A were colored light blue. Among these, the reflectance Y, x chromaticity, and y chromaticity of the surface of the soft magnetic member 8A were measured with a spectrocolorimeter (CM-2002 manufactured by Minolta). Y = 34.79%, x = 0.265 Y = 0.2915. FIG. 1 shows an observation result of the soft magnetic member 8A as an example of observing the surface of the colored soft magnetic member with a field emission scanning electron microscope (FE-SEM) under an acceleration voltage of 5 kV. As can be seen from FIG. 1, the surface of the soft magnetic member 8A is covered with dense fine particles having a particle diameter of about 100 nm.
FIG. 2 shows the result of measuring the concentration profile from the surface of the soft magnetic member 8A by sputtering for 1200 seconds with a photoelectron spectrometer (ESCA). The sputtering rate at the time of measurement is adjusted to a rate at which the SiO 2 standard sample is sputtered at a rate of 1 nm per minute.
From FIG. 2, the surface concentration of the soft magnetic member 8A is atomic%, the amount of Al is 30% or more, the amount of O is 50% or more, and is covered with an oxide film mainly composed of Al and O. It can be seen that the thickness of the oxide film composed mainly of Al and O is 20 nm or more. Actually, when the cross section of the oxide film of the soft magnetic member 8A was observed at an acceleration voltage of 15 kV with a field emission scanning electron microscope, an oxide film of about 100 nm was formed as shown in FIG.
Among these, the peak position of the binding energy of the oxide film is shown in FIG. 3 after being sputtered for 30 seconds and after being sputtered for 1200 seconds. From FIG. 3, since the peak position of the binding energy of Al and O coincides with Al 2 O 3 (alumina), it can be seen that the above oxide film covering the surface of the soft magnetic member is Al 2 O 3. .
In the other colored soft magnetic members 1A to 7A and 9A to 10A, Al 2 O 3 films were similarly formed. Therefore, among the 10 types of soft magnetic members colored light blue, the chemical composition is included in the scope of the present invention. 1A to 9A are examples of the present invention.

一方、11A,12Aと工程Bにより作製した軟磁性部材1B〜12Bは、着色していなかった。これら未着色の軟磁性部材における表面濃度の測定例として、軟磁性部材8Bの表面の濃度プロファイルを図4に示す。スパッタ時間の進行とともに酸素量は低減し、FeとCoの濃度が上昇している。図4から、軟磁性部材8Bの表面にAlとOを主成分とする酸化皮膜は生成しておらず、本発明の比較例である。
他の未着色の軟磁性部材においても、表面にAlとOを主成分とする酸化皮膜は生成していなかった。それ故、未着色の軟磁性部材(11A,12A,1B〜12B)、および表面にAlとOを主成分とする酸化皮膜が生成しているものの化学組成が本発明範囲から外れる軟磁性部材10Aは、本発明の比較例である。
On the other hand, the soft magnetic members 1B to 12B produced by 11A and 12A and the process B were not colored. As an example of measuring the surface concentration of these uncolored soft magnetic members, the concentration profile of the surface of the soft magnetic member 8B is shown in FIG. As the sputtering time progresses, the amount of oxygen decreases and the concentration of Fe and Co increases. From FIG. 4, the oxide film which has Al and O as a main component is not produced | generated on the surface of the soft-magnetic member 8B, and is a comparative example of this invention.
Also in other uncolored soft magnetic members, an oxide film mainly composed of Al and O was not formed on the surface. Therefore, the uncolored soft magnetic member (11A, 12A, 1B to 12B) and the soft magnetic member 10A whose chemical composition deviates from the scope of the present invention although the surface is formed with an oxide film mainly composed of Al and O. These are comparative examples of the present invention.

作製した24種類の軟磁性部材の表面に温度35℃の5%NaCl溶液を噴霧して錆の発生状況を確認した。また、直流磁束計を用いて、各軟磁性部材に10,000A/mの磁場を印加し、磁束密度B10000(T)を測定した。更に、4端子法の電気抵抗測定装置を用いて、各軟磁性部材に500mAの定電流を流し、両端の電位差を測定することにより電気抵抗率ρ(μΩm)を測定した。
各軟磁性部材の塩水噴霧試験結果(2時間後と24時間後)、磁束密度B10000(T)、電気抵抗率ρ(μΩm)を一覧にして表2に示す。なお、塩水噴霧試験結果については、全く錆びていないものを○、一部が錆びているものを△、ほぼ全面が錆びているものを×として示す。
Rust generation was confirmed by spraying a 5% NaCl solution at a temperature of 35 ° C. on the surface of the 24 types of soft magnetic members produced. Further, a magnetic field of 10,000 A / m was applied to each soft magnetic member using a DC magnetometer, and the magnetic flux density B 10000 (T) was measured. Furthermore, using a four-terminal electrical resistance measuring device, a constant current of 500 mA was passed through each soft magnetic member, and the electrical potential ρ (μΩm) was measured by measuring the potential difference between both ends.
Table 2 shows a list of salt spray test results (after 2 hours and 24 hours), magnetic flux density B 10000 (T), and electrical resistivity ρ (μΩm) of each soft magnetic member. In addition, about the salt spray test result, what does not rust at all is shown as (circle), what is partly rusted as (triangle | delta), and what has almost rusted as x.

表2から、本発明の1A〜9Aでは、2時間の塩水噴霧後には全く錆びていない。また、24時間の塩水噴霧後にも1A〜6Aと8Aでは試験片の一部が錆びる程度に留まっており、より好ましい組成範囲とした7Aと9Aでは、全く錆びていない。これに対し、比較例の12A,1B〜9B,12Bでは、2時間の塩水噴霧によって試験片のほぼ全面が錆びている。また、10Bの耐食性も本発明の1A〜9Aと比較して劣っている。
一方、比較例の10A,11A,11Bの耐食性は、本発明の1A〜9Aよりも優れているが、これらの軟磁性部材の磁束密度B10000は、それぞれ1.55T(10A)、1.48T(11Aと11B)であり、本発明の軟磁性部材(1A〜9A)の1.81〜2.37Tと比較して低い結果となった。
From Table 2, 1A to 9A of the present invention is not rusted after 2 hours of salt water spraying. Further, even after spraying with salt water for 24 hours, in 1A to 6A and 8A, only a part of the test piece remains rusted, and in 7A and 9A having a more preferable composition range, there is no rust. On the other hand, in the comparative examples 12A, 1B to 9B, 12B, almost the entire surface of the test piece is rusted by salt water spray for 2 hours. Moreover, the corrosion resistance of 10B is also inferior compared with 1A-9A of this invention.
On the other hand, the corrosion resistance of Comparative Examples 10A, 11A, and 11B is superior to 1A to 9A of the present invention, but the magnetic flux density B 10000 of these soft magnetic members is 1.55T (10A) and 1.48T, respectively. (11A and 11B), which was lower than 1.81 to 2.37T of the soft magnetic members (1A to 9A) of the present invention.

以上の結果から、化学組成を本発明の範囲内とし、かつ表面をAlとOを主成分とする酸化皮膜で被覆した軟磁性部材とすることによって、高磁束密度と高耐食性を兼ね備えた軟磁性部材が得られていることが分かる。   From the above results, a soft magnetic member having a high magnetic flux density and a high corrosion resistance can be obtained by making a soft magnetic member having a chemical composition within the scope of the present invention and having a surface coated with an oxide film mainly composed of Al and O. It turns out that the member is obtained.

本発明の軟磁性部材は、高磁束密度と耐食性に優れており、更に高電気抵抗率化もできるので、これらの諸特性が必要とされる磁気回路の軟磁性部材として適用することができる。   The soft magnetic member of the present invention is excellent in high magnetic flux density and corrosion resistance, and can be further increased in electrical resistivity, so that it can be applied as a soft magnetic member for a magnetic circuit that requires these characteristics.

本発明の軟磁性部材の表面形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface form of the soft-magnetic member of this invention. 本発明の軟磁性部材の表面濃度プロファイルを示す図である。It is a figure which shows the surface concentration profile of the soft-magnetic member of this invention. 本発明の軟磁性部材における表面の結合状態を示す図である。It is a figure which shows the coupling | bonding state of the surface in the soft-magnetic member of this invention. 比較例の軟磁性部材の表面濃度プロファイルを示す図である。It is a figure which shows the surface concentration profile of the soft-magnetic member of a comparative example. 本発明の軟磁性部材における酸化皮膜の断面形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the cross-sectional form of the oxide film in the soft-magnetic member of this invention.

Claims (3)

少なくとも、質量%でAl:0.10〜3.0%、Co:10.0〜55.0%とを含有し、残部が実質的にFeで成る軟磁性部材であって、該軟磁性部材の表面がAlとOとを主成分とする酸化皮膜で覆われていることを特徴とする軟磁性部材。 A soft magnetic member containing at least Al: 0.10 to 3.0% and Co: 10.0 to 55.0% by mass, and the balance being substantially Fe, wherein the soft magnetic member A soft magnetic member characterized in that the surface of is covered with an oxide film containing Al and O as main components. 請求項1に記載の軟磁性部材は、更に質量%でCr:0.10〜3.0%を含むことを特徴とする軟磁性部材。 The soft magnetic member according to claim 1, further comprising Cr: 0.10 to 3.0% by mass%. 請求項1または2に記載の軟磁性部材は、更に質量%でV:0.10〜3.0%、Si:0.05〜3.0%の1種または2種を含むことを特徴とする軟磁性部材。 The soft magnetic member according to claim 1 or 2 further includes one or two kinds of V: 0.10 to 3.0% and Si: 0.05 to 3.0% by mass%. Soft magnetic member.
JP2005160937A 2005-06-01 2005-06-01 Soft magnetic member Pending JP2006336061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160937A JP2006336061A (en) 2005-06-01 2005-06-01 Soft magnetic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160937A JP2006336061A (en) 2005-06-01 2005-06-01 Soft magnetic member

Publications (1)

Publication Number Publication Date
JP2006336061A true JP2006336061A (en) 2006-12-14

Family

ID=37556875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160937A Pending JP2006336061A (en) 2005-06-01 2005-06-01 Soft magnetic member

Country Status (1)

Country Link
JP (1) JP2006336061A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195986A (en) * 2007-02-09 2008-08-28 Hitachi Metals Ltd Powder of soft magnetic metal, green compact thereof, and method for manufacturing powder of soft magnetic metal
EP2083428A1 (en) * 2008-01-22 2009-07-29 Imphy Alloys Fe-Co alloy for highly dynamic electromagnetic actuator
KR101060094B1 (en) 2007-07-27 2011-08-29 바쿰슈멜체 게엠베하 운트 코. 카게 Soft Magnetic Iron-Cobalt-Based Alloy and Manufacturing Method Thereof
JP2014160825A (en) * 2014-02-26 2014-09-04 Vacuumschmelze Gmbh & Co Kg Plywood laminate including individual soft magnetic sheet, electromagnetically-actuated apparatus, manufacturing method of the same, and method for using soft magnetic plywood laminate
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
JP2020202314A (en) * 2019-06-11 2020-12-17 鈴木 茂 Method for manufacturing plate material for laminate iron core, plate material for laminate iron core, and laminate iron core
JP7047959B1 (en) 2021-03-31 2022-04-05 Tdk株式会社 Soft magnetic alloys and magnetic parts.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195986A (en) * 2007-02-09 2008-08-28 Hitachi Metals Ltd Powder of soft magnetic metal, green compact thereof, and method for manufacturing powder of soft magnetic metal
KR101060094B1 (en) 2007-07-27 2011-08-29 바쿰슈멜체 게엠베하 운트 코. 카게 Soft Magnetic Iron-Cobalt-Based Alloy and Manufacturing Method Thereof
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
EP2083428A1 (en) * 2008-01-22 2009-07-29 Imphy Alloys Fe-Co alloy for highly dynamic electromagnetic actuator
JP2014160825A (en) * 2014-02-26 2014-09-04 Vacuumschmelze Gmbh & Co Kg Plywood laminate including individual soft magnetic sheet, electromagnetically-actuated apparatus, manufacturing method of the same, and method for using soft magnetic plywood laminate
JP2020202314A (en) * 2019-06-11 2020-12-17 鈴木 茂 Method for manufacturing plate material for laminate iron core, plate material for laminate iron core, and laminate iron core
JP7271064B2 (en) 2019-06-11 2023-05-11 茂 鈴木 METHOD FOR MANUFACTURING PLATE MATERIAL FOR LAMINATED CORE, PLATE MATERIAL FOR LAMINATED CORE, AND LAMINATED CORE
JP7047959B1 (en) 2021-03-31 2022-04-05 Tdk株式会社 Soft magnetic alloys and magnetic parts.
JP2022157041A (en) * 2021-03-31 2022-10-14 Tdk株式会社 Soft magnetic alloy and magnetic component

Similar Documents

Publication Publication Date Title
JP5339192B2 (en) Amorphous alloy ribbon, nanocrystalline soft magnetic alloy, magnetic core, and method for producing nanocrystalline soft magnetic alloy
JP2006336061A (en) Soft magnetic member
JP6632627B2 (en) Nanocrystalline magnetic alloy and method of heat treatment thereof
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
WO2006104148A1 (en) Magnetic core and applied product making use of the same
JP2011149045A (en) Thin strip of soft magnetic alloy, method for manufacturing the same, and magnetic component having thin strip of soft magnetic alloy
WO2014103722A1 (en) Ferritic stainless steel sheet having excellent anti-bacterial activity, and method for producing same
JP6880814B2 (en) Electrical steel sheet and its manufacturing method
JP6139943B2 (en) Steel material for soft magnetic parts with excellent pickling properties, soft magnetic parts with excellent corrosion resistance and magnetic properties, and manufacturing method thereof
JP2000104142A (en) Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member
KR20180009775A (en) Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet
CN111613407B (en) R-T-B series permanent magnet material, raw material composition, preparation method and application thereof
TWI519654B (en) Corrosion resistance and magnetic properties of steel and its manufacturing methods
WO2021210491A1 (en) Ferritic stainless steel material and method for manufacturing same
CN111613406B (en) R-T-B series permanent magnetic material, raw material composition, preparation method and application thereof
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JPS6286146A (en) High permeability amorphous alloy having high corrosion resistance, strength and wear resistance and method for modifying magnetic characteristic of said alloy
JP4669515B2 (en) Electrical steel sheet component and method for manufacturing the same
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JP7277707B2 (en) thick steel plate
JP2004002949A (en) Soft magnetic alloy
JPH08199270A (en) Iron-nickel alloy sheet excellent in magnetic property and its production
JP2009046729A (en) Electromagnetic steel sheet for etching work
JP2024030809A (en) Soft magnetic steel plate
JP4199413B2 (en) Fe-Cr-Ni alloy for electron gun electrode excellent in corrosion resistance and its strip