JP3939568B2 - Nonmagnetic stainless steel with excellent workability - Google Patents

Nonmagnetic stainless steel with excellent workability Download PDF

Info

Publication number
JP3939568B2
JP3939568B2 JP2002043200A JP2002043200A JP3939568B2 JP 3939568 B2 JP3939568 B2 JP 3939568B2 JP 2002043200 A JP2002043200 A JP 2002043200A JP 2002043200 A JP2002043200 A JP 2002043200A JP 3939568 B2 JP3939568 B2 JP 3939568B2
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
nonmagnetic stainless
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002043200A
Other languages
Japanese (ja)
Other versions
JP2003082445A (en
JP2003082445A5 (en
Inventor
聡 鈴木
一幸 景岡
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002043200A priority Critical patent/JP3939568B2/en
Publication of JP2003082445A publication Critical patent/JP2003082445A/en
Publication of JP2003082445A5 publication Critical patent/JP2003082445A5/ja
Application granted granted Critical
Publication of JP3939568B2 publication Critical patent/JP3939568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、優れた加工性を呈し、加工後にも非磁性が維持されるステンレス鋼に関する。
【0002】
【従来の技術】
SUS304に代表されるCr−Ni系のオーステナイトステンレス鋼は、良好な加工性及び耐食性を示し、焼鈍状態で非磁性のオーステナイト組織になることから、非磁性鋼板として電気部品,機械部品,ケーシング等として広範な用途に使用されている。
SUS304ステンレス鋼は、オーステナイト相が準安定であるため成形加工中にマルテンサイト変態が生じる。加工誘起マルテンサイトの生成により加工誘起変態塑性に基づく高い延性が発現するが、加工品が磁性を帯びるようになる。そこで、非磁性が要求される用途では、成形加工したSUS304等の準安定鋼を焼鈍することによって磁性を消去する方法が採用されている。また、オーステナイト相が安定でマルテンサイト変態し難いSUS305,SUS316等の素材を使用することによっても、成形加工後に非磁性が維持される。
【0003】
【発明が解決しようとする課題】
SUS304等の準安定鋼を素材として加工し、引き続き加工品を焼鈍する方法では、処理コストが高くなる。すなわち、加工品は中空形状のものが多いため、焼鈍に際しては空隙増加になって熱処理効率が著しく低下する。また、大気雰囲気で熱処理する場合、熱処理で生成したスケールを除去するための酸洗工程が必要となる。酸洗を回避する方法として非酸化性雰囲気中での熱処理もあるが、高価な水素ガス雰囲気炉等を使用するため処理コストが大幅に上昇する。
他方、SUS305,SUS316等の安定ステンレス鋼は、SUS304等の準安定ステンレス鋼に比較し延性が低い。安定ステンレス鋼の低い延性は、加工誘起変態塑性効果がないことに原因があり、張出し性等が要求される厳しい成形加工に適用できない場合が多い。
【0004】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、Ni当量,積層欠陥エネルギーの生成指数,Niバランス量が特定条件を満足する成分設計を採用することにより、加工性に優れ、加工後にも非磁性が維持されるオーステナイトステンレス鋼を提供することを目的とする。
【0005】
本発明の非磁性ステンレス鋼は、その目的を達成するため、C:0.10質量%以下,Si:1.0〜6.0質量%,Mn:0.2〜9質量%,Ni:9〜18質量%,Cr:12〜20質量%,Mo:3質量%以下,Cu:3質量%以下,N:0.10質量%以下を含み、残部Fe及び不可避的不純物の組成をもち、次式で計算されるNi当量Nieqが17.0以上,積層欠陥エネルギーの生成指数SFEが20.0以下,Niバランス値Nibalが0以上となるように成分調整されていることを特徴とする。
Nieq=Ni+Cu+0.6Mn+9.69(C+N)+0.18Cr−0.11Si2
SFE=2.2Ni−1.1Cr−13Si−1.2Mn+6Cu+32
Nibal=Ni+30(C+N)+0.5Mn+0.3Cu−1.1(Cr+1.5Si+Mo)+8.2
【0006】
良好な加工性を確保する上では、引張試験で求められる真応力−対数伸び歪曲線で公称歪30%と40%の勾配である加工硬化指数nが0.45以上であること及びC+Nが0.06質量%以下で、焼鈍材のビッカース硬さが120HV以下であることが好ましい。また、圧下率60%で冷間圧延したときの透磁率が0.01以下であるとき、各種加工後においても非磁性が維持される。
この非磁性ステンレス鋼は、更にV:1.0質量%以下,Ti,Nb,Zrの1種又は2種以上:1.0質量%以下,B:0.03質量%以下,Ca:0.03質量%以下から選ばれた1種又は2種以上を含むことができる。
【0007】
【作用】
本発明の非磁性ステンレス鋼では、Ni当量Nieq、積層欠陥エネルギーの生成指数SFE、Niバランス値Nibalが適正範囲に維持される成分設計を採用することにより、加工性に優れ、加工後にも非磁性を維持している。
【0008】
Ni当量Nieqは、オーステナイト相の安定性に及ぼす各合金成分の寄与度を表す指標であり、Nieq=Ni+Cu+0.6Mn+9.69(C+N)+0.18Cr−0.11Si2と定義されるNi当量Nieqを17.0以上にするとき加工後の非磁性が確保される。一般に、オーステナイト相が準安定なステンレス鋼は、加工歪みの導入に伴ってオーステナイト相がマルテンサイト相に変態する(加工誘起変態)。生成したマルテンサイト相が磁性をもつため、結果として加工されたステンレス鋼が磁性を帯びる。
【0009】
したがって、オーステナイト相→マルテンサイト相の変態が生じがたい成分設計を採用することにより、マルテンサイト相生成に起因する磁性化が抑制される。そこで、加工誘起マルテンサイト(α’)相の生成難易度に及ぼす各合金成分の影響を指標化することにより、オーステナイト相の安定化を図る。本成分系において各合金成分がオーステナイト相の安定性に及ぼす影響を種々調査検討した結果、Ni当量Nieqを17.0以上にすると圧下率60%で圧延した場合でも透磁率0.01以下の非磁性が得られることが判った。圧下率50%の圧延後における透磁率0.01以下は、多岐にわたる加工に供されるステンレス鋼の非磁性を示す指標として好適である。
【0010】
b.c.c.構造の普通鋼に比較してf.c.c.構造をもつオーステナイト相では積層欠陥が生成しやすく、加工硬化しやすい。しかし、非磁性を確保するために多量のオーステナイト生成元素を必要とする。この点、非磁性を前提にした従来の合金設計では、加工硬化が抑制されるため加工性の低下が避けられない。これに対し、本発明では、非磁性を維持しながら加工硬化を大きくするために積層欠陥が生成しやすい合金設計を採用している。具体的には、積層欠陥生成エネルギーを低下させる成分設計により、非磁性を維持しながら加工性も向上させることが可能となる。
本発明者等は、このような観点から積層欠陥生成エネルギーに及ぼす各合金成分の影響を調査検討した。その結果、SFE=2.2Ni−1.1Cr−13Si−1.2Mn+6Cu+32と定義される積層欠陥エネルギーの生成指数SFEを20.0以下に調整するとき、加工誘起変態塑性を利用しなくても優れた加工性が発現することを見出した。
【0011】
オーステナイトステンレス鋼は、構成元素のバランスに応じて凝固時にδフェライト相が生成する傾向が異なる。熱延,焼鈍,冷延,焼鈍等の製造履歴を経ることによりδフェライト相は減少するが、δフェライト相を完全に消滅させることは困難である。磁性をもつδフェライト相が冷延焼鈍板に残存すると、焼鈍状態であっても磁性が発現する。本発明者等は、非磁性を阻害するδフェライト相の生成に及ぼす合金成分の影響を種々調査検討した。その結果、Nibal=Ni+30(C+N)+0.5Mn+0.3Cu−1.1(Cr+1.5Si+Mo)+8.2で定義されるNiバランス値Nibalが有効な指標であり、オーステナイト生成元素とフェライト生成元素との間でNiバランス値Nibalを0以上とすることにより、δフェライト相の生成がないことを解明した。
【0012】
引張試験で求められる真応力−対数伸び歪曲線で公称歪30%と40%の勾配である加工硬化指数nは、従来の非磁性ステンレス鋼では考慮されなかった指標であるが、本発明者等の調査・研究の結果から張出し性に相関することが判った。加工硬化指数nが0.45以上になると、加工によって導入される歪の均一分散が促進され、張出し加工性が向上する。その結果、深絞り要素も混在した実用プレス成形におけるネッキング等の欠陥が抑えられ、加工性が大幅に向上する。
【0013】
Ni当量Nieq≧17.0,積層欠陥エネルギーの生成指数SFE≦20.0,Niバランス値Nibal≧0を満足するように、各合金成分は次の範囲で選定される。
C,N:0.10質量%以下
何れもオーステナイト相の安定化やδフェライト相の生成抑制に有効な合金成分であるが、多量に含まれると固溶強化によってオーステナイト相が硬質化し加工性が低下する。そこで、C,N含有量の上限を共に0.10質量%に設定した。なかでも、形状凍結性等の厳しい加工性が要求される用途では、C+Nの合計含有量を0.06質量%以下に規制することによって焼鈍材を硬さ120HV以下と軟質化することが有効である。
Si:1.0〜6.0質量%
溶製時に脱酸剤として添加される合金成分であり、Si含有量の増加に伴って積層欠陥が生成しやすくなり、加工硬化及び延性が向上する。このような効果は、1.0質量%以上のSi含有量で顕著になる。しかし、6.0質量%を超える過剰量のSiが含まれると、固溶強化によってオーステナイト相が硬質化して加工性が低下するばかりでなく、加工に起因して磁性化しやすくなる。
【0014】
Mn:0.2〜9質量%
非磁性の維持,δフェライト相の生成抑制及び積層欠陥エネルギー低減による加工硬化の向上に大きく寄与する合金成分であり、0.2質量%以上でMnの添加効果が顕著になる。しかし、9質量%を超える過剰量のMn添加は、介在物の増加をもたらし,耐食性や加工性を損ねる原因となる。
Ni:9〜18質量%
オーステナイトステンレス鋼に必須の合金成分であり、オーステナイト相を生成させるために9質量%以上のNiが必要である。Niは、含有量の増加に従って磁性化及びδフェライト相生成を抑制する作用が大きくなる。しかし、過剰量のNi添加は積層欠陥生成エネルギーを増大させ、加工硬化や延性を低下させるため、加工性が損なわれる。しかも、高価な元素であるため、鋼材コストを上昇させる原因ともなる。このようなことから、Ni含有量の上限を18質量%に設定した。
【0015】
Cr:12〜20質量%
ステンレス鋼に要求される耐食性を得るために必要な合金成分であり、12質量%以上で耐食性が顕著に向上する。また、Cr含有量の増加に応じて積層欠陥が生成しやすくなるので、加工性が向上し,加工後の磁性化も抑制される。しかし、20質量%を超える過剰量のCr添加は、材質を硬質化することにより加工性を却って低下させる。
Mo:3質量%以下
耐食性向上に有効な合金成分であるが、過剰量に含まれるとδフェライトの生成により磁性が発現し、加工性が低下することから、Mo含有量の上限を3質量%に設定した。
【0016】
Cu:3質量%以下
加工後の磁性化やδフェライト相の生成を抑える作用を呈する合金成分である。しかし、過剰量のCu添加は積層欠陥生成エネルギーを増大させ、加工性を低下させることになるので、Cu含有量の上限を3質量%に設定した。
V:1.0質量%以下
Ti,Nb,Zrの1種又は2種以上:1.0質量%以下(合計)
必要に応じて添加される合金成分であり、C、N等の固溶強化元素を固定してステンレス鋼の硬質化を抑え、加工性を向上させる作用を呈する。各元素の添加効果は、V:1.0質量%及び/又はTi,Nb,Zr:1.0質量%で飽和し、それ以上添加しても増量に見合った効果を期待できない。
【0017】
B:0.03質量%以下
必要に応じて添加される合金成分であり、熱間加工性を向上させ、熱延時の割れ防止に有効である。しかし、過剰量のB添加は却って熱間加工性を低下させることになるので、Bを添加する場合には上限を0.03質量%に設定する。
Ca:0.03質量%以下
必要に応じて添加される合金成分であり、熱間加工性を改善する作用を呈するが、Caの添加効果は0.03質量%で飽和する。
【0018】
【実施例】
表1の組成をもつ各種ステンレス鋼を溶製し、抽出温度1230℃の熱間圧延により板厚4mmの熱延鋼板を製造した。熱延鋼板を1150℃×均熱1分で焼鈍し、酸洗後に板厚1.5mmまで冷間圧延し、更に1050℃×均熱1分の焼鈍を施し、酸洗した。焼鈍酸洗材を板厚0.6mmまで冷間圧延することにより60%冷間圧延材を得た。一部の冷間圧延材については、更に1050℃×均熱1分の焼鈍後に酸洗した(焼鈍酸洗材)。
【0019】

Figure 0003939568
【0020】
60%冷間圧延材及び焼鈍酸洗材それぞれから試験片を切り出し、次の試験によって透磁率及び加工硬化指数nを測定した。
〔透磁率の測定〕
切り出し端面の歪による影響を除去するため、10cm角に切り出した試験片を電解研磨し、直径5mmの円板形状にした。この円板状試験片を用い磁気天秤により印加磁場−磁化曲線上での磁場1.8kOeにおける傾きを測定することにより透磁率を求めた。
〔加工硬化指数nの測定〕
JIS13B号試験片を作製し、引張り速度40mm/分(歪速度1.3×10-2/秒)の引張試験で応力歪曲線を求めた。公称歪30%,40%に相当する真歪0.25,0.34(それぞれ、ε0,ε1)における真応力δ0,δ1を求め、次式に従って加工硬化指数n値を算出した。
n値=ln(δ1/δ0)/ln(ε1/ε0)
【0021】
60%冷間圧延材の透磁率及び焼鈍酸洗材の加工硬化指数nを表2に示す。鋼No.1〜5及び鋼No.7〜11は、本発明で規定した非磁性ステンレス鋼の成分設計条件を満足しており、60%冷間圧延材の透磁率が0.01以下,焼鈍酸洗材の加工硬化指数nが0.45以上であった。他方、鋼No.13〜17は、Nieq≧17.0,SFE≦20.0,Nibal≧0の何れかを満足しておらず、0.01の透磁率は得られなかった。また鋼No.18,19は、SFEが高すぎたため、加工硬化指数nも0.45未満の低い値を示した。
【0022】
60%冷間圧延材の透磁率をNi当量Nieqで整理したところ、図1にみられるようにNieq≧17.0で0.01以下の透磁率が得られることが判った。ただし、鋼No.16,17は、Nieq≧17.0であるにも拘らず0.01を超える透磁率が示された。この高い透磁率は、Niバランス値Nibalがマイナスであるためにδフェライト相が生成したことが原因である。
また、積層欠陥エネルギーの生成指数SFEと加工硬化指数nとの関係を調査した結果,図2にみられるようにSFE≦20.0のときn≧0.45になっており、積層欠陥エネルギーの生成指数SFEを20.0以下にすることによって良好な加工性が得られることが確認できた。
更に、非磁性で良好な加工性を示した鋼No.1〜12について、(C+N)量と硬さとの関係を調査した。図3の調査結果にみられるように、(C+N)≦0.06質量%以下でビッカース硬さが120HV以下の軟質ステンレス鋼が得られた。
【0023】
Figure 0003939568
【0024】
【発明の効果】
以上に説明したように、本発明の非磁性ステンレス鋼は、Ni当量をNieq≧17.0以上,積層欠陥エネルギーの生成指数をSFE≦20.0,Niバランス値をNibal≧0とする成分設計を採用しているため、60%冷間圧延材にあっても透磁率が0.01以下と優れた非磁性を維持し、加工誘起変態塑性を利用しなくても良好な加工性を呈する。したがって、従来のSUS305等の安定オーステナイトステンレス鋼ではなし得なかった成形加工が可能で、SUS304を加工した後で非磁性化するための焼鈍も省略でき、非磁性が要求される電気部品,機械部品,ケーシング等の材料として広範な分野で使用される。
【図面の簡単な説明】
【図1】 Ni当量Nieqが60%冷間圧延材の透磁率に及ぼす影響を示したグラフ
【図2】 積層欠陥エネルギーの生成指数SFEと加工硬化指数nとの関係を示すグラフ
【図3】 (C+N)量に応じて硬さが変わることを表したグラフ[0001]
[Industrial application fields]
The present invention relates to stainless steel that exhibits excellent workability and maintains non-magnetism after processing.
[0002]
[Prior art]
Cr-Ni austenitic stainless steel represented by SUS304 exhibits good workability and corrosion resistance, and becomes a nonmagnetic austenitic structure in the annealed state. Therefore, as a nonmagnetic steel plate, as an electrical component, mechanical component, casing, etc. Used in a wide range of applications.
In SUS304 stainless steel, the austenite phase is metastable, so martensitic transformation occurs during the forming process. Generation of work-induced martensite exhibits high ductility based on work-induced transformation plasticity, but the work piece becomes magnetic. Therefore, in applications where non-magnetism is required, a method of erasing magnetism by annealing a metastable steel such as SUS304 that has been formed is employed. Further, by using a material such as SUS305 or SUS316 which is stable in austenite phase and hardly undergoes martensite transformation, non-magnetism is maintained after molding.
[0003]
[Problems to be solved by the invention]
In the method of processing a metastable steel such as SUS304 as a raw material and subsequently annealing the processed product, the processing cost becomes high. That is, since many processed products have a hollow shape, voids increase during annealing, and heat treatment efficiency is significantly reduced. Further, when heat treatment is performed in an air atmosphere, a pickling process for removing scales generated by the heat treatment is required. As a method of avoiding pickling, there is a heat treatment in a non-oxidizing atmosphere, but since an expensive hydrogen gas atmosphere furnace or the like is used, the processing cost is significantly increased.
On the other hand, stable stainless steels such as SUS305 and SUS316 have lower ductility than metastable stainless steels such as SUS304. The low ductility of stable stainless steel is due to the lack of work-induced transformation plasticity effects, and is often not applicable to severe forming processes that require stretchability.
[0004]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem. By adopting a component design in which Ni equivalent, stacking fault energy generation index, and Ni balance amount satisfy specific conditions, workability is improved. An object is to provide an austenitic stainless steel that is excellent and maintains non-magnetism after processing.
[0005]
In order to achieve the object, the nonmagnetic stainless steel of the present invention has C: 0.10% by mass or less, Si: 1.0-6.0% by mass, Mn: 0.2-9% by mass, Ni: 9 -18 mass%, Cr: 12-20 mass%, Mo: 3 mass% or less, Cu: 3 mass% or less, N: 0.10 mass% or less, with the balance of Fe and inevitable impurities, calculated as Ni equivalent Ni eq is 17.0 or more wherein the laminated product index SFE of fault energy 20.0, wherein the Ni balance value Ni bal are components adjusted to be 0 or more .
Ni eq = Ni + Cu + 0.6Mn + 9.69 (C + N) + 0.18Cr-0.11Si 2
SFE = 2.2Ni-1.1Cr-13Si-1.2Mn + 6Cu + 32
Ni bal = Ni + 30 (C + N) + 0.5Mn + 0.3Cu-1.1 (Cr + 1.5Si + Mo) +8.2
[0006]
In order to ensure good workability, the work hardening index n, which is the gradient of nominal strain 30% and 40% in the true stress-logarithmic elongation strain curve obtained by the tensile test, is 0.45 or more, and C + N is 0. It is preferable that the Vickers hardness of the annealed material is 120 HV or less at 0.06 mass% or less. Further, when the magnetic permeability when cold rolled at a rolling reduction of 60% is 0.01 or less, non-magnetism is maintained even after various processing.
This nonmagnetic stainless steel further has V: 1.0% by mass or less, one or more of Ti, Nb, and Zr: 1.0% by mass or less, B: 0.03% by mass or less, Ca: 0.00%. 1 type (s) or 2 or more types selected from 03 mass% or less can be included.
[0007]
[Action]
In the non-magnetic stainless steel of the present invention, by adopting a component design in which Ni equivalent Ni eq , stacking fault energy generation index SFE, and Ni balance value Ni bal are maintained in appropriate ranges, it is excellent in workability and after processing. Non-magnetic is maintained.
[0008]
Ni equivalent Ni eq is an index representing the contribution of each alloy component to the stability of the austenite phase. Ni equivalent Ni defined as Ni eq = Ni + Cu + 0.6Mn + 9.69 (C + N) + 0.18Cr-0.11Si 2 When eq is 17.0 or more, non-magnetism after processing is secured. In general, in a stainless steel in which the austenite phase is metastable, the austenite phase is transformed into a martensite phase (processing induced transformation) with the introduction of processing strain. Since the produced martensite phase is magnetic, the resulting stainless steel is magnetic.
[0009]
Therefore, by adopting a component design in which the transformation from the austenite phase to the martensite phase is difficult to occur, the magnetization due to the formation of the martensite phase is suppressed. Therefore, the austenite phase is stabilized by indexing the influence of each alloy component on the degree of difficulty in forming the work-induced martensite (α ′) phase. As a result of various investigations and examinations on the influence of each alloy component on the stability of the austenite phase in this component system, when Ni equivalent Ni eq is 17.0 or more, even when rolled at a reduction ratio of 60%, the permeability is 0.01 or less. It was found that non-magnetism can be obtained. A magnetic permeability of 0.01 or less after rolling at a rolling reduction of 50% is suitable as an index indicating the non-magnetism of stainless steel subjected to various processes.
[0010]
In the austenitic phase with the fcc structure, stacking faults are more likely to occur and work hardening is easier than with the bcc structure. However, a large amount of austenite generating elements are required to ensure nonmagnetic properties. In this respect, in the conventional alloy design based on non-magnetism, work hardening is unavoidable because work hardening is suppressed. On the other hand, in the present invention, an alloy design that easily causes stacking faults is adopted in order to increase work hardening while maintaining non-magnetism. Specifically, the component design that reduces the stacking fault generation energy can improve workability while maintaining non-magnetism.
The present inventors investigated and examined the influence of each alloy component on the stacking fault formation energy from such a viewpoint. As a result, when the production index SFE of stacking fault energy defined as SFE = 2.2Ni-1.1Cr-13Si-1.2Mn + 6Cu + 32 is adjusted to 20.0 or less, excellent workability is obtained without using work-induced transformation plasticity. Was found to be expressed.
[0011]
Austenitic stainless steel has a different tendency to produce a δ ferrite phase during solidification depending on the balance of constituent elements. Although the δ ferrite phase decreases through the manufacturing history of hot rolling, annealing, cold rolling, annealing, etc., it is difficult to completely eliminate the δ ferrite phase. When the magnetic δ ferrite phase remains on the cold-rolled annealed plate, magnetism is exhibited even in the annealed state. The present inventors conducted various investigations and studies on the influence of alloy components on the formation of a δ ferrite phase that inhibits non-magnetism. As a result, the Ni balance value Ni bal defined by Ni bal = Ni + 30 (C + N) + 0.5Mn + 0.3Cu−1.1 (Cr + 1.5Si + Mo) +8.2 is an effective index, and the austenite-generating element and ferrite-forming element It was clarified that no δ ferrite phase was formed by setting the Ni balance value Ni bal to 0 or more.
[0012]
The work hardening index n, which is a gradient between the nominal strain of 30% and 40% in the true stress-logarithmic elongation strain curve determined by the tensile test, is an index that has not been considered in the conventional nonmagnetic stainless steel. From the survey and research results, it was found to correlate with the overhanging property. When the work hardening index n is 0.45 or more, uniform dispersion of strain introduced by the processing is promoted, and the overhang workability is improved. As a result, defects such as necking in practical press molding that also includes deep drawing elements are suppressed, and workability is greatly improved.
[0013]
Ni eq Ni eq ≧ 17.0, generates index SFE ≦ 20.0 stacking fault energy, so as to satisfy the Ni balance value Ni bal ≧ 0, the alloy components are selected in the following ranges.
C, N: 0.10% by mass or less are all effective alloy components for stabilizing the austenite phase and suppressing the formation of the δ ferrite phase. However, if contained in a large amount, the austenite phase becomes hard due to solid solution strengthening and the workability is improved. descend. Therefore, the upper limit of the C and N content is set to 0.10% by mass. In particular, in applications where severe workability such as shape freezing is required, it is effective to soften the annealed material to a hardness of 120 HV or less by regulating the total content of C + N to 0.06% by mass or less. is there.
Si: 1.0-6.0 mass%
It is an alloy component added as a deoxidizer at the time of melting, and stacking faults are easily generated as the Si content increases, and work hardening and ductility are improved. Such an effect becomes remarkable when the Si content is 1.0 mass% or more. However, when an excessive amount of Si exceeding 6.0% by mass is contained, not only does the austenite phase harden due to solid solution strengthening, but the workability deteriorates, and it becomes easy to be magnetized due to processing.
[0014]
Mn: 0.2-9 mass%
It is an alloy component that greatly contributes to the improvement of work hardening by maintaining non-magnetism, suppressing the formation of δ ferrite phase, and reducing stacking fault energy. However, addition of an excessive amount of Mn exceeding 9% by mass leads to an increase in inclusions, which causes a deterioration in corrosion resistance and workability.
Ni: 9 to 18% by mass
It is an essential alloy component for austenitic stainless steel, and 9% by mass or more of Ni is necessary to generate an austenitic phase. Ni has a greater effect of suppressing magnetization and δ ferrite phase formation as the content increases. However, the addition of an excessive amount of Ni increases the stacking fault generation energy and decreases work hardening and ductility, so that workability is impaired. And since it is an expensive element, it also becomes a cause which raises steel material cost. For this reason, the upper limit of the Ni content was set to 18% by mass.
[0015]
Cr: 12-20 mass%
It is an alloy component necessary for obtaining the corrosion resistance required for stainless steel, and the corrosion resistance is remarkably improved at 12% by mass or more. In addition, stacking faults are easily generated as the Cr content increases, so that workability is improved and magnetization after processing is suppressed. However, the addition of an excessive amount of Cr exceeding 20% by mass decreases the workability by hardening the material.
Mo: 3% by mass or less Mo is an alloy component effective for improving the corrosion resistance. However, if it is contained in an excessive amount, magnetism appears due to the formation of δ ferrite, and the workability is lowered, so the upper limit of the Mo content is 3% by mass. Set to.
[0016]
Cu: 3% by mass or less Cu is an alloy component exhibiting an action of suppressing magnetization and δ ferrite phase after processing. However, excessive addition of Cu increases the stacking fault formation energy and lowers the workability, so the upper limit of the Cu content was set to 3% by mass.
V: 1.0 mass% or less One, two or more of Ti, Nb, Zr: 1.0 mass% or less (total)
It is an alloy component added as necessary, and has the effect of fixing solid solution strengthening elements such as C and N to suppress the hardening of stainless steel and improve the workability. The effect of addition of each element is saturated at V: 1.0% by mass and / or Ti, Nb, Zr: 1.0% by mass, and even if added more than that, an effect commensurate with the increase cannot be expected.
[0017]
B: 0.03 mass% or less It is an alloy component added as necessary, improves hot workability, and is effective in preventing cracking during hot rolling. However, excessive addition of B will decrease the hot workability, so when adding B, the upper limit is set to 0.03% by mass.
Ca: 0.03% by mass or less Ca is an alloy component added as necessary, and exhibits the effect of improving hot workability, but the Ca addition effect is saturated at 0.03% by mass.
[0018]
【Example】
Various stainless steels having the compositions shown in Table 1 were melted and hot rolled steel sheets having a thickness of 4 mm were manufactured by hot rolling at an extraction temperature of 1230 ° C. The hot-rolled steel sheet was annealed at 1150 ° C. × 1 soaking, cold-rolled to 1.5 mm after pickling, further annealed at 1050 ° C. × 1 soaking, and pickled. A 60% cold-rolled material was obtained by cold-rolling the annealed pickling material to a thickness of 0.6 mm. Some of the cold-rolled materials were further pickled after annealing at 1050 ° C. × soaking for 1 minute (annealed pickled material).
[0019]
Figure 0003939568
[0020]
A test piece was cut out from each of the 60% cold rolled material and the annealed pickling material, and the magnetic permeability and work hardening index n were measured by the following test.
[Measurement of permeability]
In order to remove the influence due to the distortion of the cut end face, the test piece cut into a 10 cm square was electropolished into a disk shape having a diameter of 5 mm. The magnetic permeability was determined by measuring the slope at a magnetic field of 1.8 kOe on the applied magnetic field-magnetization curve using a magnetic balance using this disk-shaped test piece.
[Measurement of work hardening index n]
A JIS 13B test piece was prepared, and a stress-strain curve was obtained by a tensile test at a tensile rate of 40 mm / min (strain rate 1.3 × 10 −2 / sec). True stresses δ 0 and δ 1 at true strains of 0.25 and 0.34 (ε 0 and ε 1 ) corresponding to nominal strains of 30% and 40%, respectively, were obtained, and a work hardening index n value was calculated according to the following equation. .
n value = ln (δ 1 / δ 0 ) / ln (ε 1 / ε 0 )
[0021]
Table 2 shows the magnetic permeability of the 60% cold-rolled material and the work hardening index n of the annealed pickling material. Steel Nos. 1 to 5 and Nos. 7 to 11 satisfy the component design conditions of the nonmagnetic stainless steel defined in the present invention, and the magnetic permeability of 60% cold-rolled material is 0.01 or less, and annealing. The work hardening index n of the pickling material was 0.45 or more. On the other hand, Steel Nos. 13 to 17 did not satisfy any of Ni eq ≧ 17.0, SFE ≦ 20.0, and Ni bal ≧ 0, and a magnetic permeability of 0.01 was not obtained. Steel Nos. 18 and 19 also had a low work hardening index n of less than 0.45 because SFE was too high.
[0022]
When the magnetic permeability of the 60% cold-rolled material was arranged by Ni equivalent Ni eq , it was found that a magnetic permeability of 0.01 or less was obtained when Ni eq ≧ 17.0 as seen in FIG. However, the steels Nos. 16 and 17 showed a magnetic permeability exceeding 0.01 in spite of Ni eq ≧ 17.0. This high magnetic permeability is due to the formation of the δ ferrite phase because the Ni balance value Ni bal is negative.
Further, as a result of investigating the relationship between the generation index SFE of stacking fault energy and the work hardening index n, as shown in FIG. 2, n ≧ 0.45 when SFE ≦ 20.0. It was confirmed that good workability was obtained by setting the generation index SFE to 20.0 or less.
Furthermore, the relationship between the (C + N) amount and the hardness was investigated for steel Nos. 1 to 12 which were nonmagnetic and showed good workability. As can be seen from the investigation results in FIG. 3, a soft stainless steel having (C + N) ≦ 0.06 mass% and a Vickers hardness of 120 HV or less was obtained.
[0023]
Figure 0003939568
[0024]
【The invention's effect】
As described above, non-magnetic stainless steel of the present invention, Ni eq and Ni eq ≧ 17.0 or higher, SFE ≦ 20.0 the production index of stacking fault energy, the Ni balance value and Ni bal ≧ 0 Since the component design is adopted, even in 60% cold-rolled material, the magnetic permeability is 0.01 or less, maintaining excellent non-magnetism, and good workability can be obtained without using work-induced transformation plasticity. Present. Therefore, it is possible to perform forming processing that could not be achieved with conventional stable austenitic stainless steel such as SUS305, and annealing for demagnetization after processing SUS304 can be omitted. , Used in a wide range of fields as casing materials.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of Ni equivalent Ni eq on the magnetic permeability of a 60% cold-rolled material. FIG. 2 is a graph showing the relationship between stacking fault energy generation index SFE and work hardening index n. ] (C + N) A graph showing the change in hardness according to the amount

Claims (5)

C:0.10質量%以下,Si:1.0〜6.0質量%,Mn:0.2〜9質量%,Ni:9〜18質量%,Cr:12〜20質量%,Mo:3質量%以下,Cu:3質量%以下,N:0.10質量%以下を含み、残部Fe及び不可避的不純物の組成をもち、次式で計算されるNi当量Nieqが17.0以上,積層欠陥エネルギーの生成指数SFEが20.0以下,Niバランス値Nibalが0以上となるように成分調整されていることを特徴とする加工性に優れた非磁性ステンレス鋼。
Nieq=Ni+Cu+0.6Mn+9.69(C+N)+0.18Cr−0.11Si2
SFE=2.2Ni−1.1Cr−13Si−1.2Mn+6Cu+32
Nibal=Ni+30(C+N)+0.5Mn+0.3Cu−1.1(Cr+1.5Si+Mo)+8.2
C: 0.10 mass% or less, Si: 1.0-6.0 mass%, Mn: 0.2-9 mass%, Ni: 9-18 mass%, Cr: 12-20 mass%, Mo: 3 Inclusive of Cu: 3% by mass or less, Cu: 3% by mass or less, N: 0.10% by mass or less, with the composition of the balance Fe and inevitable impurities, Ni equivalent Ni eq calculated by the following formula is 17.0 or more, lamination A nonmagnetic stainless steel excellent in workability, characterized in that the component adjustment is made so that the generation index SFE of defect energy is 20.0 or less and the Ni balance value Ni bal is 0 or more.
Ni eq = Ni + Cu + 0.6Mn + 9.69 (C + N) + 0.18Cr-0.11Si 2
SFE = 2.2Ni-1.1Cr-13Si-1.2Mn + 6Cu + 32
Ni bal = Ni + 30 (C + N) + 0.5Mn + 0.3Cu-1.1 (Cr + 1.5Si + Mo) +8.2
引張試験で求められる真応力−対数伸び歪曲線で公称歪30%と40%の勾配である加工硬化指数nが0.45以上である請求項1記載の非磁性ステンレス鋼。  The nonmagnetic stainless steel according to claim 1, wherein a work hardening index n, which is a gradient of nominal strain 30% and 40% in a true stress-logarithmic elongation strain curve obtained by a tensile test, is 0.45 or more. 圧下率60%で冷間圧延したときの透磁率が0.01以下である請求項1記載の非磁性ステンレス鋼。  The nonmagnetic stainless steel according to claim 1, wherein the magnetic permeability when cold rolled at a rolling reduction of 60% is 0.01 or less. C+Nが0.06質量%以下で、焼鈍材のビッカース硬さが120HV以下である請求項1記載の非磁性ステンレス鋼。  The nonmagnetic stainless steel according to claim 1, wherein C + N is 0.06% by mass or less, and the Vickers hardness of the annealed material is 120HV or less. 更にV:1.0質量%以下,Ti,Nb,Zrの1種又は2種以上:1.0質量%以下,B:0.03質量%以下,Ca:0.03質量%以下から選ばれた1種又は2種以上を含む請求項1〜4のいずれかに記載の非磁性ステンレス鋼。Furthermore, V: 1.0% by mass or less, one or more of Ti, Nb, and Zr: 1.0% by mass or less, B: 0.03% by mass or less, Ca : 0.03% by mass or less Furthermore , the nonmagnetic stainless steel in any one of Claims 1-4 containing 1 type or 2 types or more.
JP2002043200A 2001-07-05 2002-02-20 Nonmagnetic stainless steel with excellent workability Expired - Fee Related JP3939568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002043200A JP3939568B2 (en) 2001-07-05 2002-02-20 Nonmagnetic stainless steel with excellent workability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-204946 2001-07-05
JP2001204946 2001-07-05
JP2002043200A JP3939568B2 (en) 2001-07-05 2002-02-20 Nonmagnetic stainless steel with excellent workability

Publications (3)

Publication Number Publication Date
JP2003082445A JP2003082445A (en) 2003-03-19
JP2003082445A5 JP2003082445A5 (en) 2005-08-11
JP3939568B2 true JP3939568B2 (en) 2007-07-04

Family

ID=26618219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002043200A Expired - Fee Related JP3939568B2 (en) 2001-07-05 2002-02-20 Nonmagnetic stainless steel with excellent workability

Country Status (1)

Country Link
JP (1) JP3939568B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267583A (en) * 2007-04-25 2008-11-06 Ntn Corp Bearing device for wheel with rotation speed detector
JP2017062014A (en) 2015-09-25 2017-03-30 Ntn株式会社 Bearing device for wheel
JP6772076B2 (en) * 2017-01-05 2020-10-21 日鉄ステンレス株式会社 Manufacturing method of non-magnetic austenitic stainless steel sheet and non-magnetic member
KR102015510B1 (en) * 2017-12-06 2019-08-28 주식회사 포스코 Non-magnetic austenitic stainless steel with excellent corrosion resistance and manufacturing method thereof
KR102173302B1 (en) * 2018-11-12 2020-11-03 주식회사 포스코 Non-magnetic austenitic stainless steel and manufacturing method thereof
KR102173303B1 (en) * 2018-11-13 2020-11-03 주식회사 포스코 High strength non-magnetic austenitic stainless steel and manufacturing method thereof
CN114981465B (en) * 2020-12-30 2023-11-28 株式会社Posco Non-magnetic austenitic stainless steel

Also Published As

Publication number Publication date
JP2003082445A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP4498847B2 (en) Austenitic high Mn stainless steel with excellent workability
JP5791791B2 (en) Method for producing high elastic limit non-magnetic steel
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JP7221474B6 (en) Non-magnetic austenitic stainless steel and its manufacturing method
EP2796585B1 (en) Non-magnetic high manganese steel sheet with high strength and manufacturing method thereof
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
JP2007084882A (en) Low work-hardening type iron alloy
JP2533481B2 (en) Non-magnetic high strength stainless steel and method for producing the same
JP6798907B2 (en) Low magnetic austenitic stainless steel and cold-rolled steel sheet
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP2008031490A (en) Non-oriented electrical steel sheet
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP2006022369A (en) LOW Ni AUSTENITIC STAINLESS STEEL HAVING EXCELLENT BULGING PROPERTY AND RUST GENERATION RESISTANCE
JP4210495B2 (en) High-strength soft magnetic stainless steel and manufacturing method thereof
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
JP4060407B2 (en) Method for producing soft magnetic stainless steel sheet for motor yoke
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP7475181B2 (en) Ferritic Stainless Steel
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel
JP5207514B2 (en) Hysteresis motor
JP4606337B2 (en) Austenitic stainless steel for coins and coins manufactured with the steel
JP2004225082A (en) High strength low permeability austenitic stainless steel sheet, method of producing the same, and method of producing washer for bolt fastening
JP2022155180A (en) Austenitic stainless steel and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees