JP2009046729A - Electromagnetic steel sheet for etching work - Google Patents

Electromagnetic steel sheet for etching work Download PDF

Info

Publication number
JP2009046729A
JP2009046729A JP2007213727A JP2007213727A JP2009046729A JP 2009046729 A JP2009046729 A JP 2009046729A JP 2007213727 A JP2007213727 A JP 2007213727A JP 2007213727 A JP2007213727 A JP 2007213727A JP 2009046729 A JP2009046729 A JP 2009046729A
Authority
JP
Japan
Prior art keywords
steel sheet
etching
less
concentration
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007213727A
Other languages
Japanese (ja)
Other versions
JP5245323B2 (en
Inventor
Yoshihiko Oda
善彦 尾田
Masaaki Kono
雅昭 河野
Tomoyuki Okubo
智幸 大久保
Atsuto Honda
厚人 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007213727A priority Critical patent/JP5245323B2/en
Publication of JP2009046729A publication Critical patent/JP2009046729A/en
Application granted granted Critical
Publication of JP5245323B2 publication Critical patent/JP5245323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic steel sheet suitable for an etching work. <P>SOLUTION: The electromagnetic steel sheet for etching work comprises, by mass%, ≤0.01% C, ≤7% Si, ≤4% Al, ≤5% Mn and the balance being Fe and unavoidable impurities. At least one surface of the steel sheet has no insulating film, and the average C concentration within a depth of 10 nm from the surface having no insulating film is ≤20 at.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、モータコアなどに用いられる電磁鋼板、特に、エッチング加工性に優れた電磁鋼板に関する。   The present invention relates to an electromagnetic steel sheet used for a motor core or the like, and more particularly to an electromagnetic steel sheet excellent in etching processability.

近年、モータには小型化が強く求められており、特に、ハイブリット電気自動車のメインモータなどの軽量化が要求される自動車用のモータでは、その傾向が強くなっている。モータの小型化には、回転数を高めることが効果的であることから、モータの高周波駆動が指向されている。それに応じて、モータコア材としては高周波鉄損の低い電磁鋼板が要望されており、SiやAl量を増加して固有抵抗を高めたり、板厚を薄くして渦電流損を低減する試みがなされている。   In recent years, miniaturization of motors has been strongly demanded, and this tendency is particularly strong in motors for automobiles that require weight reduction, such as main motors for hybrid electric vehicles. In order to reduce the size of the motor, it is effective to increase the number of rotations, so that high-frequency driving of the motor is directed. Accordingly, electrical steel sheets with low high-frequency iron loss have been demanded as motor core materials, and attempts have been made to increase the specific resistance by increasing the amount of Si and Al, or to reduce eddy current loss by reducing the plate thickness. ing.

一般的に、電磁鋼板をモータコアに加工する方法としては、例えば特許文献1に提案されているような打ち抜き加工法が用いられる。しかし、鉄損を低減するために板厚を薄くした電磁鋼板を従来の打ち抜き加工法で打ち抜き加工すると、クリアランスを非常に小さくする必要があることから、金型の磨耗が大きくなったり、チッピングなどが生じやすくなる。   Generally, as a method of processing an electromagnetic steel sheet into a motor core, a punching method as proposed in Patent Document 1, for example, is used. However, when electromagnetic steel sheets with a reduced thickness to reduce iron loss are punched by conventional punching methods, the clearance needs to be made very small, resulting in increased mold wear, chipping, etc. Is likely to occur.

一方、極薄鋼板が用いられるテレビのシャドウマスクなどの加工では、エッチング加工法が用いられているが、このエッチング加工法には、金型を用いる打ち抜き加工法に比べ、次のようなメリットがある。   On the other hand, in the processing of shadow masks for televisions that use ultra-thin steel plates, the etching method is used, but this etching method has the following advantages over the stamping method using a mold. is there.

i) 金型を作製する必要がないため、コア形状の変更が容易である。   i) Since it is not necessary to make a mold, it is easy to change the core shape.

ii) 加工形状の変更が容易であり、微細加工も可能である。   ii) The machining shape can be easily changed and fine machining is possible.

iii) 加工時に歪が入らないため、加工後の磁気特性劣化がなく、モータ効率が向上する。   iii) Since distortion does not occur during processing, there is no deterioration in magnetic characteristics after processing, and motor efficiency is improved.

そのため、エッチング加工法は、今後需要増が期待される板厚の薄い電磁鋼板に対する加工法として有望であるといえる。
特開2003‐53445号公報
Therefore, it can be said that the etching method is promising as a method for processing a thin steel plate, for which demand is expected to increase in the future.
Japanese Patent Laid-Open No. 2003-53445

しかしながら、従来の電磁鋼板は、エッチングによる加工を想定して製造されていないため、エッチングが全くできないか、あるいはできる場合においてもエッチング加工性が著しく劣るという問題があった。   However, since conventional electromagnetic steel sheets are not manufactured assuming processing by etching, there is a problem that etching is not possible at all, or even when it is possible, etching workability is extremely inferior.

本発明は、エッチング加工法に適した電磁鋼板を提供することを目的とする。   An object of this invention is to provide the electromagnetic steel plate suitable for an etching method.

本発明者らが、電磁鋼板のエッチング加工性について鋭意検討したところ、鋼板表面より10nmの深さまでの平均C濃度を制御することによりエッチング加工性が向上することを見出した。   When the present inventors diligently examined the etching processability of the electrical steel sheet, it was found that the etching processability is improved by controlling the average C concentration from the steel sheet surface to a depth of 10 nm.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.01%以下、Si:7%以下、Al:4%以下、Mn:5%以下を含有し、残部がFeおよび不可避的不純物からなり、少なくとも片側の鋼板表面には絶縁被膜を有せず、前記絶縁被膜を有しない鋼板表面より10nmの深さまでの平均C濃度が20at%以下であることを特徴とするエッチング加工用電磁鋼板を提供する。   The present invention has been made based on such findings, and in mass%, C: 0.01% or less, Si: 7% or less, Al: 4% or less, Mn: 5% or less, with the balance being Fe and Etching characterized in that it consists of unavoidable impurities, does not have an insulating coating on at least one steel sheet surface, and the average C concentration up to a depth of 10 nm from the steel sheet surface without the insulating coating is 20 at% or less Providing electrical steel sheets.

本発明のエッチング加工用電磁鋼板では、質量%で、Cu:0.04%以下であることが好ましい。また、さらに、質量%で、Sb:0.005〜0.05%およびSn:0.005〜0.05%のうち少なくとも1種を含有することや、Ni:0.05〜5%およびCo:0.05〜10%のうち少なくとも1種を含有することが好ましい。   In the electrical steel sheet for etching according to the present invention, it is preferable that Cu is 0.04% or less by mass%. Further, it contains at least one of Sb: 0.005 to 0.05% and Sn: 0.005 to 0.05% by mass%, or at least one of Ni: 0.05 to 5% and Co: 0.05 to 10%. It is preferable to contain.

鋼板の板厚は0.03〜0.25mmであることが好ましい。   The thickness of the steel plate is preferably 0.03 to 0.25 mm.

本発明により、エッチング加工法に適した電磁鋼板を製造できるようになった。そのため、従来より板厚の薄い電磁鋼板を、歪を付加せずに、容易にモータコア材に加工でき、モータの高周波鉄損の低減を効果的に図れるようになった。   According to the present invention, an electromagnetic steel sheet suitable for an etching method can be manufactured. For this reason, an electromagnetic steel sheet having a thinner thickness than before can be easily processed into a motor core material without adding distortion, and the high-frequency iron loss of the motor can be effectively reduced.

以下に、本発明の詳細を説明する。(なお、成分に関する「%」表示は、特に断らない限り質量%を意味するものとする。)
1) 成分
C:0.01%以下
C量が0.01%を超えると、磁気時効が生じて磁気特性が劣化するだけでなく、後述するように、鋼板表層のC濃度が増大してエッチング加工性が低下する。そのため、C量の上限は0.01%とする。
Details of the present invention will be described below. (Note that “%” in relation to ingredients means mass% unless otherwise specified.)
1) Ingredient
C: 0.01% or less
If the amount of C exceeds 0.01%, not only does magnetic aging occur and the magnetic properties deteriorate, but also the C concentration of the steel sheet surface layer increases and etching processability decreases as described later. Therefore, the upper limit of the C amount is 0.01%.

Si:7%以下
Siは、鋼板の固有抵抗を上げ、鉄損の低下に有効な元素である。しかし、その量が7%を超えると、外部酸化層が形成されやすくなり、エッチング加工性が低下する。そのため、Si量は7%以下とする。
Si: 7% or less
Si is an element that increases the specific resistance of a steel sheet and is effective in reducing iron loss. However, when the amount exceeds 7%, an external oxide layer is easily formed, and etching processability is deteriorated. Therefore, the Si content is 7% or less.

Al:4%以下
Alは、Siと同様、鋼板の固有抵抗を上げるために有効な元素である。しかし、その量が4%を超えると、緻密な外部酸化層が形成されやすくなり、エッチング加工性が低下する。そのため、Al量は4%以下とする。
Al: 4% or less
Al, like Si, is an effective element for increasing the specific resistance of the steel sheet. However, when the amount exceeds 4%, a dense outer oxide layer is easily formed, and etching processability is deteriorated. Therefore, the Al content is 4% or less.

Mn:5%以下
Mnは、SiやAlと同様、鋼板の固有抵抗を上げるために有効な元素である。しかし、その量が5%を超えると、コストアップになる。そのため、Mn量は5%以下とする。
Mn: 5% or less
Mn, like Si and Al, is an effective element for increasing the specific resistance of the steel sheet. However, if the amount exceeds 5%, the cost increases. Therefore, the Mn content is 5% or less.

残部はFeおよび不可避的不純物であるが、Cuは鋼板表面に偏析しやくすく、エッチングされにくい外部酸化層を形成するため、その量は0.04%以下とすることが好ましい。また、Sbは集合組織を改善し、磁束密度を向上させる効果があるため、0.005〜0.05%の添加により磁束密度を一層向上させることが可能である。Snも、Sb同様、集合組織を改善し、磁束密度を向上させる効果があるため、0.005〜0.05%の添加により磁束密度を一層向上させることが可能である。さらに、Ni、Coは飽和磁化の向上を通じて磁束密度を向上させる元素であるため、これら元素はそれぞれ0.05〜5%、0.05〜10%の範囲で添加することが可能である。   The balance is Fe and inevitable impurities, but Cu forms an external oxide layer that is easily segregated on the surface of the steel sheet and is difficult to be etched, so the amount is preferably 0.04% or less. In addition, Sb has the effect of improving the texture and improving the magnetic flux density, so it is possible to further improve the magnetic flux density by adding 0.005 to 0.05%. Sn, like Sb, has the effect of improving the texture and increasing the magnetic flux density, and therefore it is possible to further increase the magnetic flux density by adding 0.005 to 0.05%. Furthermore, since Ni and Co are elements that improve the magnetic flux density by improving the saturation magnetization, these elements can be added in the range of 0.05 to 5% and 0.05 to 10%, respectively.

2) 絶縁被膜
本発明のエッチング加工用電磁鋼板では、少なくとも片側の鋼板表面には絶縁被膜が存在しない。そして、エッチング加工はこの絶縁被膜が存在しない面に対して行われる。そのため、片面のみに絶縁被膜を形成することが好ましいが、この場合には、絶縁被膜が存在しない側の表層部のC濃度が高くなることは避けられず、後述するように、エッチング加工性が低下するため、酸洗や研削等を行って鋼板表層部のC濃度を本発明範囲内とする必要がある。また、両面に絶縁被膜を形成する場合には、エッチング加工前にこの絶縁被膜を剥離し、さらに酸洗や研削等を行って鋼板表層部のC濃度を本発明範囲内とする必要がある。
2) Insulating coating In the electrical steel sheet for etching according to the present invention, there is no insulating coating on at least one surface of the steel sheet. Etching is performed on the surface where the insulating coating does not exist. Therefore, it is preferable to form an insulating film only on one side, but in this case, it is inevitable that the C concentration of the surface layer portion on the side where the insulating film does not exist is high, and etching processability is improved as described later. In order to decrease, it is necessary to perform pickling, grinding, etc., and to make C density | concentration of a steel plate surface layer part into the range of this invention. Moreover, when forming an insulating film on both surfaces, it is necessary to peel off this insulating film before an etching process, and to perform pickling, grinding, etc., and to make C density | concentration of a steel plate surface layer part into the range of this invention.

3) 絶縁被膜のない鋼板表層部の平均C濃度:20at%以下
最初に、電磁鋼板のエッチング加工上の問題を調査するため、C:0.003%、Si:2.3%、Mn:0.605、Al:1.2%の鋼を溶解し、スラブとなし、熱間圧延後、1000℃×30sの熱延板焼鈍を行い、板厚0.10mmまで冷間圧延を行い、引き続き20%H2-80%N2雰囲気にて1000℃×10sの仕上焼鈍を行った後、絶縁被膜用のコータロールを開放して(コータパン内に樹脂コーティング液が入ったまま)樹脂コーティングせずに、焼付け炉内を通過させた試料を作製した。そして、エッチング加工性を以下のようにして調査した。すなわち、試料である鋼板の表面にレジストを塗布し、直径10cmの円の外側に20μm幅の環状パターンを露光し、現像後環状パターンを溶解し、塩化第二鉄水溶液(45ボーメ、液温45℃)を用いてスプレーエッチングを行い、モータのロータ相当の直径10cmの円板に加工するときのエッチング速度を測定した。
3) Average C concentration of steel sheet surface layer without insulation coating: 20at% or less First, C: 0.003%, Si: 2.3%, Mn: 0.605, Al: 1.2 to investigate problems in etching of magnetic steel sheets. % Steel is melted, slabless, hot rolled, 1000 ° C x 30 s hot rolled sheet annealed, cold rolled to a thickness of 0.10 mm, followed by 20% H 2 -80% N 2 atmosphere After finishing annealing at 1000 ° C for 10 s in the sample, the coater roll for insulating film was opened (with the resin coating solution in the coater pan), and the sample was passed through the baking furnace without resin coating Was made. Then, the etching processability was investigated as follows. That is, a resist is applied to the surface of a steel plate as a sample, a 20 μm-wide annular pattern is exposed to the outside of a circle having a diameter of 10 cm, and after development, the annular pattern is dissolved. The etching rate was measured when processing into a disk having a diameter of 10 cm corresponding to the rotor of the motor.

その結果、エッチング速度は試料により0.6〜1.2μm/sと大きくばらついた。本発明者らは、エッチングが鋼板表面から進行する腐食反応であることから、エッチング速度のばらつきの原因は何らかの表面状態の違いにあるのではないかと考え、試料を洗浄した後、試料表層部の成分を調査した。ここで、分析にはオージェ電子分光法を用い、鋼板表面からArスパッタリングを行いながら深さ方向の成分分析を行った。その結果、エッチング速度の遅い試料では表層部のC濃度が高いことが明らかとなった。また、試料により表層部のC濃度が異なった原因を調査したところ、電磁鋼板では一般に絶縁被膜形成のためにCを含む樹脂コーティングを行っているため、樹脂中のCが焼き付け炉内に存在しており、そのCが本試料表面に不均一に付着し、試料内部に拡散したためであることがわかった。   As a result, the etching rate varied greatly from 0.6 to 1.2 μm / s depending on the sample. Since the etching is a corrosion reaction that proceeds from the surface of the steel sheet, the inventors consider that the cause of the variation in the etching rate may be due to some difference in the surface state, and after cleaning the sample, The ingredients were investigated. Here, Auger electron spectroscopy was used for analysis, and component analysis in the depth direction was performed while performing Ar sputtering from the steel sheet surface. As a result, it was found that the C concentration in the surface layer portion was high in the sample with a slow etching rate. In addition, when the cause of the difference in the C concentration in the surface layer depending on the sample was investigated, electromagnetic steel sheets are generally coated with a resin containing C to form an insulating film, so that C in the resin exists in the baking furnace. It was found that the C adhered to the sample surface non-uniformly and diffused inside the sample.

そこで、鋼板表層部のC濃度とエッチング速度との関係を調査するため、C:0.0030%、Si:2.50%、Mn:0.50%、Al:0.70%の鋼を溶解し、スラブとなし、熱間圧延後、1000℃×30sの熱延板焼鈍を行い、板厚0.10mmまで冷間圧延を行い、引き続き20%H2-80%N2雰囲気にて1000℃×10sの仕上焼鈍を行った後、焼き付け炉内を通過させるにあたり、焼き付け炉の温度を変化させて、鋼板表層部のC濃度を変化させた試料を作製した。なお、このとき、コータロールを開放して(コータパン内に樹脂コーティング液が入ったまま)樹脂コーティングせずに試料を通した。そして、上記と同様な方法で、モータのロータ相当の直径10cmの円板に加工するときのエッチング速度を測定した。 Therefore, in order to investigate the relationship between the C concentration of the steel sheet surface layer and the etching rate, C: 0.0030%, Si: 2.50%, Mn: 0.50%, Al: 0.70% steel was melted, without slab, After rolling, hot-rolled sheet annealing at 1000 ° C x 30s, cold-rolled to a sheet thickness of 0.10mm, followed by finish annealing at 1000 ° C x 10s in a 20% H 2 -80% N 2 atmosphere When passing through the baking furnace, a sample was produced by changing the temperature of the baking furnace to change the C concentration of the steel sheet surface layer. At this time, the coater roll was opened (with the resin coating solution in the coater pan), and the sample was passed without resin coating. Then, by the same method as described above, the etching rate when processing into a disk having a diameter of 10 cm corresponding to the rotor of the motor was measured.

図1に、鋼板表面より10nmの深さまでの平均C濃度とエッチング速度の関係を示す。ここで、深さを10nmとしたのは、それ以上の深さではCがほとんど検出されなかったため、鋼板表面より深さ10nmまでの範囲を測定することで表層のC濃度が評価できるからである。   FIG. 1 shows the relationship between the average C concentration from the steel sheet surface to a depth of 10 nm and the etching rate. Here, the depth was set to 10 nm because C was hardly detected at a depth higher than that, and the C concentration of the surface layer can be evaluated by measuring the range from the steel plate surface to a depth of 10 nm. .

図1より、鋼板表面より10nmの深さまでの平均C濃度が20at%を超えると、エッチング速度が急速に低下し、エッチング加工性が低下することがわかる。このことから、鋼板表面より10nmの深さまでの平均C濃度は20at%以下、好ましくは10at%以下とする。   FIG. 1 shows that when the average C concentration from the steel sheet surface to a depth of 10 nm exceeds 20 at%, the etching rate rapidly decreases and the etching processability decreases. From this, the average C concentration from the steel sheet surface to a depth of 10 nm is 20 at% or less, preferably 10 at% or less.

なお、レジスト膜コーティング前には鋼板表面を洗浄しているが、焼き付け炉内の温度が300℃程度であるため、鋼板表面に付着したCが表層に侵入し、洗浄では除去できず、エッチング加工性に影響を及ぼしたものと考えられる。   Although the steel plate surface is cleaned before resist film coating, the temperature inside the baking furnace is about 300 ° C, so C adhering to the steel plate surface penetrates the surface layer and cannot be removed by cleaning. It is thought to have influenced sex.

4) 板厚:0.03〜0.25mm
鋼板の板厚は、0.03mm以下では鋼板を圧延するのが困難となり、0.25mmを超えると高周波鉄損が増大する傾向にある。また、エッチング時間を短くして生産性を向上させる観点からも板厚は0.25mm以下とすることが好ましい。したがって、板厚は0.03〜0.25mmとすることが好ましい。
4) Thickness: 0.03-0.25mm
When the thickness of the steel sheet is 0.03 mm or less, it becomes difficult to roll the steel sheet, and when it exceeds 0.25 mm, the high-frequency iron loss tends to increase. From the viewpoint of shortening the etching time and improving productivity, the plate thickness is preferably set to 0.25 mm or less. Therefore, the plate thickness is preferably 0.03 to 0.25 mm.

本発明のエッチング加工用電磁鋼板は、通常の方法によって製造できる。すなわち、転炉で吹練した溶鋼を脱ガス処理し、上記のような成分に調整し、スラブに鋳造後、熱間圧延を行い、そのままあるいは熱延板焼鈍後、1回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とし、仕上焼鈍後、少なくとも片側の表面に樹脂コーティングし、焼き付け炉内で焼き付け処理が行われる。このとき、鋼板表層部のC濃度を極力低減するため、焼き付け炉内のC源は少なくする必要があり、コータパン内の樹脂コーティング液を除去後に鋼板を通すことが望ましい。また、焼き付け炉内に樹脂コーティング液等が存在する場合には、鋼板とCが反応しないように鋼板温度を低減する必要があり、焼き付け炉内温度を300℃以下とすることが好ましい。絶縁被膜を片面のみに塗布した場合には、焼き付け後における被膜未塗布面の表面C量が所定の範囲を超えることは避けられず、酸洗や研削等により鋼板表面のCを除去する必要がある。   The electrical steel sheet for etching according to the present invention can be produced by an ordinary method. That is, the molten steel blown in the converter is degassed, adjusted to the above components, cast into a slab, hot-rolled, directly or after hot-rolled sheet annealing, one cold rolling, Alternatively, a predetermined plate thickness is obtained by cold rolling two or more times with intermediate annealing, and after finish annealing, at least one surface is coated with a resin, and a baking process is performed in a baking furnace. At this time, in order to reduce the C concentration in the surface layer portion of the steel plate as much as possible, it is necessary to reduce the C source in the baking furnace, and it is desirable to pass the steel plate after removing the resin coating liquid in the coater pan. When a resin coating solution or the like is present in the baking furnace, it is necessary to reduce the steel plate temperature so that the steel plate and C do not react, and the baking furnace temperature is preferably 300 ° C. or lower. When the insulation coating is applied to only one side, the surface C amount on the uncoated surface after baking is unavoidable to exceed the specified range, and it is necessary to remove the C on the steel sheet surface by pickling or grinding. is there.

転炉で吹練した後に脱ガス処理を行って表1、2に示す成分に調整した鋼をスラブに鋳造後、板厚2.3mmの熱延板に熱間圧延を行った。熱間圧延後の熱延板にN2雰囲気にて950℃×10sの熱延板焼鈍を施し、酸洗後、表1、2に示す板厚の冷延板に冷間圧延を行い、20%H2-80%N2雰囲気にて表1、2に示す仕上焼鈍温度で10sの仕上焼鈍を行った後、表1、2に示す焼き付け炉通過時の鋼板温度で熱処理して鋼板表層部のC濃度を変えた試料No.1〜33を作製した。なお、試料No.1〜6では、コータパン内に樹脂コーティング液が入った状態でコータロールを開放し、絶縁被膜の形成は行わなかった。試料No.7〜25および28〜33では、コータパン内の樹脂コーティング液を除去するとともに、焼き付け炉内の掃除を行い、極力Cが少なくなるようにして熱処理を行った。試料No.26、27では、片側の面のみに樹脂コーティング後焼き付け処理を行い、絶縁被膜の形成を行った。その後、No.26は未塗布側を酸洗処理し、No.27は酸洗処理を施さないままエッチング処理を行った。 The steel adjusted to the components shown in Tables 1 and 2 was cast on a slab after degassing after blowing in a converter, and then hot rolled to a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet after hot rolling is subjected to hot-rolled sheet annealing at 950 ° C. × 10 s in an N 2 atmosphere, pickled, and then cold-rolled to cold-rolled sheets having the thicknesses shown in Tables 1 and 2, After performing 10 s of finish annealing at the finish annealing temperature shown in Tables 1 and 2 in % H 2 -80% N 2 atmosphere, heat treatment is performed at the steel plate temperature when passing through the baking furnace shown in Tables 1 and 2. Sample Nos. 1 to 33 with different C concentrations were prepared. In Samples Nos. 1 to 6, the coater roll was opened with the resin coating solution in the coater pan, and no insulating coating was formed. In Samples Nos. 7 to 25 and 28 to 33, the resin coating liquid in the coater pan was removed, and the baking furnace was cleaned to perform heat treatment so as to reduce C as much as possible. In Samples Nos. 26 and 27, only the surface on one side was baked after the resin coating to form an insulating film. Thereafter, No. 26 was pickled on the uncoated side, and No. 27 was etched without being pickled.

そして、上述したように、各試料の絶縁被膜のない表層部のC濃度をオージェ電子分光法により求めた。この際、深さ方向10nmまでの平均C濃度を求めるため、Arスパッタを行い、深さ約1nmごとに分析を行った。また、各試料の絶縁被膜のない表面にレジストを塗布、露光、現像を行い、塩化第二鉄水溶液(45ボーメ、液温45℃)を用いてスプレーエッチングを行い、エッチング孔が試料を貫通するまでのエッチング時間およびエッチング速度を測定した。さらに、各試料よりワイヤーカットにより幅30mm、長さ280mmのエプスタインサンプルを圧延方向および圧延直角方向よりそれぞれ切り出し、JIS C2550に準拠して鉄損W10/400を測定した。   Then, as described above, the C concentration in the surface layer portion of each sample without the insulating coating was determined by Auger electron spectroscopy. At this time, in order to obtain an average C concentration up to 10 nm in the depth direction, Ar sputtering was performed, and analysis was performed at a depth of about 1 nm. In addition, a resist is applied to the surface of each sample that does not have an insulating coating, exposed and developed, and spray etching is performed using an aqueous ferric chloride solution (45 Baume, liquid temperature 45 ° C.), and the etching hole penetrates the sample. The etching time until and the etching rate were measured. Further, Epstein samples having a width of 30 mm and a length of 280 mm were cut from each sample from the rolling direction and the direction perpendicular to the rolling direction, and the iron loss W10 / 400 was measured in accordance with JIS C2550.

結果を表1、2に示す。本発明の成分を有し、かつ試料表層部の平均C濃度が本発明範囲内にある試料No.3〜18、22〜26、28〜33では、エッチング速度が大きく、優れたエッチング加工性を有していることがわかる。   The results are shown in Tables 1 and 2. Sample Nos. 3 to 18, 22 to 26, and 28 to 33, which have the components of the present invention and the average C concentration of the sample surface layer portion is within the range of the present invention, have a high etching rate and excellent etching processability. You can see that it has.

Figure 2009046729
Figure 2009046729

Figure 2009046729
Figure 2009046729

鋼板表層部の平均C濃度とエッチング速度との関係を示す図である。It is a figure which shows the relationship between the average C density | concentration of a steel plate surface layer part, and an etching rate.

Claims (5)

質量%で、C:0.01%以下、Si:7%以下、Al:4%以下、Mn:5%以下を含有し、残部がFeおよび不可避的不純物からなり、少なくとも片側の鋼板表面には絶縁被膜を有せず、前記絶縁被膜を有しない鋼板表面より10nmまでの深さの平均C濃度が20at%以下であることを特徴とするエッチング加工用電磁鋼板。   In mass%, C: 0.01% or less, Si: 7% or less, Al: 4% or less, Mn: 5% or less, with the balance consisting of Fe and inevitable impurities, at least on one steel sheet surface with an insulating coating An electrical steel sheet for etching processing having an average C concentration of 20 at% or less at a depth of 10 nm from the steel sheet surface not having the insulating coating. 質量%で、Cu:0.04%以下であることを特徴とする請求項1に記載のエッチング加工用電磁鋼板。   2. The electrical steel sheet for etching according to claim 1, wherein the mass ratio is Cu: 0.04% or less. さらに、質量%で、Sb:0.005〜0.05%およびSn:0.005〜0.05%のうち少なくとも1種を含有することを特徴とする請求項1または2に記載のエッチング加工用電磁鋼板。   3. The electrical steel sheet for etching according to claim 1, further comprising at least one of Sb: 0.005-0.05% and Sn: 0.005-0.05% by mass%. さらに、質量%で、Ni:0.05〜5%およびCo:0.05〜10%のうち少なくとも1種を含有することを特徴とする請求項1〜3のいずれかに記載のエッチング加工用電磁鋼板。   The electrical steel sheet for etching according to any one of claims 1 to 3, further comprising at least one of Ni: 0.05 to 5% and Co: 0.05 to 10% by mass%. 板厚が0.03〜0.25mmであることを特徴とする請求項1〜4のいずれかに記載のエッチング加工用電磁鋼板。   The electrical steel sheet for etching according to any one of claims 1 to 4, wherein the plate thickness is 0.03 to 0.25 mm.
JP2007213727A 2007-08-20 2007-08-20 Electrical steel sheet for etching Active JP5245323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213727A JP5245323B2 (en) 2007-08-20 2007-08-20 Electrical steel sheet for etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213727A JP5245323B2 (en) 2007-08-20 2007-08-20 Electrical steel sheet for etching

Publications (2)

Publication Number Publication Date
JP2009046729A true JP2009046729A (en) 2009-03-05
JP5245323B2 JP5245323B2 (en) 2013-07-24

Family

ID=40499213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213727A Active JP5245323B2 (en) 2007-08-20 2007-08-20 Electrical steel sheet for etching

Country Status (1)

Country Link
JP (1) JP5245323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137193A (en) * 2009-12-28 2011-07-14 Dainippon Printing Co Ltd Contour machining method for electromagnetic steel sheet with insulating film
JP2018145492A (en) * 2017-03-07 2018-09-20 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor, motor core and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117042A (en) * 1997-10-09 1999-04-27 Nippon Steel Corp Nonoriented silicon steel sheet excellent in core loss after stress relieving annealing
JP2005191475A (en) * 2003-12-26 2005-07-14 Mitsui Chemicals Inc Silicon steel plate magnetic material and magnetic substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117042A (en) * 1997-10-09 1999-04-27 Nippon Steel Corp Nonoriented silicon steel sheet excellent in core loss after stress relieving annealing
JP2005191475A (en) * 2003-12-26 2005-07-14 Mitsui Chemicals Inc Silicon steel plate magnetic material and magnetic substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137193A (en) * 2009-12-28 2011-07-14 Dainippon Printing Co Ltd Contour machining method for electromagnetic steel sheet with insulating film
JP2018145492A (en) * 2017-03-07 2018-09-20 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor, motor core and manufacturing method therefor

Also Published As

Publication number Publication date
JP5245323B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
EP2910658B1 (en) Hot-rolled steel sheet for production of non-oriented electrical steel sheet and method of manufacturing same
WO2018221126A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
RU2712795C1 (en) Electrotechnical steel with non-oriented structure and method of its production
JP7299511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6880814B2 (en) Electrical steel sheet and its manufacturing method
WO2014092102A1 (en) Oriented electromagnetic steel sheet
JP7235058B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5092352B2 (en) Non-oriented electrical steel sheet
JP5167824B2 (en) Manufacturing method of non-oriented electrical steel sheet for etching and motor core
JP6624180B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2009228117A (en) Method for manufacturing grain-oriented electrical steel sheet
JP7269505B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2019137883A (en) Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet
JP5245323B2 (en) Electrical steel sheet for etching
JP2008115421A (en) Method for producing grain-oriented electrical steel sheet excellent in productivity
JP7315857B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPWO2009093492A1 (en) Oriented electrical steel sheet with excellent magnetic properties
JP7299512B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2003034820A (en) Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
JP2003013190A (en) High-grade non-oriented magnetic steel sheet
JP7151792B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7230929B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7269504B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102613708B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP7295394B2 (en) Non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5245323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250