JP6624180B2 - Grain-oriented electrical steel sheet and its manufacturing method - Google Patents

Grain-oriented electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP6624180B2
JP6624180B2 JP2017202011A JP2017202011A JP6624180B2 JP 6624180 B2 JP6624180 B2 JP 6624180B2 JP 2017202011 A JP2017202011 A JP 2017202011A JP 2017202011 A JP2017202011 A JP 2017202011A JP 6624180 B2 JP6624180 B2 JP 6624180B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
thickness
annealing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017202011A
Other languages
Japanese (ja)
Other versions
JP2018066061A (en
Inventor
渡辺 誠
渡辺  誠
高宮 俊人
俊人 高宮
敬 寺島
寺島  敬
龍一 末廣
龍一 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018066061A publication Critical patent/JP2018066061A/en
Application granted granted Critical
Publication of JP6624180B2 publication Critical patent/JP6624180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、方向性電磁鋼板およびその製造方法に関する。具体的には、本発明は、トランスに製造した際に優れた磁気特性と被膜特性を有する方向性電磁鋼板およびその製造方法に関する。   The present invention relates to a grain-oriented electrical steel sheet and a method for producing the same. Specifically, the present invention relates to a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties when manufactured into a transformer, and a method for manufacturing the same.

方向性電磁鋼板は、主にトランスの鉄心材料として使用されることから、磁気特性に優れること、特に鉄損が低いことが強く求められている。そのため、方向性電磁鋼板は、従来、冷間圧延したSi含有鋼板に、一次再結晶焼鈍を兼ねた脱炭焼鈍を施し、MgOを主剤とする焼鈍分離剤を塗布した後、仕上焼鈍において二次再結晶を起こさせ、結晶粒を{110}<001>方位(いわゆるゴス方位)に高度にそろえる方法で製造している。上記仕上焼鈍は、二次再結晶させる焼鈍と、最高1200℃程度の温度まで昇温する純化処理を合わせて10日間程度を要するため、通常、コイルに巻いた状態で行うバッチ焼鈍により行われている。   Since the grain-oriented electrical steel sheet is mainly used as a core material of a transformer, it is strongly required that the grain-oriented electrical steel sheet has excellent magnetic properties, especially low iron loss. For this reason, grain-oriented electrical steel sheets are conventionally subjected to decarburizing annealing also serving as primary recrystallization annealing on a cold-rolled Si-containing steel sheet, and applying an annealing separator mainly containing MgO, followed by secondary annealing in finish annealing. It is manufactured by a method in which recrystallization is caused and crystal grains are highly aligned in a {110} <001> direction (a so-called Goss direction). The above-mentioned finish annealing is performed by batch annealing performed in a state wound in a coil, because it requires about 10 days including the annealing for secondary recrystallization and the purification treatment for raising the temperature up to about 1200 ° C. I have.

上記仕上焼鈍中においては、脱炭焼鈍時に鋼板表面に形成されるSiOを主体としたサブスケールと、脱炭焼鈍後に鋼板表面に塗布したMgOを主剤とする焼鈍分離剤が、2MgO+SiO→MgSiOの反応を起こし、鋼板表面にガラス質のフォルステライト被膜が形成される。上記フォルステライト被膜は、絶縁性や耐食性を付与することの他に、鋼板表面に引っ張り応力を付与して磁気特性を改善する効果があるため、均一で密着性に優れることが要求される。 During the finish annealing, a sub-scale mainly composed of SiO 2 formed on the steel sheet surface during decarburization annealing and an annealing separator mainly composed of MgO applied to the steel sheet surface after decarburization annealing are composed of 2MgO + SiO 2 → Mg. 2 The reaction of SiO 4 occurs, and a vitreous forsterite film is formed on the surface of the steel sheet. The above forsterite film has an effect of imparting tensile stress to the surface of the steel sheet and improving magnetic properties in addition to imparting insulation and corrosion resistance, and therefore is required to be uniform and excellent in adhesion.

しかしながら、膜厚が厚くなりすぎると占積率が低下して、トランスとして使用する際に積み厚が厚くなりすぎてサイズが大きくなる結果、銅損が増大したり、逆に所定のサイズに収めるために積み枚数を少なくして鉄損が増大したりする問題が生じる。従って、できるだけ膜厚を薄くすることも同時に求められる。   However, when the film thickness is too thick, the space factor decreases, and when used as a transformer, the stacking thickness becomes too thick to increase the size. As a result, copper loss increases, or conversely, the size is reduced to a predetermined size. For this reason, there is a problem that the number of stacked sheets is reduced and iron loss increases. Therefore, it is also required to reduce the film thickness as much as possible.

また、上記フォルステライト被膜は、地鉄の内部に食い込んだ形で形成され、これにより鋼板表面に機械的に接着している。しかし、地鉄と被膜との界面の凹凸が激しくなると、凹凸部に残留磁化が生じるため、ヒステリシス損が増加する。そのために、被膜密着性とヒステリシス損はトレードオフの関係にあり、この二つを両立させることは困難であった。   Further, the forsterite film is formed so as to bite into the inside of the base iron, and thereby mechanically adheres to the steel sheet surface. However, when the unevenness at the interface between the ground iron and the coating becomes severe, residual magnetization is generated in the unevenness, and the hysteresis loss increases. Therefore, there is a trade-off relationship between the coating adhesion and the hysteresis loss, and it has been difficult to achieve a balance between the two.

なお、フォルステライト被膜を形成させずに、鋼板表面に直接絶縁被膜を被成する技術も開発されているが、現時点においては、被膜密着性を確保するのが難しく、絶縁性や耐電圧特性、耐食性も不十分である。そのため、フォルステライト被膜を有する方向性電磁鋼板に対するニーズは依然として高い。   In addition, although the technology of forming an insulating coating directly on the steel sheet surface without forming a forsterite coating has also been developed, at this time, it is difficult to secure the coating adhesion, and the insulation and withstand voltage characteristics, Corrosion resistance is also insufficient. Therefore, the need for a grain-oriented electrical steel sheet having a forsterite film is still high.

また、上記占積率を改善する技術として、特許文献1には、焼鈍分離剤に非水和性酸化物を用いてこれにBaを添加する技術が記載されている。また、特許文献2にはヤング率と線膨張係数が一定の条件を満たす被膜を形成させる技術が記載されている。   As a technique for improving the space factor, Patent Literature 1 describes a technique in which Ba is added to a non-hydratable oxide as an annealing separator. Patent Document 2 discloses a technique for forming a film in which the Young's modulus and the coefficient of linear expansion satisfy certain conditions.

特開平9−118922号公報JP-A-9-118922 特開平6−248465号公報JP-A-6-248465

しかし、特許文献1の方法では、下地被膜を作らないため占積率は高いものの、被膜密着性、絶縁性、耐食性などが不十分であった。また、特許文献2の方法は、被膜張力が高く膜厚が薄いため、被膜が容易に剥落してしまうという問題があった。
このように、良好な密着性を有し、かつトランスに供した際の鉄損(トランス鉄損)が低くかつ占積率が高い方向性電磁鋼板は得られていない。
However, in the method of Patent Document 1, although the space factor is high because no undercoat is formed, the adhesion of the coating, insulation, corrosion resistance, and the like are insufficient. Further, the method of Patent Document 2 has a problem that the coating is easily peeled off because the coating tension is high and the film thickness is thin.
Thus, a grain-oriented electrical steel sheet having good adhesion, low iron loss (trans iron loss) when supplied to a transformer, and a high space factor has not been obtained.

本発明は上記の事情に鑑みてなされたものであり、優れた被膜密着性と低減されたトランス鉄損を有することに加えて、高い占積率を有する方向性電磁鋼板を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has an object to provide a grain-oriented electrical steel sheet having a high space factor in addition to having excellent film adhesion and reduced transformer iron loss. And

本発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、表面が凹凸を有するように下地被膜を形成し、その後、表面を平滑化させることにより、優れた被膜密着性と低減されたトランス鉄損を有することに加えて、高い占積率を有する方向性電磁鋼板が得られることを見出した。
また、上記課題を達成するためには、焼鈍分離剤中に適正量のアルカリ土類金属を含有させ、仕上焼鈍後に、形成された下地被膜の表面を薄く研削すること、さらに、表面偏析元素として、Sb、SnおよびPを鋼中に含有させることが重要であることも見出した。
The present inventors have intensively studied to solve the above-mentioned problems. As a result, by forming a base coat so that the surface has irregularities and then smoothing the surface, in addition to having excellent coat adhesion and reduced transformer iron loss, a high space factor is obtained. It has been found that a grain-oriented electrical steel sheet can be obtained.
In order to achieve the above object, an appropriate amount of alkaline earth metal is contained in the annealing separator, and after finish annealing, the surface of the formed undercoat is thinly ground. , Sb, Sn and P were found to be important in the steel.

以下、本発明を導くに至った実験について説明する。
(実験)
C:0.068質量%、Si:3.41質量%、Mn:0.07質量%、Al:0.030質量%、N:0.008質量%を含有する鋼を溶製し、連続鋳造法で鋼素材(鋼スラブ)とした後、1410℃に加熱し、熱間圧延して板厚2.2mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚の1.7mmとし、1100℃×80秒の中間焼鈍を施した後、200℃の温間域での圧延により最終板厚0.23mmの冷延板とした。
Hereinafter, an experiment which led to the present invention will be described.
(Experiment)
A steel containing 0.068% by mass of C, 3.41% by mass of Si, 0.07% by mass of Mn, 0.030% by mass of Al, and 0.008% by mass of N was melted and made into a steel material (steel slab) by a continuous casting method. Then, heated to 1410 ℃, hot-rolled to a hot-rolled sheet with a thickness of 2.2 mm, subjected to hot-rolled sheet annealing at 1050 ℃ × 60 seconds, and then subjected to primary cold rolling to 1.7 mm of the intermediate sheet thickness After performing an intermediate annealing at 1100 ° C. for 80 seconds, a cold-rolled sheet having a final sheet thickness of 0.23 mm was obtained by rolling in a warm region at 200 ° C.

次いで、50vol%H−50vol%N、露点57℃の湿潤雰囲気下で830℃×100秒保持する脱炭焼鈍を施した。
その後、酸化チタン、水酸化ナトリウムを含み、残部が酸化マグネシウムの焼鈍分離剤であって、酸化チタンをTi換算で5質量%、水酸化ナトリウムをNa換算で40質量ppm含み、Ca濃度を0.2質量%以上3.2質量%以下の範囲で種々に異ならせた酸化マグネシウムを主剤とする焼鈍分離剤を鋼板表面に塗布し、乾燥した。なお、酸化チタン、水酸化ナトリウムの不純物分析をしたところ、Caと他のアルカリ土類金属の濃度はいずれも検出限界以下であった。
Next, decarburization annealing was performed at 830 ° C. for 100 seconds in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 57 ° C.
Thereafter, it contains titanium oxide and sodium hydroxide, and the remainder is an annealing separator for magnesium oxide, containing 5 mass% of titanium oxide in terms of Ti, 40 mass ppm of sodium hydroxide in terms of Na, and having a Ca concentration of 0.2 mass. % And 3.2% by mass or less of an annealing separator mainly composed of magnesium oxide, which was applied to the surface of the steel sheet and dried. When the impurities of titanium oxide and sodium hydroxide were analyzed, the concentrations of Ca and other alkaline earth metals were all below the detection limit.

この鋼板を、二次再結晶焼鈍と水素雰囲気下で1200℃×7時間の純化処理を含む仕上焼鈍を施して下地被膜を形成した後、未反応の焼鈍分離剤を除去し、さらに、粒度#100、#240(JIS R6001)の砥粒をもつブラシロールで下地被膜の表面を研削することによりその表面粗さを種々に変更した。その後、下地被膜の表面に、焼付後の塗布厚で1μmとなるようにコーティング液を塗布し、コーティング液の焼付けをかねて平坦化焼鈍を800℃×30秒で行った。   The steel sheet was subjected to a secondary recrystallization annealing and a finish annealing including a purification treatment at 1200 ° C. for 7 hours in a hydrogen atmosphere to form a base coat. Then, an unreacted annealing separating agent was removed, and further, a particle size The surface roughness of the base coat was variously changed by grinding the surface of the base coat with a brush roll having 100, # 240 (JIS R6001) abrasive grains. Thereafter, a coating liquid was applied to the surface of the undercoating film so as to have a coating thickness of 1 μm after baking, and flattening annealing was performed at 800 ° C. for 30 seconds while baking the coating liquid.

このようにして得られた鋼板について、占積率と被膜密着性、耐食試験による錆発生率を評価するともに、この鋼板を用いて1MVA(メガボルトアンペア)のトランスを製造し、該トランスでの鉄損(トランス鉄損)を測定した。この測結果について焼鈍分離際剤のCa濃度との関係で整理して図1〜図9に示す。ここで、被膜密着性は、800℃で2時間の歪取焼鈍を施した後、丸棒で曲げ、被膜が剥離しなかった最小径を評価した。また、鋼板をアルカリ洗浄することによりコーティング膜を除去したのちに、表面粗度計を用いて、下地被膜表面の算術平均粗さRaを測定するとともに、SEM観察により下地被膜断面を観察し、その膜厚を測定した。具体的には、算術平均粗さRaは、触針式の粗度計を用い、下地被膜表面の板幅方向中央部から圧延直角方向に10mmの測定長で三回測定し、その平均値をとった。占積率は、JIS C2550に規定の方法で算出した。   The steel sheet thus obtained was evaluated for the space factor, film adhesion, and rust generation rate by a corrosion test, and a 1 MVA (megavolt amp) transformer was manufactured using the steel sheet. Loss (trans iron loss) was measured. The measurement results are shown in FIGS. 1 to 9 in relation to the Ca concentration of the agent during annealing separation. Here, the coating adhesion was evaluated by performing a strain relief annealing at 800 ° C. for 2 hours and then bending with a round bar to evaluate a minimum diameter at which the coating did not peel. Also, after removing the coating film by alkali washing the steel sheet, using a surface roughness meter, while measuring the arithmetic average roughness Ra of the undercoat surface, observing the undercoat cross-section by SEM observation, The film thickness was measured. Specifically, the arithmetic average roughness Ra was measured three times with a measuring length of 10 mm in the direction perpendicular to the rolling direction from the center of the base film surface in the width direction using a stylus-type roughness meter, and the average value was calculated. I took it. The space factor was calculated by a method specified in JIS C2550.

図1より、焼鈍分離剤中のCa濃度が高まるとともに下地被膜の表面粗さが増大すること、また、研削により算術平均粗さRaが低下することがわかる。また、図2および図3より、研削をしなければ、分離剤中のCa濃度が変わっても、下地被膜の最大膜厚、最小膜厚に大きな変化はないが、研削をすると、Ca濃度が高くなるにつれて最大膜厚は増加傾向にあり、最小膜厚は減少傾向にあった。
した。
From FIG. 1, it can be seen that the surface roughness of the undercoat increases as the Ca concentration in the annealing separator increases, and that the arithmetic average roughness Ra decreases by grinding. From FIGS. 2 and 3, even if the Ca concentration in the separating agent is changed without grinding, the maximum film thickness and the minimum film thickness of the base film do not change significantly. As the height increased, the maximum film thickness tended to increase, and the minimum film thickness tended to decrease.
did.

さらに、下地被膜の膜厚について特定の膜厚範囲について調査した。すなわち、膜厚が0.05〜0.5μmの範囲および膜厚が2.0〜3.5μmの範囲について、焼鈍分離剤のCa濃度との関係を調査した。ここで、膜厚が0.05〜0.5μmの範囲および膜厚が2.0〜3.5μmの範囲に着目したのは、被膜−地鉄界面の凹凸を評価するためである。すなわち、下地被膜の最表面については研削によりほぼ平坦になっているため、膜厚が厚い部分(すなわち2.0〜3.5μm厚)は被膜が鋼板内部まで貫入しており、膜厚が薄い部分(すなわち0.05〜0.5μm厚)は鋼板が最表層近くまで盛り上がっていることを示す。このように膜厚が厚い部分と薄い部分が混在していると、被膜と地鉄の接触が密となり、アンカー効果により被膜密着性が高まる。   Further, the thickness of the undercoat film was investigated in a specific thickness range. That is, the relationship between the Ca concentration of the annealing separator and the film thickness in the range of 0.05 to 0.5 μm and in the range of 2.0 to 3.5 μm was investigated. Here, the reason why the film thickness is in the range of 0.05 to 0.5 μm and the film thickness is in the range of 2.0 to 3.5 μm is to evaluate unevenness of the coating-base iron interface. That is, since the outermost surface of the undercoat is almost flat by grinding, the thick portion (ie, 2.0 to 3.5 μm thick) has the coating penetrating into the steel plate and the thin portion (ie, (0.05 to 0.5 μm thick) indicates that the steel sheet is raised near the outermost layer. When the thick portion and the thin portion coexist in this way, the contact between the coating and the ground iron becomes dense, and the adhesion of the coating increases due to the anchor effect.

図4に下地被膜における「膜厚が0.05〜0.5μmの範囲となる線分比率」について示す。この「膜厚が0.05〜0.5μmの範囲となる線分比率」は、断面SEM写真から、膜厚が0.05〜0.5μmの範囲となる線分比率を測定したものである。測定倍率は2000倍で、長さ100μm分について3回測定してその平均値をとった。図4に示すように、研削なしではCa濃度によらずほぼ0%程度であったが、研削すると、Ca濃度の増大とともに線分比率も増大する傾向にあることがわかる。   FIG. 4 shows the “line segment ratio in which the film thickness is in the range of 0.05 to 0.5 μm” in the undercoat. The “line segment ratio in which the film thickness is in the range of 0.05 to 0.5 μm” is obtained by measuring a line segment ratio in which the film thickness is in the range of 0.05 to 0.5 μm from a cross-sectional SEM photograph. The measurement magnification was 2000 times, and the measurement was performed three times for a length of 100 μm, and the average value was obtained. As shown in FIG. 4, the value was approximately 0% regardless of the Ca concentration without grinding, but it can be seen that the ratio of line segments tends to increase as the Ca concentration increases with grinding.

同様に、「膜厚が2.0〜3.5μmの範囲となる線分比率」について測定したものを図5に示す。図5に示すように、「膜厚が2.0〜3.5μmの範囲となる線分比率」は研削なしではCa濃度によらずほぼ一定の値となったが、研削するとCa濃度が低い場合は急激に低下し、Ca濃度が高まるとともに増大する傾向となった。   Similarly, FIG. 5 shows the results obtained by measuring the “line segment ratio at which the film thickness is in the range of 2.0 to 3.5 μm”. As shown in FIG. 5, the “line segment ratio at which the film thickness is in the range of 2.0 to 3.5 μm” became almost constant regardless of the Ca concentration without grinding, but sharply when the Ca concentration was low after grinding. And tended to increase as the Ca concentration increased.

次に、図6に示されるトランス鉄損については、Ca濃度に最適値が認められ、0.3〜2.2質量%の範囲で最も鉄損が改善していることがわかる。研削すると、この傾向はさらに強まり、上記のCa濃度範囲で優れたトランス鉄損が得られていることがわかる。   Next, regarding the transformer iron loss shown in FIG. 6, an optimum value is found for the Ca concentration, and it can be seen that the iron loss is most improved in the range of 0.3 to 2.2% by mass. This tendency is further enhanced by grinding, and it can be seen that excellent transformer iron loss is obtained in the above Ca concentration range.

図7において被膜密着性を示す曲げ剥離径についても、Ca濃度に最適値が認められる。特に、Ca濃度の高い領域では、研削することにより、密着性の劣化が顕著となった。図8に示される耐食性試験による錆発生率は、Ca濃度が低い領域でほぼ0%であったが、Ca濃度を高くし、さらに研削をすることにより、錆発生率は増大した。図9に示される占積率は、Ca濃度が高くなるとともに低下するが、研削により顕著に改善されることがわかる。   In FIG. 7, the optimum value of the Ca concentration is also recognized for the bending peeling diameter indicating the film adhesion. In particular, in a region where the Ca concentration is high, the deterioration in adhesion became remarkable by grinding. Although the rust generation rate by the corrosion resistance test shown in FIG. 8 was almost 0% in the region where the Ca concentration was low, the rust generation rate was increased by increasing the Ca concentration and further grinding. It can be seen that the space factor shown in FIG. 9 decreases as the Ca concentration increases, but is significantly improved by grinding.

以上の結果から、焼鈍分離剤中にごく微量のCaを含有させるとともに仕上焼鈍後に軽研削を行い、さらにコーティング膜厚を1μmと薄くすることにより鉄損が改善する理由について、本発明者らは以下のように考えている。
まず、焼鈍分離際剤のMgO結晶中の不純物のCaイオンは非晶質SiOのSi−O間の結合を切断することにより、SiOの可動度を高めて表層濃化を促進する働きがある。Caイオンがない場合にはSiOの表層濃化が緩やかに進行することにより、鉄の拡散も同時に起こり、表面の応力が発生しにくくなる結果、地鉄との界面の凹凸は小さくなる。これに対し、Caイオンを添加すると、SiOが速やかに表層濃化するため、圧縮応力が発生して界面の変形が起こりやすくなる。
From the above results, the present inventors concluded that the reason why iron loss is improved by adding a very small amount of Ca to the annealing separator and performing light grinding after finish annealing and further reducing the coating film thickness to 1 μm is described. I think as follows.
First, Ca ions as impurities in the MgO crystal of the annealing separation agent cut the bond between Si—O of amorphous SiO 2 , thereby increasing the mobility of SiO 2 and promoting the concentration of the surface layer. is there. In the absence of Ca ions, the surface layer concentration of SiO 2 progresses slowly, so that iron also diffuses at the same time, making it difficult for surface stress to occur. As a result, unevenness at the interface with the ground iron is reduced. On the other hand, when Ca ions are added, the surface layer of SiO 2 is rapidly concentrated, so that a compressive stress is generated and the interface is likely to be deformed.

このように下地被膜に凹凸が形成された状態では、曲げ応力を加えたときに被膜が地鉄にめり込んでいるため剥がれにくくなっており、密着性が確保される。しかしながら、Caイオンが大量に存在すると、MgOの反応自体も抑えられてしまうため、被膜形成不良となり、密着性も劣化する。以上の点から、被膜密着性に関し、最適なCa濃度の範囲があるといえる。   In the state where the unevenness is formed on the undercoat, the coating is sunk into the ground iron when a bending stress is applied, so that the undercoat is not easily peeled off, and the adhesion is secured. However, if a large amount of Ca ions is present, the reaction of MgO itself is suppressed, resulting in poor film formation and poor adhesion. From the above points, it can be said that there is an optimum range of the Ca concentration for the coating adhesion.

さらに凹凸が形成された状態の下地被膜を研削したときに、Ca濃度が低い場合は曲げ密着性に変化はなかったが、Ca濃度が2.2質量%を超えて高くなると密着性の劣化も著しくなった。これは、Ca濃度が高まって下地被膜の凹凸が強調され、かような被膜を研削したときに地鉄が露出する部分が生じたためと考えられる。   Furthermore, when the undercoating with irregularities was ground, the bending adhesion did not change when the Ca concentration was low, but the adhesion deteriorated remarkably when the Ca concentration exceeded 2.2 mass%. Was. This is considered to be because the Ca concentration was increased and the unevenness of the underlying film was emphasized, and a portion where the ground iron was exposed when such a film was ground was generated.

鉄損に関しても、最適なCa濃度の範囲があるといえる。まず、ごく微量のCa濃度の場合は、被膜密着性が高まり、これにより被膜による鋼板への張力が有効にかかる結果、鉄損が改善すると考えられる。一方、Ca濃度が高すぎると、下地被膜の凹凸が増大し、占積率が低下する結果、トランスを組んだときの積み枚数が少なくなり、鉄損が増加したと考えられる。上記下地被膜表面の凸部を研削することにより、占積率が改善され、その結果、鉄損も低減される。   Regarding iron loss, it can be said that there is an optimum range of Ca concentration. First, in the case of a very small Ca concentration, it is considered that the adhesion of the coating film is enhanced, and the tension applied to the steel sheet by the coating film is effectively applied, so that the iron loss is improved. On the other hand, if the Ca concentration is too high, the unevenness of the undercoat increases, and the space factor decreases. As a result, it is considered that the number of stacked transformers is reduced and the iron loss is increased. By grinding the projections on the surface of the base coat, the space factor is improved, and as a result, iron loss is also reduced.

錆発生率について、Ca濃度が低い場合には、錆がほとんど発生していないが、Ca濃度が高くなると錆発生率が上昇した。このことは、今回の実験ではコーティングの膜厚を1μmと薄くしているためと考えられる。すなわち、Ca濃度が低い場合は下地被膜表面の凹凸が小さいが、Ca濃度を高めることにより凹凸が増大し、コーティング液を薄く塗布したときに、下地被膜の一部が露出する。下地被膜中にはFeも含まれているため、この部分の耐食性が劣化する。下地被膜表面を研削した場合にも、被膜表面の凸部で一部地鉄が露出する。この上にコーティングを施しても、下地被膜がないため部分的に剥落してしまう。そしてこの部分の耐食性が劣化するものと思われる。
これらの知見は、Caに限らず、アルカリ土類金属全般において同様であり、その適合範囲も全く同じであった。アルカリ土類金属イオンは、非晶質SiOのSi−O間の結合を切断することにより、SiOの可動度を高めて表層濃化を促進する働きがある。
Regarding the rust generation rate, when the Ca concentration was low, almost no rust was generated, but when the Ca concentration was high, the rust generation rate increased. This is considered to be because the thickness of the coating was reduced to 1 μm in this experiment. That is, when the Ca concentration is low, the irregularities on the surface of the undercoating film are small. However, when the Ca concentration is increased, the irregularities increase, and when the coating liquid is applied thinly, a part of the undercoating film is exposed. Since Fe is also contained in the undercoat, the corrosion resistance of this portion is deteriorated. Even when the undercoating film surface is ground, part of the base iron is exposed at the projections of the coating film surface. Even if a coating is applied thereon, it will be partially peeled off because there is no underlying film. Then, it is considered that the corrosion resistance of this portion is deteriorated.
These findings are not limited to Ca, but are the same for alkaline earth metals in general, and their compatible ranges were completely the same. Alkaline earth metal ions have the function of increasing the mobility of SiO 2 and promoting the concentration of the surface layer by cutting the bond between Si—O of amorphous SiO 2 .

そこで、まず、Ca等のアルカリ土類金属を所定量含有させることにより、被膜の凹凸を適度につけ、地鉄に適度な張力をかけるとともに被膜の密着性を向上させる。次に、下地被膜の最表面を研削する等により粗度を低下させ、占積率を高める。さらに、コーティング膜厚を薄くすることにより占積率の低下を防ぎ、耐食性の劣化も防ぐことができる。   Therefore, first, by including a predetermined amount of an alkaline earth metal such as Ca, the unevenness of the coating is moderately applied, and a proper tension is applied to the ground iron, and the adhesion of the coating is improved. Next, the roughness is reduced by grinding the outermost surface of the undercoat, and the space factor is increased. Further, by reducing the coating film thickness, it is possible to prevent a decrease in the space factor and prevent deterioration of corrosion resistance.

上記のような鋼板を使用してトランスをくみ上げることで、大きさの制約から積み厚が一定であっても積み枚数を十分確保でき、その結果、所定の磁束密度に磁化させる場合に、磁化量を過度に高めることなく、鉄損を改善することができる。   By using a steel plate as described above and pumping up the transformer, it is possible to secure a sufficient number of stacked sheets even if the stacking thickness is constant due to size restrictions. As a result, when magnetizing to a predetermined magnetic flux density, the magnetization amount Can be improved without excessively increasing the iron loss.

このように、本発明は、下地被膜表面の凹凸を低減し、コーティング膜厚を薄くすることにより、被膜密着性の確保およびトランス鉄損の低減と、占積率の増大とを両立させる方法について提案するものである。   As described above, the present invention relates to a method for reducing the unevenness of the surface of the undercoat film and reducing the thickness of the coating film, thereby ensuring the adhesion of the film and reducing the transformer iron loss and increasing the space factor. It is a suggestion.

本発明は、上記した実験結果に基づき、さらに検討を重ねた末に完成されたものであり、その要旨構成は、以下のとおりである。
1.鋼板の表面上に下地被膜を有し、該下地被膜の上にコーティング被膜を有する方向性電磁鋼板であって、
前記下地被膜と前記コーティング被膜との界面における算術平均粗さRaが0.25μm以下であり、
前記下地被膜は、膜厚最大部が3.50μm以下、膜厚最小部が0.05μm以上、膜厚2.0μm以上3.5μm以下の領域の線分比率が2%以上および膜厚0.05μm以上0.5μm以下の領域の線分比率が2%以上であり、
前記コーティング被膜の膜厚が2μm以下である方向性電磁鋼板。
The present invention has been completed based on the above experimental results after further study, and the gist configuration thereof is as follows.
1. A grain-oriented electrical steel sheet having a base coat on the surface of a steel sheet and having a coating coat on the base coat,
Arithmetic average roughness Ra at the interface between the undercoat and the coating film is 0.25 μm or less,
The undercoating has a maximum thickness of 3.50 μm or less, a minimum thickness of 0.05 μm or more, and a line segment ratio of 2 μm or more and 3.5 μm or less in a region of 2 μm or more and a thickness of 0.05 μm or more and 0.5 μm or less. Area ratio is 2% or more,
A grain-oriented electrical steel sheet having a coating film thickness of 2 μm or less.

2.質量%で、
C:0.020%以上0.080%以下、
Si:2.50%以上4.50%以下および
Mn:0.03%以上0.30%以下
を含有し、残部はFeおよび不可避的不純物である成分組成を有する鋼素材に、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
該冷延鋼板に脱炭焼鈍を施し、
鋼板の表面に、MgO:50質量%以上およびアルカリ土類金属を金属換算で0.3質量%以上2.2質量%以下を含有する焼鈍分離剤を塗布し、
その後、仕上焼鈍を施して下地被膜を形成し、次いで、前記下地被膜につき、表面の算術平均粗さRaを0.25μm以下、膜厚最大部を3.50μm以下、膜厚最小部を0.05μm以上、膜厚が2.0μm以上3.5μm以下の領域の線分比率を2%以上および膜厚が0.05μm以上0.5μm以下の領域の線分比率を2%以上に調整した後、該下地被膜の表面にコーティング液を塗布、焼付けして、厚みが2μm以下のコーティング被膜を形成する方向性電磁鋼板の製造方法。
2. In mass%,
C: 0.020% or more and 0.080% or less,
One cold rolling or intermediate annealing is performed on a steel material containing Si: 2.50% or more and 4.50% or less and Mn: 0.03% or more and 0.30% or less, with the balance being Fe and a component composition that is an unavoidable impurity 2 Cold-rolled steel sheet having a final thickness by performing cold rolling more than once,
Decarburizing the cold rolled steel sheet,
An annealing separator containing 50% by mass or more of MgO and 0.3% by mass or more and 2.2% by mass or less of alkaline earth metal in terms of metal is applied to the surface of the steel sheet,
Thereafter, a base coat is formed by performing finish annealing, and then, for the base coat, the arithmetic average roughness Ra of the surface is 0.25 μm or less, the maximum thickness is 3.50 μm or less, and the minimum thickness is 0.05 μm or more. After adjusting the line segment ratio in the region where the film thickness is 2.0 μm or more and 3.5 μm or less to 2% or more and the line segment ratio in the region where the film thickness is 0.05 μm or more and 0.5 μm or less to 2% or more, A method for producing a grain-oriented electrical steel sheet, in which a coating liquid is applied and baked to form a coating film having a thickness of 2 μm or less.

3.前記成分は、さらに、質量%で
P:0.005%以上0.20%以下
Sb:0.005%以上0.200%以下および
Sn:0.005%以上0.50%以下
のうちの1種または2種以上を含有する、前記2に記載の方向性電磁鋼板の製造方法。
3. The above-mentioned component further contains one or more of P: 0.005% or more and 0.20% or less, Sb: 0.005% or more and 0.200% or less, and Sn: 0.005% or more and 0.50% or less by mass%. The method for producing a grain-oriented electrical steel sheet according to the above.

4.前記成分組成は、さらに、質量%で、
Al:0.010%以上0.040%以下および
N:0.003%以上0.012%以下
を含有する、前記2または3に記載の方向性電磁鋼板の製造方法。
4. The component composition further includes, in mass%,
4. The method for producing a grain-oriented electrical steel sheet according to the above item 2 or 3, comprising Al: 0.010% to 0.040% and N: 0.003% to 0.012%.

5.前記成分組成は、さらに、
質量%で、
Se:0.003%以上0.030%以下および/または
S:0.002%以上0.030%以下
を含有する、前記2から4のいずれかに記載の方向性電磁鋼板の製造方法。
5. The component composition further comprises:
In mass%,
5. The method for producing a grain-oriented electrical steel sheet according to any one of the above items 2 to 4, comprising Se: 0.003% or more and 0.030% or less and / or S: 0.002% or more and 0.030% or less.

6.前記成分組成は、さらに、
質量%で、
Ni:0.01%以上1.50%以下、
Cr:0.01%以上0.50%以下、
Cu:0.01%以上0.50%以下、
Bi:0.005%以上0.100%以下、
Mo:0.005%以上0.100%以下、
B:0.0002%以上0.0025%以下、
Te:0.0005%以上0.0100%以下、
Nb:0.001%以上0.010%以下、
V:0.001%以上0.010%以下、
Ti:0.001%以上0.010%以下および
Ta:0.001%以上0.010%以下
のうちから選ばれる1種または2種以上を含有する、前記2から5のいずれかに記載の方向性電磁鋼板の製造方法。
6. The component composition further comprises:
In mass%,
Ni: 0.01% or more and 1.50% or less,
Cr: 0.01% or more and 0.50% or less,
Cu: 0.01% or more and 0.50% or less,
Bi: 0.005% or more and 0.100% or less,
Mo: 0.005% or more and 0.100% or less,
B: 0.0002% or more and 0.0025% or less,
Te: 0.0005% or more and 0.0100% or less,
Nb: 0.001% or more and 0.010% or less,
V: 0.001% or more and 0.010% or less,
6. The method for producing a grain-oriented electrical steel sheet according to any one of the above items 2 to 5, comprising one or more selected from among Ti: 0.001% to 0.010% and Ta: 0.001% to 0.010%.

本発明によれば、優れた被膜密着性と低減されたトランス鉄損を有することに加えて、高い占積率を有する方向性電磁鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in addition to having excellent film adhesion and reduced transformer iron loss, a grain-oriented electrical steel sheet having a high space factor can be provided.

焼鈍分離剤中のCa濃度と下地被膜の算術平均粗さとの関係を示すグラフである。4 is a graph showing the relationship between the Ca concentration in the annealing separator and the arithmetic average roughness of the undercoat. 焼鈍分離剤中のCa濃度と下地被膜の最大膜厚との関係を示すグラフである。It is a graph which shows the relationship between the Ca density | concentration in an annealing separating agent, and the maximum film thickness of an undercoat. 焼鈍分離剤中のCa濃度と下地被膜の最小膜厚との関係を示すグラフである。It is a graph which shows the relationship between the Ca density | concentration in an annealing separating agent, and the minimum film thickness of an undercoat. 焼鈍分離剤中のCa濃度と膜厚:0.05μm以上0.5μm以下の線分比率との関係を示すグラフである。It is a graph which shows the relationship between Ca density | concentration in an annealing separating agent, and film thickness: The line segment ratio of 0.05 to 0.5 micrometer. 焼鈍分離剤中のCa濃度と膜厚:2.0μm以上3.5μm以下の線分比率との関係を示すグラフである。It is a graph which shows the relationship between Ca density | concentration in an annealing separating agent, and film thickness: The line segment ratio of 2.0 to 3.5 micrometers. 焼鈍分離剤中のCa濃度とトランス鉄損との関係を示すグラフである。It is a graph which shows the relationship between Ca concentration in an annealing separating agent, and trans iron loss. 焼鈍分離剤中のCa濃度と曲げ剥離径との関係を示すグラフである。It is a graph which shows the relationship between the Ca density | concentration in an annealing separating agent, and a bending peeling diameter. 焼鈍分離剤中のCa濃度と錆発生率との関係を示すグラフである。It is a graph which shows the relationship between the Ca density | concentration in an annealing separating agent, and a rust generation rate. 焼鈍分離剤中のCa濃度と占積率との関係を示すグラフである。It is a graph which shows the relationship between the Ca concentration in an annealing separating agent, and a space factor.

本発明は、鋼板の表面上に下地被膜を有し、該下地被膜の上にコーティング被膜を有する方向性電磁鋼板において、
前記下地被膜と前記コーティング被膜との界面における算術平均粗さRaが0.25μm以下であること、
前記下地被膜は、膜厚最大部が3.50μm以下、膜厚最小部が0.05μm以上、膜厚2.0μm以上3.5μm以下の領域の線分比率が2%以上および膜厚0.05μm以上0.5μm以下の領域の線分比率が2%以上であること、
前記コーティング被膜の膜厚が2μm以下であること、
を特徴とする。なお、本発明で単に膜厚と言った場合は下地被膜(フォルステライト被膜)の膜厚である。
以下、上記した下地被膜に関する要件毎に説明する。
The present invention has a base coat on the surface of the steel sheet, a grain-oriented electrical steel sheet having a coating film on the base coat,
Arithmetic average roughness Ra at the interface between the undercoat and the coating film is 0.25 μm or less,
The undercoating has a maximum thickness of 3.50 μm or less, a minimum thickness of 0.05 μm or more, and a line segment ratio of 2 μm or more and 3.5 μm or less in a region of 2 μm or more and a thickness of 0.05 μm or more and 0.5 μm or less. The line segment ratio of the region of 2% or more,
The coating film has a thickness of 2 μm or less;
It is characterized by. In the present invention, when simply referred to as the film thickness, it is the film thickness of the undercoat film (forsterite film).
Hereinafter, description will be given for each requirement for the above-described undercoating.

[算術平均粗さRa:0.25μm以下]
下地被膜と前記コーティング被膜との界面、換言すると、下地被膜表面の算術平均粗さRaは、0.25μmを超えると凹凸がつきすぎて占積率が低下する。そのため、算術平均粗さRaは0.25μm以下、好ましくは0.20μm以上0.24μm以下とする。
ちなみに、算術平均粗さを求めるための粗度計としては、レーザー式、触針式等市販のいずれの粗度計を用いても良い。算術平均粗さの求め方は、JIS B0601の方法の通りである。
[Arithmetic average roughness Ra: 0.25 μm or less]
If the interface between the undercoat film and the coating film, in other words, the arithmetic average roughness Ra of the undercoat surface exceeds 0.25 μm, the unevenness is too large and the space factor decreases. Therefore, the arithmetic average roughness Ra is set to 0.25 μm or less, preferably 0.20 μm or more and 0.24 μm or less.
Incidentally, as the roughness meter for obtaining the arithmetic mean roughness, any commercially available roughness meter such as a laser type or a stylus type may be used. The method of calculating the arithmetic average roughness is as described in JIS B0601.

[膜厚最大部および膜厚最小部]
下地被膜の膜厚最大部が3.50μm超では、十分な占積率の改善効果が得らないのみならず、耐食性が劣化する。同膜厚最小値が0.05μm未満では、フォルステライト被膜が薄すぎて部分的に地鉄が露出し、被膜欠陥となる。そのため、膜厚最大部が3.50μm以下、膜厚最小部が0.05μm以上の範囲とする。膜厚最大部は、好ましくは2.90μm以上3.30μm以下とする。膜厚最小部は、好ましくは0.08μm以上0.35μm以下とする。
[Maximum thickness and minimum thickness]
If the maximum thickness of the undercoat is more than 3.50 μm, not only the sufficient effect of improving the space factor is not obtained, but also the corrosion resistance is deteriorated. If the minimum value of the film thickness is less than 0.05 μm, the forsterite film is too thin and the base iron is partially exposed, resulting in a film defect. Therefore, the maximum thickness is set to 3.50 μm or less, and the minimum thickness is set to 0.05 μm or more. The maximum part of the film thickness is preferably 2.90 μm or more and 3.30 μm or less. The minimum thickness part is preferably 0.08 μm or more and 0.35 μm or less.

ここで、膜厚については、光学顕微鏡や電子顕微鏡により評価できる。コイル板幅方向中央部からサンプルを切出し、C断面(板幅方向に平行な断面)を、電子顕微鏡を用いて2000倍で断面観察し、長さ100μmの範囲における最大値・最小値を測定して評価する。測定は三回行い、その平均値をそれぞれ膜厚最大部および膜厚最小部とする。なお、膜厚を測定する際には、被膜上面から遊離した、いわゆるアンカー部については考慮に入れず、遊離していない被膜のみの膜厚を測定した。   Here, the film thickness can be evaluated by an optical microscope or an electron microscope. A sample was cut out from the center of the coil plate in the width direction, and the C cross section (cross section parallel to the plate width direction) was observed at 2,000 times using an electron microscope, and the maximum and minimum values in the range of 100 μm in length were measured. To evaluate. The measurement is performed three times, and the average value is defined as the maximum thickness portion and the minimum thickness portion, respectively. In measuring the film thickness, the so-called anchor portion released from the upper surface of the film was not taken into consideration, and the film thickness of only the film not released was measured.

[膜厚:0.05〜0.5μmの範囲の線分比率および膜厚:2〜3.5μmの範囲の線分比率]
膜厚が0.05〜0.5μmの範囲の線分比率は2%以上、膜厚が2〜3.5μmの範囲の線分比率は2%以上とする。この範囲に収めることにより、膜厚の厚い部分と薄い部分が導入され、その凹凸により鋼板地鉄およびコーティング被膜との密着性が確保される。なお、膜厚の測定法は上記と同様の方法により求めることができる。
[Thickness: line segment ratio in the range of 0.05 to 0.5 μm and film thickness: line segment ratio in the range of 2 to 3.5 μm]
The line segment ratio in the thickness range of 0.05 to 0.5 μm is 2% or more, and the line segment ratio in the film thickness range of 2 to 3.5 μm is 2% or more. When the thickness falls within this range, a thick portion and a thin portion are introduced, and due to the unevenness, the adhesion between the steel sheet base iron and the coating film is ensured. The thickness can be measured by the same method as described above.

ここで、膜厚:0.05〜0.5μmの範囲および膜厚:2〜3.5μmの範囲について線分比率を規定したのは、これにより、被膜と地鉄の界面の凹凸が評価されるためである。なお、両領域の線分比率の上限は、特に限定する必要はないが、凹凸が増大しすぎて磁気特性が劣化することから40%以下とすることが望ましい。   Here, the reason why the line segment ratio is defined for the range of the film thickness: 0.05 to 0.5 μm and the range of the film thickness: 2 to 3.5 μm is that the unevenness of the interface between the coating film and the ground iron is evaluated. . Note that the upper limit of the line segment ratio in both regions is not particularly limited, but is preferably set to 40% or less because the magnetic properties are degraded due to excessive increase in unevenness.

[コーティング被膜]
コーティング被膜の膜厚は、層間抵抗が劣化するのを防止し、占積率を改善するために、2μm以下とする。一方、膜厚が0.2μm未満になると、耐食性、絶縁性が問題になるから、0.2μm以上とすることが好ましい。
[Coating film]
The thickness of the coating film is 2 μm or less in order to prevent the interlayer resistance from deteriorating and to improve the space factor. On the other hand, if the film thickness is less than 0.2 μm, corrosion resistance and insulation properties become problems. Therefore, the thickness is preferably 0.2 μm or more.

次に、本発明の方向性電磁鋼板において好適成分組成について説明する。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
[成分組成]
C:0.020%以上0.080%以下
Cは、0.020%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなど、製造に支障を来たす欠陥を生ずるようになる。一方、0.080%を超えると、脱炭焼鈍で、磁気時効の起こらない0.005%以下に低減することが困難となる。よって、Cは0.020%以上0.080%以下の範囲とする。好ましくは0.025%以上0.075%以下の範囲である。
Next, a preferred component composition in the grain-oriented electrical steel sheet of the present invention will be described. In this specification, "%" representing the content of each component element means "% by mass" unless otherwise specified.
[Component composition]
C: 0.020% or more and 0.080% or less If C is less than 0.020%, the grain boundary strengthening effect by C is lost, and defects that hinder production, such as cracks in slabs, occur. On the other hand, when the content exceeds 0.080%, it becomes difficult to reduce the content to 0.005% or less at which magnetic aging does not occur by decarburizing annealing. Therefore, C is in the range of 0.020% to 0.080%. Preferably it is in the range of 0.025% or more and 0.075% or less.

Si:2.50%以上4.50%以下
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。この効果は、2.50%未満では十分ではなく、一方、4.50%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.50%以上4.50%以下の範囲とする。好ましくは2.80%以上4.00%以下の範囲である。
Si: 2.50% or more and 4.50% or less Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If this effect is less than 2.50%, it is not sufficient, while if it exceeds 4.50%, the workability is reduced and it is difficult to manufacture by rolling. Therefore, the content of Si is set in the range of 2.50% to 4.50%. It is preferably in the range of 2.80% to 4.00%.

Mn:0.03%以上0.30%以下
Mnは、鋼の熱間加工性を改善するために必要な元素である。この効果は、0.03%未満では十分ではなく、一方、0.30%を超えると、製品板の磁束密度が低下する。よって、Mnは0.03%以上0.30%以下の範囲とする。好ましくは0.04%以上0.20%以下の範囲である。
Mn: 0.03% or more and 0.30% or less Mn is an element necessary for improving the hot workability of steel. If this effect is less than 0.03%, the effect is not sufficient, while if it exceeds 0.30%, the magnetic flux density of the product plate decreases. Therefore, Mn is in the range of 0.03% to 0.30%. Preferably, it is in the range of 0.04% or more and 0.20% or less.

本発明における基本成分は、上記したとおりであり、残部はFeおよび不可避的不純物である。かかる不可避的不純物としては、原料や製造設備から不可避的に混入する不純物が挙げられる。   The basic components in the present invention are as described above, and the balance is Fe and inevitable impurities. Examples of such unavoidable impurities include impurities unavoidably mixed from raw materials and manufacturing facilities.

また、上記Si、CおよびMn以外の成分については、表面偏析元素として、Sb、SnおよびPの1種または2種以上を含有させると、さらに有利な効果が得られる。というのは、これらの元素が仕上焼鈍中に表面偏析すると、下地被膜のフォルステライトが形成される際、被膜中のFe濃度が下がる。その結果、その後の研削で下地被膜の膜厚が薄くなっても防錆性や絶縁性が保たれるからである。さらに、たとえ研削で地鉄が露出したとしても、これら偏析元素の働きにより、コーティングと地鉄との間の密着性が保たれるからである。
以上の効果を得るには、Sb、SnおよびPの各々が0.005%以上であることが好ましい。一方、Sbで0.500%、SnおよびPで0.200%を超えると、圧延での割れやそれに起因する破断が懸念されるから、Sbで0.500%、SnおよびPで0.200%を上限とすることが好ましい。
Further, for components other than Si, C and Mn, more advantageous effects can be obtained by including one or more of Sb, Sn and P as surface segregating elements. That is, when these elements are segregated on the surface during the finish annealing, when the forsterite of the base coat is formed, the Fe concentration in the coat decreases. As a result, even if the thickness of the base coat is reduced by subsequent grinding, rust prevention and insulation are maintained. Furthermore, even if the ground iron is exposed by grinding, the action of these segregating elements maintains the adhesion between the coating and the ground iron.
In order to obtain the above effects, it is preferable that each of Sb, Sn and P is 0.005% or more. On the other hand, if Sb exceeds 0.500% and Sn and P exceed 0.200%, the upper limit is preferably 0.500% for Sb and 0.200% for Sn and P, since there is a concern about cracking during rolling and rupture due to it. .

さらに、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とについて、次の成分を含有してもよい。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010%以上0.040%以下、N:0.003%以上0.012%以下の範囲で含有させるのが好ましい。
Further, the following components may be contained depending on whether an inhibitor is used or not to cause secondary recrystallization.
First, in the case where an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are respectively converted to Al: 0.010% to 0.040%, N: 0.003% to 0.012%. It is preferable to contain it in the following range.

また、MnS・MnSe系インヒビターを利用する場合には、前述した量のMnと、S:0.002%以上0.030%以下およびSe:0.003%以上0.030%以下のうちの1種または2種を含有させることが好ましい。それぞれの添加量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上限値を超えると、インヒビター成分がスラブ加熱時に未固溶で残存し、磁気特性の低下をもたらす。なお、AlN系とMnS・MnSe系のインヒビターは併用して用いてもよい。   When an MnS · MnSe-based inhibitor is used, the above-mentioned amount of Mn and one or two of S: 0.002% to 0.030% and Se: 0.003% to 0.030% are contained. Is preferred. If the amount of each addition is less than the above lower limit, the inhibitor effect cannot be sufficiently obtained, while if it exceeds the upper limit, the inhibitor component remains undissolved during slab heating, resulting in a decrease in magnetic properties. The AlN-based and MnS / MnSe-based inhibitors may be used in combination.

一方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl、N、SおよびSeの含有量を極力低減し、Al:0.010%未満、N:0.003%未満、S:0.002%未満およびSe:0.003%未満に低減した鋼素材を用いることが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the contents of Al, N, S, and Se, which are the above-described inhibitor-forming components, are reduced as much as possible, and Al: less than 0.010%, N: 0.003 %, S: less than 0.002%, and Se: preferably less than 0.003%.

本発明では、磁気特性の改善を目的として、Ni:0.01%以上1.50%以下、Cr:0.01%以上0.50%以下、Cu:0.01%以上0.50%以下、Bi:0.005%以上0.100%以下、Mo:0.005%以上0.100%以下、B:0.0002%以上0.0025%以下、Te:0.0005%以上0.0100%以下、Nb:0.001%以上0.010%以下、V:0.001%以上0.010%以下、Ti:0.001%以上0.010%以下およびTa:0.001%以上0.010%以下のうちから選ばれる1種または2種以上を適宜含有させることができる。   In the present invention, Ni: 0.01% to 1.50%, Cr: 0.01% to 0.50%, Cu: 0.01% to 0.50%, Bi: 0.005% to 0.100%, Mo: 0.005% to 0.100%, B: 0.0002% to 0.0025%, Te: 0.0005% to 0.0100%, Nb: 0.001% to 0.010%, V: 0.001% to 0.010%, Ti: 0.001% to 0.010% One or two or more selected from the following and Ta: 0.001% or more and 0.010% or less can be appropriately contained.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
[鋳造-加熱]
前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊−分塊圧延法または連続鋳造法でスラブを製造し、該スラブに熱間圧延を施して鋼素材(熱延板)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造したのち、熱間圧延して、または熱間圧延することなく鋼素材とする。上記スラブまたは薄鋳片は常法に従い、例えば、インヒビター成分を含有する場合には、1350℃程度まで加熱し、一方、インヒビター成分を含まない場合は、1300℃以下の温度に加熱する。
Next, a method for producing a grain-oriented electrical steel sheet according to the present invention will be described.
[Casting-heating]
After smelting a steel having the above-mentioned composition by a conventional refining process, a slab is manufactured by a conventionally known ingot-bulking rolling method or a continuous casting method, and the slab is subjected to hot rolling to obtain a steel material. (Hot rolled sheet) may be manufactured, or a thin slab with a thickness of 100 mm or less is manufactured by a direct casting method and then hot rolled or made into a steel material without hot rolling . The slab or the thin slab is heated to a temperature of about 1350 ° C. when it contains an inhibitor component, and is heated to a temperature of 1300 ° C. or less when it does not contain an inhibitor component.

[熱間圧延]
上記加熱後、熱間圧延に供する。なお、インヒビター成分を含有しない場合には、鋳造後加熱することなく直ちに熱間圧延してもよい。また、薄鋳片の場合には、熱間圧延してもよいし熱間圧延を省略してそのまま以後の工程に進めてもよい。特に限定するものではないが、熱間圧延の圧延終了温度は700〜1100℃、コイル巻き取り温度は300〜650℃で、熱間圧延後の板厚は1.0〜4.0mmの範囲とすることが望ましい。
[Hot rolling]
After the above heating, it is subjected to hot rolling. When no inhibitor component is contained, hot rolling may be performed immediately after casting without heating. In the case of thin cast slabs, hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the subsequent steps. Although not particularly limited, the rolling end temperature of hot rolling is 700 to 1100 ° C., the coil winding temperature is 300 to 650 ° C., and the thickness after hot rolling may be in the range of 1.0 to 4.0 mm. desirable.

[熱延板焼鈍]
熱間圧延して得た熱延板もしくは薄鋳片スラブは、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の焼鈍温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶の発達が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり整粒の一次再結晶組織を得ることが難しくなるからである。また、均熱時間は必ずしも必要でなく、最高到達温度でそのまま降温することも可能である。均熱する場合の時間の上限は5分程度までとすることが好ましい。
[Hot rolled sheet annealing]
The hot rolled sheet or thin slab slab obtained by hot rolling is subjected to hot rolled sheet annealing as necessary. The annealing temperature of the hot-rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If the temperature is lower than 800 ° C., a band structure formed by hot rolling remains, making it difficult to obtain a primary recrystallized structure of sized particles, and hindering the development of secondary recrystallization. On the other hand, when the temperature exceeds 1150 ° C., the grain size after annealing of the hot-rolled sheet becomes too large, and it is also difficult to obtain a primary recrystallized structure having a uniform size. Further, the soaking time is not always necessary, and the temperature can be lowered as it is at the highest temperature. The upper limit of the time for soaking is preferably up to about 5 minutes.

[冷間圧延]
熱間圧延後あるいは熱延板焼鈍後の熱延板(上記した薄鋳片を含む)は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに一次再結晶組織におけるGoss核が減少して製品板の磁気特性が低下する傾向がある。一方、1200℃を超えると、熱延板焼鈍のときと同様、結晶粒が粗大化し過ぎて整粒の一次再結晶組織を得ることが難しくなる。また、中間焼鈍時間は、2〜150秒程度とすることが好ましい。なお、冷間圧延は、温間域での圧延(温間圧延)を含むこととする。
[Cold rolling]
The hot-rolled sheet (including the above-mentioned thin slab) after hot rolling or hot-rolled sheet annealing is subjected to one or more cold-rolling operations including one-time cold rolling or intermediate annealing to obtain a final sheet thickness. Cold rolled sheet. The annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. If the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing tend to be fine, and the Goss nuclei in the primary recrystallized structure tend to be reduced, so that the magnetic properties of the product sheet tend to deteriorate. On the other hand, when the temperature exceeds 1200 ° C., as in the case of hot-rolled sheet annealing, the crystal grains become too coarse, and it becomes difficult to obtain a primary recrystallized structure of sized grains. Further, the intermediate annealing time is preferably set to about 2 to 150 seconds. The cold rolling includes rolling in a warm region (warm rolling).

また、最終板厚とする冷間圧延(最終冷間圧延)は、冷間圧延時の鋼板温度を100〜300℃に上昇させて行うことや、冷間圧延の途中で100〜300℃の温度で時効処理を1回または複数回施すことが、一次再結晶集合組織を改善し、磁気特性を向上させるのに有効である。   In addition, the cold rolling (final cold rolling) to be the final thickness can be performed by increasing the steel sheet temperature during cold rolling to 100 to 300 ° C, or the temperature of 100 to 300 ° C during the cold rolling. Applying the aging treatment one or more times is effective for improving the primary recrystallization texture and improving the magnetic properties.

[脱炭焼鈍]
最終板厚とした冷延板は、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。脱炭焼鈍温度は700〜900℃の範囲とし、脱炭焼鈍時間は30〜300秒の範囲とする。700℃未満、もしくは30秒未満では、脱炭が不十分であり、一次再結晶粒径が小さすぎるため磁気特性が劣化する。一方、900℃超、もしくは300秒超では、一次再結晶粒径が大きくなりすぎるため、磁気特性が劣化する。
[Decarburizing annealing]
After that, the cold-rolled sheet having the final thickness is subjected to decarburization annealing also serving as primary recrystallization annealing. The decarburization annealing temperature is in the range of 700 to 900 ° C, and the decarburization annealing time is in the range of 30 to 300 seconds. If the temperature is less than 700 ° C. or less than 30 seconds, decarburization is insufficient, and the primary recrystallized particle size is too small, so that the magnetic properties deteriorate. On the other hand, if the temperature exceeds 900 ° C. or 300 seconds, the primary recrystallized grain size becomes too large, so that the magnetic properties deteriorate.

この脱炭焼鈍により表層にサブスケールを形成させる。このサブスケールの酸素目付量は特定されないが、0.5〜1.2g/m2の低い範囲に抑えることが望ましい。サブスケール中のSiOは、低密度なため、鋼板表層と中心層の間に応力を加える働きを持つが、酸素目付量が多いと仕上焼鈍中に表面の圧縮応力により下地被膜の凹凸が激しくなり、鉄損が劣化する。逆に少なすぎると被膜形成量が不足する。 By this decarburizing annealing, a sub-scale is formed on the surface layer. Although the basis weight of oxygen of this subscale is not specified, it is desirable to keep it in a low range of 0.5 to 1.2 g / m 2 . Since SiO 2 in the subscale has a low density, it has a function of applying a stress between the steel sheet surface layer and the center layer. However, if the oxygen basis weight is large, the undercoat film becomes rough due to the compressive stress of the surface during the finish annealing. And iron loss deteriorates. Conversely, if the amount is too small, the amount of the formed film is insufficient.

[焼鈍分離剤の塗布]
上記脱炭焼鈍後に焼鈍分離剤を塗布する。このとき焼鈍分離剤の主剤として少なくとも50質量%以上のMgOを含み、アルカリ土類金属を含む化合物を該金属換算で、焼鈍分離剤中に0.3〜2.2質量%含有させることとする。これは適度に下地被膜に凹凸を形成させるために必要な量であり、多すぎると凹凸が激しくなりすぎて鉄損が劣化する。また、少なすぎると凹凸が少なくなりすぎて被膜密着性が低下する。このため、アルカリ土類金属を含む化合物の含有量は、上記の範囲とする。
[Application of annealing separator]
After the decarburizing annealing, an annealing separating agent is applied. At this time, a compound containing at least 50% by mass or more of MgO as a main component of the annealing separating agent and containing an alkaline earth metal is contained in the annealing separating agent in an amount of 0.3 to 2.2% by mass in terms of the metal. This is an amount necessary for appropriately forming irregularities in the undercoating. If the amount is too large, the irregularities become too severe and iron loss deteriorates. On the other hand, if the amount is too small, the unevenness becomes too small, and the adhesion of the film is reduced. For this reason, the content of the compound containing an alkaline earth metal is in the above range.

アルカリ土類金属の導入方法としては、MgOや他の添加物中に微量に含有させてもよく、別途水酸化物や硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、酸化物、塩化物、硫化物などの化合物として添加したものであってもよい。また、アルカリ土類金属を複数種含有させた場合は、それらの総和を上記範囲内に収めることとする。なお、焼鈍分離剤としては、これら以外にも、従来公知の種々の添加物を用いることができる。例えば、Mn、Mo、Fe、Cu、Zn、Ni、Al、K、Li、Ti、NaおよびSb等の酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物等である。これらは1種のみ添加してもよく、または複数種を混合して添加してもよい。   As a method for introducing the alkaline earth metal, a small amount may be contained in MgO or other additives, and hydroxide, sulfate, carbonate, nitrate, borate, oxide, chloride, sulfide, etc. It may be added as a compound such as a substance. When a plurality of kinds of alkaline earth metals are contained, the sum of them is within the above range. In addition, as an annealing separator, various conventionally known additives can be used in addition to the above. For example, oxides, hydroxides, sulfates, carbonates, nitrates, borates, chlorides and sulfides such as Mn, Mo, Fe, Cu, Zn, Ni, Al, K, Li, Ti, Na and Sb. Things. These may be added alone or in a mixture of a plurality of types.

[仕上焼鈍]
焼鈍分離剤の塗布後、鋼板をコイル状に巻き取った状態で仕上焼鈍を施し、Goss方位に高度に集積させた二次再結晶組織を発達させるとともに、下地被膜(フォルステライト被膜)を形成させる。
[Finish annealing]
After applying the annealing separating agent, finish annealing is performed while the steel sheet is wound in a coil shape to develop a secondary recrystallized structure highly integrated in the Goss orientation and to form a base film (forsterite film). .

仕上焼鈍の焼鈍温度は、二次再結晶の発現のために800℃以上で行うことが好ましく、また、二次再結晶を完了させるために1100℃以下まで行うことが好ましい。その後、フォルステライト被膜を形成させるために、純化処理として、1200℃程度の温度まで昇温させることが好ましい。仕上焼鈍は公知の条件でよく、例えば雰囲気としては、N、HおよびArのいずれか、もしくはこれら2以上の混合雰囲気、純化温度は1100〜1250℃、時間は1〜40時間程度の均熱で行われる。
なお、仕上げ焼鈍後の鋼板には、C:40質量ppm以下、Si:4.5質量%以下およびMn:0.3質量%以下が含まれ、鋼素材にAl、S、SeおよびNが含まれていた場合には、Al:50質量ppm以下、S:20質量ppm以下、Se:20質量ppm以下、N:30質量ppm以下が含まれる。
The annealing temperature in the finish annealing is preferably set to 800 ° C. or higher for the appearance of secondary recrystallization, and is preferably set to 1100 ° C. or lower for completing the secondary recrystallization. Thereafter, in order to form a forsterite film, it is preferable to raise the temperature to about 1200 ° C. as a purification treatment. The finish annealing may be performed under known conditions. For example, the atmosphere may be any one of N 2 , H 2, and Ar, or a mixed atmosphere of two or more of them, the purification temperature is 1100 to 1250 ° C., and the time is about 1 to 40 hours. Done with heat.
The steel sheet after the finish annealing contains C: 40 mass ppm or less, Si: 4.5 mass% or less, and Mn: 0.3 mass% or less, and the steel material contains Al, S, Se, and N. In this case, Al: 50 mass ppm or less, S: 20 mass ppm or less, Se: 20 mass ppm or less, and N: 30 mass ppm or less.

[表面研削]
仕上焼鈍後の鋼板コイルは、その後、鋼板表面に付着した未反応の焼鈍分離剤を除去するための水洗やブラッシング、酸洗等を行う。また、それとともにコーティング液を塗布するまでのいずれかの段階で、軽研削またはブラスト加工のような表面研削を行うことが、本発明では重要である。焼鈍分離剤中にアルカリ土類金属を添加することにより、下地被膜断面の凹凸を高めて被膜密着性が向上する効果が得られるが、一方で、この凹凸が占積率を劣化させるため、研削により、突き出た部分を除去する。
[Surface grinding]
After the finish annealing, the steel sheet coil is subjected to water washing, brushing, pickling or the like to remove the unreacted annealing separating agent attached to the steel sheet surface. Further, it is important in the present invention to perform surface grinding such as light grinding or blasting at any stage before the application of the coating liquid. By adding an alkaline earth metal to the annealing separator, the effect of increasing the unevenness of the cross-section of the undercoating and improving the adhesion of the coating can be obtained. Removes the protruding portion.

表面研削の具体的な方法としては、ナイロンブラシロールに研削砥粒を入れた砥粒ブラシ研削、マイクロブラストやファインショットブラストのようなブラスト加工等あるが、特に手段を問わない。これらの砥粒や粒子の粒径を微細化することにより、表面粗さを低減することができる。また、ブラシ研削ではブラシの回転速度を早めたり複数パス通すこと、ブラスト加工では投射密度を高めたり投射圧力を低下させたりすることによっても表面粗さを低下させることができる。   Specific methods of surface grinding include abrasive brush grinding in which grinding abrasive grains are put into a nylon brush roll, and blast processing such as microblasting and fine shot blasting, but any means is not required. By reducing the particle size of these abrasive grains and particles, the surface roughness can be reduced. The surface roughness can also be reduced by increasing the rotation speed of the brush or passing through a plurality of passes in brush grinding, and by increasing the projection density or reducing the projection pressure in blasting.

上記の手法で下地被膜の表面を削ることにより、フォルステライト被膜の膜厚を最大部で3.50μm以下、最小部で0.05μm以上、膜厚が0.05〜0.5μmの範囲の線分比率を2%以上および膜厚が2〜3.5μmの範囲の線分比率を2%以上に加工する。   By shaving the surface of the undercoat by the above method, the line segment ratio of the forsterite film in the range of 3.50 μm or less at the maximum part, 0.05 μm or more at the minimum part, and 0.05 to 0.5 μm in the minimum part is 2%. The above and the line segment ratio in the range of the film thickness of 2 to 3.5 μm are processed to 2% or more.

[コーティング液の塗布]
上記のように表面研削により下地被膜の表面を整えた後、コーティング液を塗布し、乾燥後に焼付けて最終製品とする。下地被膜の表面調製を行うことにより、耐食性を損なうことなくコーティング被膜の膜厚を薄くすることができ、さらには占積率を改善することができる。層間抵抗が劣化するのを防止し、占積率を改善するため、コーティング被膜の膜厚は2μm以下とする。
上記コーティング液は、電磁鋼板の表面にコーティングするために用いられる公知のコーティング液であればいずれでも良い。
[Application of coating liquid]
After preparing the surface of the base coat by surface grinding as described above, a coating liquid is applied, dried and baked to obtain a final product. By performing the surface preparation of the undercoat, the thickness of the coating can be reduced without impairing the corrosion resistance, and the space factor can be improved. In order to prevent the interlayer resistance from deteriorating and improve the space factor, the thickness of the coating film is set to 2 μm or less.
The coating liquid may be any known coating liquid used for coating the surface of an electromagnetic steel sheet.

[磁区細分化処理]
なお、鉄損をより低減するためには、磁区細分化処理を施すことも可能である。処理方法としては、一般的に実施されているような、二次再結晶が終了した鋼板に溝を形成する方法、レーザー照射や電子ビーム照射により、線状または点状に熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した鋼板等、中間工程の鋼板表面にエッチング加工を施して溝を形成する方法等を用いることができる。
[Magnetic domain subdivision processing]
In order to further reduce iron loss, it is possible to perform a magnetic domain refining process. As a treatment method, a method of forming a groove in a steel plate after secondary recrystallization, which is generally performed, and thermal or impact strain in a linear or dot form by laser irradiation or electron beam irradiation. A method of introducing a groove, a method of forming a groove by etching a surface of a steel sheet in an intermediate step, such as a steel sheet cold-rolled to a final thickness, and the like can be used.

その他の製造条件は、方向性電磁鋼板の一般的な製造方法に従えばよい。
このようにして製造された本発明の方向性電磁鋼板は、高い占積率を有するために、トランスやEIコア等に加工された際に低鉄損が実現でき、しかも耐食性や層間抵抗に優れた鋼板を得ることができる。
Other manufacturing conditions may be in accordance with a general method for manufacturing a grain-oriented electrical steel sheet.
The grain-oriented electrical steel sheet of the present invention thus manufactured has a high space factor, so that it can achieve low iron loss when processed into a transformer or an EI core, and has excellent corrosion resistance and interlayer resistance. Steel sheet can be obtained.

(実施例1)
質量%で、C:0.070%、Si:3.43%、Mn:0.08%、P:0.03%、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブを連続鋳造法で製造し、1250℃の温度に加熱した後、熱間圧延して、板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚が0.27mmの冷延板に仕上げて脱炭焼鈍した。脱炭焼鈍は50vol%H−50vol%N、露点50〜65℃の湿潤雰囲気下で840℃×100秒保持して酸素量を制御した。
(Example 1)
By mass%, a steel slab having a composition of 0.070% C, 3.43% Si, 0.08% Mn, 0.03% P, and the balance Fe and unavoidable impurities was produced by a continuous casting method, After being heated to a temperature, hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm, and subjected to hot-rolled sheet annealing at 1000 ° C x 50 seconds, and then to an intermediate sheet thickness of 1.8 mm by primary cold rolling, After performing intermediate annealing at 1100 ° C. × 20 seconds, secondary cold rolling was performed to finish a cold-rolled sheet having a final sheet thickness of 0.27 mm, followed by decarburizing annealing. The decarburizing annealing was controlled at 840 ° C. for 100 seconds in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 50 to 65 ° C. to control the amount of oxygen.

次いで、焼鈍分離剤として、MgOを主剤とし、TiOをTi換算で2質量%と、各種のアルカリ土類金属を含む化合物を、アルカリ土類金属換算で表1に記載の量を添加した粉体を、スラリー状にして鋼板表面に塗布、乾燥した。さらに1200℃×10時間の純化処理を伴う仕上焼鈍を施し下地被膜を形成した。仕上焼鈍の雰囲気は、純化処理する1200℃保定時はH、昇温時および降温時はNとした。 Next, as an annealing separating agent, a powder containing MgO as a main component, TiO 2 in an amount of 2% by mass in terms of Ti, and various alkaline earth metal-containing compounds in an amount shown in Table 1 in terms of alkaline earth metal was added. The body was formed into a slurry, applied to the surface of a steel sheet, and dried. Further, a finish annealing with a purification treatment at 1200 ° C. for 10 hours was performed to form a base coat. The atmosphere for the finish annealing was H 2 when the temperature was kept at 1200 ° C. for purifying treatment, and N 2 when the temperature was raised and lowered.

上記の処理を行った鋼板の下地被膜に、ファインショットブラストを施して表面状態を変更したのち、コーティング液を塗布した。このとき、塗布量を変更してコーティング膜厚を調整し、塗布、焼付けを行い、最終製品とした。かくして得られた製品板について、耐食性を示す錆発生率、占積率、被膜密着性を示す曲げ剥離径、およびトランス鉄損を、上記した測定手法に従って測定した。その測定結果を表1に示す。なお、下地被膜の各種膜厚についても上記した測定手法に従って測定した。表1から、本発明によれば、優れた被膜密着性と低減された鉄損を有することに加えて、高い占積率を有する方向性電磁鋼板が得られていることがわかる。   After applying a fine shot blast to the base coat of the steel sheet subjected to the above treatment to change the surface state, a coating liquid was applied. At this time, the coating thickness was adjusted by changing the coating amount, and coating and baking were performed to obtain a final product. With respect to the product plate thus obtained, a rust generation rate indicating corrosion resistance, a space factor, a bending peeling diameter indicating film adhesion, and a transformer iron loss were measured according to the above-described measurement methods. Table 1 shows the measurement results. In addition, various film thicknesses of the undercoat were also measured according to the above-described measurement method. From Table 1, it can be seen that according to the present invention, a grain-oriented electrical steel sheet having a high space factor in addition to having excellent coating adhesion and reduced iron loss is obtained.

Figure 0006624180
Figure 0006624180

(実施例2)
表2に記載の成分組成を有し、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブを連続鋳造法で製造し、1380℃の温度に加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終板厚が0.23mmの冷延板に仕上げた。その後、脱炭焼鈍を施した。脱炭焼鈍は、50vol%H−50vol%N、露点55℃の湿潤雰囲気下で840℃×100秒保持した。
(Example 2)
A steel slab having the component composition shown in Table 2 and the remainder having a component composition of Fe and unavoidable impurities was produced by a continuous casting method, heated to a temperature of 1380 ° C., and then hot-rolled to obtain a sheet thickness. A 2.0 mm hot-rolled sheet was subjected to hot-rolled sheet annealing at 1030 ° C. × 10 seconds, and then cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. Thereafter, decarburization annealing was performed. The decarburization annealing was maintained at 840 ° C. for 100 seconds in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 55 ° C.

Figure 0006624180
Figure 0006624180

次いで、焼鈍分離剤として、MgOを主剤とし、TiOをTi換算で2%と、硫酸BaをBa換算で、それぞれ添加量を変更して添加した粉体をスラリー状にして鋼板表面に塗布し、乾燥した後、さらに1220℃×4時間の純化処理を伴う仕上焼鈍を施し下地被膜を形成した。仕上焼鈍の雰囲気は、純化処理する1220℃保定時はH、昇温時および降温時はArとした。 Next, as an annealing separator, MgO is used as a main component, TiO 2 is converted into 2% in terms of Ti, and Ba sulfate is converted in terms of Ba. After drying, the substrate was subjected to finish annealing with a purification treatment at 1220 ° C. for 4 hours to form a base coat. The atmosphere of the finish annealing was H 2 when the temperature was kept at 1220 ° C. for purifying, and Ar when the temperature was raised and lowered.

上記の処理を行った鋼板の下地被膜を、#360の砥粒入りのナイロンブラシロールで研削して表面状態を変更したのち、さらにコーティング液の塗布量を膜厚が1.0μmとなるように調整して塗布、焼付けを行い、最終製品とした。かくして得られた製品板について、耐食性を示す錆発生率、占積率、被膜密着性を示す曲げ剥離径、およびトランス鉄損を、上記した測定手法に従って測定した。その測定結果を表3に示す。なお、下地被膜の各種膜厚についても上記した測定手法に従って測定した。表3から、本発明によれば、優れた被膜密着性と低減されたトランス鉄損を有することに加えて、高い占積率を有する方向性電磁鋼板が得られていることがわかる。
このように、本発明に係る方向性電磁鋼板は、各種の被膜特性を損なうことなく、下地被膜の凹凸を制御して鉄損を低減し、かつ高い占積率を得ることができる。
After changing the surface condition by grinding the undercoat film of the steel plate subjected to the above treatment with a nylon brush roll containing # 360 abrasive grains, further adjust the coating amount of the coating liquid so that the film thickness becomes 1.0 μm. Then, coating and baking were performed to obtain a final product. With respect to the product plate thus obtained, a rust generation rate indicating corrosion resistance, a space factor, a bending peeling diameter indicating film adhesion, and a transformer iron loss were measured according to the above-described measurement methods. Table 3 shows the measurement results. In addition, various film thicknesses of the undercoat were also measured according to the above-described measurement method. Table 3 shows that according to the present invention, in addition to having excellent coating adhesion and reduced transformer iron loss, a grain-oriented electrical steel sheet having a high space factor is obtained.
As described above, the grain-oriented electrical steel sheet according to the present invention can control the unevenness of the base coat, reduce iron loss, and obtain a high space factor without impairing various coat properties.

Figure 0006624180
Figure 0006624180

Claims (6)

質量%で、
C:0.0040%以下、
Si:2.50%以上4.50%以下および
Mn:0.03%以上0.30%以下
を含有し、残部はFeおよび不可避的不純物を有する成分組成を有し、
鋼板の表面上に下地被膜を有し、該下地被膜の上にコーティング被膜を有する方向性電磁鋼板であって、
前記下地被膜と前記コーティング被膜との界面における算術平均粗さRaが0.25μm以下であり、
前記下地被膜は、膜厚最大部が3.50μm以下、膜厚最小部が0.05μm以上、膜厚2.0μm以上3.5μm以下の領域の線分比率が2%以上5.6%以下および膜厚0.05μm以上0.5μm以下の領域の線分比率が2%以上5.3%以下であり、
前記コーティング被膜の膜厚が2μm以下である方向性電磁鋼板。
In mass%,
C: 0.0040% or less,
Si: 2.50% to 4.50% and
Mn: 0.03% or more and 0.30% or less
And the balance has a component composition having Fe and unavoidable impurities,
A grain-oriented electrical steel sheet having a base coat on the surface of a steel sheet and having a coating coat on the base coat,
Arithmetic average roughness Ra at the interface between the undercoat and the coating film is 0.25 μm or less,
The undercoat film has a maximum film thickness of 3.50 μm or less, a minimum film thickness of 0.05 μm or more, and a line segment ratio of 2% or more and 3.5 μm or less in a region of 2.0 μm or more and 3.5 μm or less and a film thickness of 0.05 % or less. The line segment ratio in the region of μm or more and 0.5 μm or less is 2% or more and 5.3% or less ,
A grain-oriented electrical steel sheet having a coating film thickness of 2 μm or less.
質量%で、
C:0.020%以上0.080%以下、
Si:2.50%以上4.50%以下および
Mn:0.03%以上0.30%以下
を含有し、残部はFeおよび不可避的不純物である成分組成を有する鋼素材に、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
該冷延鋼板に脱炭焼鈍を施し、
鋼板の表面に、MgO:50質量%以上およびアルカリ土類金属を金属換算で0.3質量%以上2.2質量%以下を含有する焼鈍分離剤を塗布し、
その後、仕上焼鈍を施して下地被膜を形成し、次いで、前記下地被膜につき、表面の算術平均粗さRaを0.25μm以下、膜厚最大部を3.50μm以下、膜厚最小部を0.05μm以上、膜厚が2.0μm以上3.5μm以下の領域の線分比率を2%以上5.6%以下および膜厚が0.05μm以上0.5μm以下の領域の線分比率を2%以上5.3%以下に調整した後、該下地被膜の表面にコーティング液を塗布、焼付けして、厚みが2μm以下のコーティング被膜を形成する方向性電磁鋼板の製造方法。
In mass%,
C: 0.020% or more and 0.080% or less,
One cold rolling or intermediate annealing is performed on a steel material containing Si: 2.50% or more and 4.50% or less and Mn: 0.03% or more and 0.30% or less, with the balance being Fe and a component composition that is an unavoidable impurity 2 Cold-rolled steel sheet having a final thickness by performing cold rolling more than once,
Decarburizing the cold rolled steel sheet,
An annealing separator containing 50% by mass or more of MgO and 0.3% by mass or more and 2.2% by mass or less of alkaline earth metal in terms of metal is applied to the surface of the steel sheet,
Thereafter, a base coat is formed by performing finish annealing, and then, for the base coat, the arithmetic average roughness Ra of the surface is 0.25 μm or less, the maximum thickness is 3.50 μm or less, and the minimum thickness is 0.05 μm or more. The line segment ratio in the region where the film thickness is 2.0 μm or more and 3.5 μm or less is 2% or more and 5.6% or less, and the line segment ratio in the region where the film thickness is 0.05 μm or more and 0.5 μm or less is 2% or more and 5.3% or less . After the adjustment, a coating solution is applied to the surface of the base coat and baked to form a coating having a thickness of 2 μm or less.
前記成分は、さらに、質量%で
P:0.005%以上0.20%以下
Sb:0.005%以上0.200%以下および
Sn:0.005%以上0.50%以下
のうちの1種または2種以上を含有する、請求項2に記載の方向性電磁鋼板の製造方法。
The component further contains one or more of P: 0.005% or more and 0.20% or less, Sb: 0.005% or more and 0.200% or less, and Sn: 0.005% or more and 0.50% or less by mass%. 3. The method for producing a grain-oriented electrical steel sheet according to item 1.
前記成分組成は、さらに、質量%で、
Al:0.010%以上0.040%以下および
N:0.003%以上0.012%以下
を含有する、請求項2または3に記載の方向性電磁鋼板の製造方法。
The component composition further includes, in mass%,
4. The method for producing a grain-oriented electrical steel sheet according to claim 2, wherein Al: 0.010% to 0.040% and N: 0.003% to 0.012%. 5.
前記成分組成は、さらに、
質量%で、
Se:0.003%以上0.030%以下および/または
S:0.002%以上0.030%以下
を含有する、請求項2から4のいずれかに記載の方向性電磁鋼板の製造方法。
The component composition further comprises:
In mass%,
The method for producing a grain-oriented electrical steel sheet according to any one of claims 2 to 4, comprising Se: 0.003% or more and 0.030% or less and / or S: 0.002% or more and 0.030% or less.
前記成分組成は、さらに、
質量%で、
Ni:0.01%以上1.50%以下、
Cr:0.01%以上0.50%以下、
Cu:0.01%以上0.50%以下、
Bi:0.005%以上0.100%以下、
Mo:0.005%以上0.100%以下、
B:0.0002%以上0.0025%以下、
Te:0.0005%以上0.0100%以下、
Nb:0.001%以上0.010%以下、
V:0.001%以上0.010%以下、
Ti:0.001%以上0.010%以下および
Ta:0.001%以上0.010%以下
のうちから選ばれる1種または2種以上を含有する、請求項2から5のいずれかに記載の方向性電磁鋼板の製造方法。
The component composition further comprises:
In mass%,
Ni: 0.01% or more and 1.50% or less,
Cr: 0.01% or more and 0.50% or less,
Cu: 0.01% or more and 0.50% or less,
Bi: 0.005% or more and 0.100% or less,
Mo: 0.005% or more and 0.100% or less,
B: 0.0002% or more and 0.0025% or less,
Te: 0.0005% or more and 0.0100% or less,
Nb: 0.001% or more and 0.010% or less,
V: 0.001% or more and 0.010% or less,
The method for producing a grain-oriented electrical steel sheet according to any one of claims 2 to 5, comprising one or more selected from among Ti: 0.001% to 0.010% and Ta: 0.001% to 0.010%. .
JP2017202011A 2016-10-18 2017-10-18 Grain-oriented electrical steel sheet and its manufacturing method Active JP6624180B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016204620 2016-10-18
JP2016204620 2016-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019215722A Division JP6825681B2 (en) 2016-10-18 2019-11-28 Electrical steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018066061A JP2018066061A (en) 2018-04-26
JP6624180B2 true JP6624180B2 (en) 2019-12-25

Family

ID=62086762

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017202011A Active JP6624180B2 (en) 2016-10-18 2017-10-18 Grain-oriented electrical steel sheet and its manufacturing method
JP2019215722A Active JP6825681B2 (en) 2016-10-18 2019-11-28 Electrical steel sheet and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019215722A Active JP6825681B2 (en) 2016-10-18 2019-11-28 Electrical steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (2) JP6624180B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176346B1 (en) * 2018-11-30 2020-11-09 주식회사 포스코 Electrical steel sheet and manufacturing method of the same
KR102550567B1 (en) * 2019-01-08 2023-07-04 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet, steel sheet for finish annealing, annealing separator, method for producing grain-oriented electrical steel sheet, and method for producing steel sheet for finish annealing
KR102489904B1 (en) * 2019-01-08 2023-01-18 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet, annealing separator and manufacturing method of grain-oriented electrical steel sheet
WO2021054409A1 (en) * 2019-09-18 2021-03-25 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730410B2 (en) * 1990-09-21 1995-04-05 新日本製鐵株式会社 Method of manufacturing low iron loss unidirectional silicon steel sheet
JP2603170B2 (en) * 1992-02-06 1997-04-23 新日本製鐵株式会社 Method for producing high magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet with excellent workability
JP2673767B2 (en) * 1992-11-27 1997-11-05 新日本製鐵株式会社 Grain-oriented electrical steel sheet having excellent iron core workability and good magnetic properties, and method for producing the same
JP2664323B2 (en) * 1993-02-22 1997-10-15 新日本製鐵株式会社 Unidirectional silicon steel sheet with low iron loss
JPH09137223A (en) * 1995-11-10 1997-05-27 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2000124020A (en) * 1998-08-10 2000-04-28 Kawasaki Steel Corp Unidirectionally-oriented silicon steel plate having superior magnetic properties, and its manufacture
JP2000129357A (en) * 1998-10-29 2000-05-09 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JP2000212649A (en) * 1999-01-26 2000-08-02 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in core loss characteristic
JP3882103B2 (en) * 2000-04-25 2007-02-14 Jfeスチール株式会社 Low iron loss unidirectional electrical steel sheet with tension-applying anisotropic coating
JP4119689B2 (en) * 2002-06-07 2008-07-16 新日本製鐵株式会社 Manufacturing method of bi-directional electrical steel sheet
JP4305040B2 (en) * 2003-05-09 2009-07-29 Jfeスチール株式会社 Method for forming chromeless coating for grain-oriented electrical steel sheet
JP4569281B2 (en) * 2003-12-03 2010-10-27 Jfeスチール株式会社 Annealing separator for grain-oriented electrical steel sheet, method for annealing grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP5228563B2 (en) * 2008-03-25 2013-07-03 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
US10431359B2 (en) * 2013-02-27 2019-10-01 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
RU2621523C1 (en) * 2013-09-19 2017-06-06 ДжФЕ СТИЛ КОРПОРЕЙШН Texture electric steel sheet and method of its production
JP6168173B2 (en) * 2015-01-30 2017-07-26 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP6825681B2 (en) 2021-02-03
JP2020063510A (en) 2020-04-23
JP2018066061A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6168173B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6825681B2 (en) Electrical steel sheet and its manufacturing method
CN111411294A (en) Grain-oriented electromagnetic steel sheet
JP6512412B2 (en) Directional electromagnetic steel sheet and method of manufacturing the same
JP7299511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP7235058B2 (en) Manufacturing method of grain-oriented electrical steel sheet
CN113631734B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP6191568B2 (en) Method for producing grain-oriented electrical steel sheet
JP7269505B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6579078B2 (en) Method for producing grain-oriented electrical steel sheet
JP5287641B2 (en) Method for producing grain-oriented electrical steel sheet
JP6624028B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4810777B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2005264280A (en) Grain-oriented electromagnetic steel sheet having superior stamping property and peeling resistance of coating, and manufacturing method therefor
JP7299512B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7339549B2 (en) Grain-oriented electrical steel sheet with excellent insulation film adhesion without forsterite film
JP7315857B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6341382B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2019085632A (en) Grain-oriented electrical steel sheet and production method for the same
WO2022215709A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
JP7151792B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7230930B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2023195517A1 (en) Grain-oriented electrical steel sheet and formation method for insulating coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6624180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250