JP6191568B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6191568B2
JP6191568B2 JP2014191538A JP2014191538A JP6191568B2 JP 6191568 B2 JP6191568 B2 JP 6191568B2 JP 2014191538 A JP2014191538 A JP 2014191538A JP 2014191538 A JP2014191538 A JP 2014191538A JP 6191568 B2 JP6191568 B2 JP 6191568B2
Authority
JP
Japan
Prior art keywords
annealing
mass
steel sheet
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014191538A
Other languages
Japanese (ja)
Other versions
JP2016060953A (en
Inventor
渡辺 誠
渡辺  誠
高宮 俊人
俊人 高宮
敬 寺島
寺島  敬
龍一 末廣
龍一 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014191538A priority Critical patent/JP6191568B2/en
Publication of JP2016060953A publication Critical patent/JP2016060953A/en
Application granted granted Critical
Publication of JP6191568B2 publication Critical patent/JP6191568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、方向性電磁鋼板の製造方法に関し、具体的には、優れた磁気特性と被膜特性を持つ方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet, and more specifically, to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.

方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁気特性が優れていること、特に鉄損が低いことが求められている。そのために、二次再結晶焼鈍により、鋼板中の結晶粒を[110]<001>方位(いわゆる、ゴス方位)に高度に揃えている。この二次再結晶焼鈍は、引き続く純化焼鈍と共に10日程度の長時間で最高1200℃付近まで昇温するため、通常、コイルに巻いた状態のままバッチ炉で焼鈍する。
この二次再結晶焼鈍中に、鋼板表面にはフォルステライト質の被膜が形成されるが、これは、脱炭焼鈍時に鋼板表面に形成されるSiO2を主体としたサブスケールと、脱炭焼鈍後に塗布したMgOを主剤とする焼鈍分離剤が、2MgO+SiO2→Mg2SiO4の反応式によってフォルステライト質被膜として形成されるものである。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetic properties, particularly low iron loss. For this purpose, crystal grains in the steel sheet are highly aligned in the [110] <001> orientation (so-called Goth orientation) by secondary recrystallization annealing. In this secondary recrystallization annealing, since the temperature is raised to about 1200 ° C. in a long time of about 10 days with the subsequent purification annealing, the annealing is usually performed in a batch furnace while being wound around the coil.
During this secondary recrystallization annealing, a forsterite film is formed on the surface of the steel sheet, which is composed of a subscale mainly composed of SiO 2 formed on the surface of the steel sheet during decarburization annealing, and a decarburization annealing. An annealing separator mainly composed of MgO applied later is formed as a forsterite film by a reaction formula of 2MgO + SiO 2 → Mg 2 SiO 4 .

フォルステライト質被膜は、鋼板に引張り応力を付与することによる磁気特性の改善や、絶縁性、耐食性のために均一で高い密着性を持つことが要求されるが、このようなフォルステライト質被膜を改善する方法としては、これまでにさまざまの技術が提案されてきた。   Forsterite coatings are required to have uniform and high adhesion for improving magnetic properties by applying tensile stress to the steel sheet and for insulation and corrosion resistance. Various techniques have been proposed for improvement.

例えば、特許文献1には、フォルステライト粒子内にAlが固溶し、かつ地鉄と接するフォルステライト粒子内での固溶Alの濃度を地鉄側に向かって増加させることにより、被膜の密着性と張力付与効果を改善する方法が提案されている。   For example, Patent Document 1 discloses that Al is dissolved in forsterite particles, and the concentration of the solid solution Al in the forsterite particles in contact with the ground iron is increased toward the ground iron side, whereby the adhesion of the coating is increased. A method for improving the property and the effect of imparting tension has been proposed.

また、特許文献2にはフォルステライト被膜がMg2SiO4、FeAl2O4、TiNからなることによる好適な磁気特性と被膜特性を得る方法が開示されている。 Patent Document 2 discloses a method for obtaining suitable magnetic characteristics and film characteristics by forming the forsterite film from Mg 2 SiO 4 , FeAl 2 O 4 , and TiN.

さらに、特許文献3には焼鈍分離剤中にコーディエライトを、特許文献4にはRAl2O4型のスピネル型複合酸化物を添加して磁気特性を改善する技術が開示されている。 Further, Patent Document 3 discloses a technique for improving magnetic properties by adding cordierite in an annealing separator and Patent Document 4 by adding RAl 2 O 4 type spinel complex oxide.

特許第3952606号公報Japanese Patent No. 3952606 特許第3562433号公報Japanese Patent No. 3562433 特開平5−140637号公報Japanese Patent Laid-Open No. 5-140637 特開平4−74871号公報JP-A-4-74871

しかし、特許文献1の方法では、フォルステライト粒子内にAlが固溶し、かつ地鉄と接するフォルステライト粒子内での固溶Alの濃度を地鉄側に向かって増加させる条件が極めて難しく、コイル内の一部ではできてもコイル全長全巾でこの条件を達成させることは困難であった。同じく、特許文献2の方法は、FeAl2O4を形成させるものの、FeAl2O4は仕上焼鈍の温度域では不安定であって、MgAl2O4に変化しやすく、コイル全長全巾でこれを生成させることは困難であった。 However, in the method of Patent Document 1, it is extremely difficult to condition that Al is dissolved in the forsterite particles and the concentration of the solid solution Al in the forsterite particles in contact with the ground iron is increased toward the ground iron side. It was difficult to achieve this condition with the full length of the entire coil even if it was possible in a part of the coil. Also, the method of Patent Document 2, although the formation of FeAl 2 O 4, is unstable in the temperature range of FeAl 2 O 4 is the final annealing, easily changed in MgAl 2 O 4, which coil full length full width It was difficult to generate.

他方、特許文献3の方法は、コーディエライトを分離剤に添加して仕上焼鈍中にこれを被膜中に移行させて張力効果を高めることを、特許文献4の方法はスピネル化合物とTiを反応させることを期待しているが、いずれも仕上焼鈍中のコイルの層間雰囲気の不均一さに起因して、コイル全長全巾でこれを達成することは困難であった。   On the other hand, in the method of Patent Document 3, cordierite is added to the separating agent, and this is transferred to the film during finish annealing to enhance the tension effect. The method of Patent Document 4 reacts with the spinel compound and Ti. However, it was difficult to achieve this over the entire length of the coil due to the non-uniformity of the interlayer atmosphere of the coil during finish annealing.

本発明は、従来技術が抱える問題点に鑑みてなされたものであり、焼鈍分離剤に、適正なAl化合物を添加することによって、コイル全長全巾で均一に磁気特性と被膜特性を改善した方向性電磁鋼板を得ることができる製造方法を提案することを目的とする。   The present invention has been made in view of the problems of the prior art, and by adding an appropriate Al compound to the annealing separator, the direction in which the magnetic characteristics and the film characteristics are uniformly improved over the entire length of the coil. It aims at proposing the manufacturing method which can obtain an electrical property electrical steel sheet.

発明者らは、上記問題を解決するために、鋭意検討を重ねた。その結果、焼鈍分離剤にAl化合物を大量に添加しながらも、Alをフォルステライト被膜中に移行させずに、焼鈍分離剤中で保持することによって、コイル全長全巾で均一に磁気特性と被膜特性を改善する方法を見出した。   Inventors repeated earnest examination in order to solve the said problem. As a result, while adding a large amount of an Al compound to the annealing separator, it does not migrate into the forsterite film, but retains it in the annealing separator so that the magnetic properties and the film can be uniformly distributed over the entire length of the coil. We found a way to improve the characteristics.

すなわち、本発明の要旨構成は次のとおりである。
1.成分として、mass%で、C:0.002〜0.10%、Si:2.0〜8.0%、Mn:0.005〜1.0%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍を行う一連の工程からなる方向性電磁鋼板の製造方法において、
上記焼鈍分離剤として、累積90%径を2〜10μmの範囲としたMgO:100質量部に対し、累積50%径を1.5μm以上、ビッカース硬度を16GPa以下としたAl化合物をAl2O3換算で20〜150質量部含むことを特徴とする、方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. As a component, it is mass%, C: 0.002 to 0.10%, Si: 2.0 to 8.0%, Mn: 0.005 to 1.0%, the steel material consisting of Fe and inevitable impurities as the balance is hot-rolled and heated. Decarburization that also serves as the primary recrystallization annealing by forming a rolled sheet and subjecting it to hot-rolled sheet annealing as necessary, followed by cold rolling of the final sheet thickness by cold rolling at least once with intermediate annealing In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps of applying annealing separator to the steel sheet surface and performing finish annealing after annealing.
As the above annealing separator, Mg compound with 90% cumulative diameter in the range of 2-10μm: Al compound with 50% cumulative diameter of 1.5μm or more and Vickers hardness of 16GPa or less for 100 parts by mass is converted to Al 2 O 3 A method for producing a grain-oriented electrical steel sheet, comprising 20 to 150 parts by mass.

2.前記鋼素材の成分組成に加えてさらに、mass%で、Al:0.010〜0.050%およびN:0.003〜0.020%を含有し、あるいは、Al:0.010〜0.050%、N:0.003〜0.020%、Se:0.003〜0.030%および/またはS:0.002〜0.03%を含有することを特徴とする、前記1に記載の方向性電磁鋼板の製造方法。 2. In addition to the component composition of the steel material, mass: Al: 0.010 to 0.050% and N: 0.003 to 0.020%, or Al: 0.010 to 0.050%, N: 0.003 to 0.020%, Se: The method for producing a grain-oriented electrical steel sheet according to 1 above, comprising 0.003% to 0.030% and / or S: 0.002% to 0.03%.

3.前記鋼素材の成分組成に加えてさらに、mass%で、Se:0.003〜0.030%および/またはS:0.002〜0.03%を含有することを特徴とする、前記1に記載の方向性電磁鋼板の製造方法。 3. 2. Production of grain-oriented electrical steel sheet according to 1 above, in addition to the component composition of the steel material, in mass%, Se: 0.003-0.030% and / or S: 0.002-0.03% Method.

4.前記鋼素材の成分組成に加えてさらに、mass%で、Al:0.01%未満およびN:0.0050%未満を含有し、Se:0.003%未満およびS:0.002%未満を含有することを特徴とする、前記1に記載の方向性電磁鋼板の製造方法。 4). In addition to the component composition of the steel material, in mass%, Al: less than 0.01% and N: less than 0.0050%, Se: less than 0.003% and S: less than 0.002%, The manufacturing method of the grain-oriented electrical steel sheet according to 1 above.

5.前記1〜4に記載の鋼素材の成分組成に加えてさらに、mass%で、Ni:0.010〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sb:0.005〜0.50%、Sn;0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.100%、B:0.0002〜0.0025%、Te:0.0005〜0.0100%、Nb:0.0010〜0.0100%、V:0.001〜0.010%およびTa:0.001〜0.010%のうちから選ばれる1種または2種以上を含有することを特徴とする、前記1〜4に記載の方向性電磁鋼板の製造方法。 5. In addition to the component composition of the steel materials described in 1-4 above, in mass%, Ni: 0.010-1.50%, Cr: 0.01-0.50%, Cu: 0.01-0.50%, P: 0.005-0.50%, Sb : 0.005-0.50%, Sn; 0.005-0.50%, Bi: 0.005-0.50%, Mo: 0.005-0.100%, B: 0.0002-0.0025%, Te: 0.0005-0.0100%, Nb: 0.0010-0.0100%, V: One or two or more types selected from 0.001 to 0.010% and Ta: 0.001 to 0.010% are contained.

本発明によれば、焼鈍分離剤中に粒度分布と硬度を適正化したAl化合物を大量添加することによって、優れた磁気特性と被膜特性がコイル全長全巾に亘って付与される。   According to the present invention, excellent magnetic properties and coating properties are imparted over the entire length of the entire coil by adding a large amount of an Al compound whose particle size distribution and hardness are optimized in the annealing separator.

水酸化アルミニウムの添加量と、コイルの鉄損の最小値、最大値をプロットした図である。It is the figure which plotted the addition amount of aluminum hydroxide, and the minimum value and maximum value of the iron loss of a coil.

以下、本発明を具体的に説明する。
まず、本発明を開発する契機となった実験について説明する。
<実験1>
C:0.065mass%、Si:3.44mass%、Mn:0.08mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1410℃に加熱し、熱間圧延して板厚:2.4mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚の1.8mmとし、1120℃×80秒の中間焼鈍を施した後、200℃の温間圧延で最終板厚:0.23mmの冷延板とした。
Hereinafter, the present invention will be specifically described.
First, an experiment that triggered the development of the present invention will be described.
<Experiment 1>
Steel containing C: 0.065 mass%, Si: 3.44 mass%, Mn: 0.08 mass%, made into a steel slab by continuous casting method, heated to 1410 ° C, hot-rolled, and plate thickness: 2.4mm hot-rolled sheet, after 1050 ° C x 60 seconds hot-rolled sheet annealing, primary cold rolled to an intermediate sheet thickness of 1.8mm, after 1120 ° C x 80-second intermediate annealing, A cold rolled sheet having a final thickness of 0.23 mm was obtained by warm rolling at 200 ° C.

次いで、50vol%H2−50vol%N2、露点:55℃の湿潤雰囲気下で840℃×100秒保持する脱炭焼鈍を施した。
その後、MgOを100質量部、酸化チタンを5質量部、水酸化ストロンチウムを3質量部および水酸化カリウムを0.01質量部と固定し、水酸化アルミニウムを0〜200質量部の範囲で種々に変更した焼鈍分離剤を、鋼板表面に塗布して乾燥した。なお、このときに用いた水酸化アルミニウムの平均粒径は4.5μm、ビッカース硬度は9GPa、MgOの累積90%径は5.0μmである。
Next, decarburization annealing was performed in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 55 ° C. held at 840 ° C. for 100 seconds.
Thereafter, 100 parts by mass of MgO, 5 parts by mass of titanium oxide, 3 parts by mass of strontium hydroxide and 0.01 parts by mass of potassium hydroxide were fixed, and aluminum hydroxide was variously changed in the range of 0 to 200 parts by mass. An annealing separator was applied to the steel sheet surface and dried. The average particle diameter of aluminum hydroxide used at this time is 4.5 μm, the Vickers hardness is 9 GPa, and the cumulative 90% diameter of MgO is 5.0 μm.

この後コイル状に巻き取り、二次再結晶焼鈍と水素雰囲気下で1200℃×7時間の純化処理を含む仕上焼鈍を施した後、未反応焼鈍分離剤を除去し、コーティングを塗布し、コーティングの焼付けをかねて平坦化焼鈍を800℃×30秒で行って製品コイルを得た。そして、このコイルの鉄損を長手方向に連続的に測定し、その中で最小値と最大値をそれぞれ求めた。
この結果を図1に示す。
After this, it is wound into a coil, subjected to secondary recrystallization annealing and finish annealing including purification at 1200 ° C for 7 hours in a hydrogen atmosphere, then the unreacted annealing separator is removed, the coating is applied, and the coating is applied. The product coil was obtained by performing the flattening annealing at 800 ° C. for 30 seconds while baking. And the iron loss of this coil was continuously measured in the longitudinal direction, and the minimum value and the maximum value were obtained respectively.
The result is shown in FIG.

同図から、水酸化アルミニウムの添加量を、MgO:100質量部に対して、20〜150質量部とすることにより、安定して良好な磁気特性が得られていることがわかる。水酸化アルミニウムの添加量が少ない場合は、コイル内の最良値の磁気特性は良好であるが、最悪値との差が大きくなった。また、水酸化アルミニウムの添加量が多すぎる場合は、最良値、最悪値とも特性劣化する傾向にあった。このように、水酸化アルミニウムを多量に添加することにより磁気特性のバラツキが低減する理由についてメカニズムを探るため、水酸化アルミニウムを添加した条件で仕上焼鈍後の鋼板の表面被膜の成分分析を行った。   From the figure, it can be seen that by setting the addition amount of aluminum hydroxide to 20 to 150 parts by mass with respect to 100 parts by mass of MgO, good magnetic characteristics are stably obtained. When the amount of aluminum hydroxide added was small, the best magnetic properties in the coil were good, but the difference from the worst value was large. In addition, when the amount of aluminum hydroxide added is too large, characteristics tend to deteriorate both in the best value and the worst value. Thus, in order to investigate the mechanism of why the variation in magnetic properties is reduced by adding a large amount of aluminum hydroxide, the component analysis of the surface coating on the steel sheet after finish annealing was performed under the condition of adding aluminum hydroxide. .

その結果、焼鈍分離剤中に水酸化アルミニウムを添加しても、この中のアルミは被膜中に移行していないことが確認された。また、仕上焼鈍後の未反応焼鈍分離剤を調査したところ、未反応分離剤はMgAl2O4が形成されていた。 As a result, it was confirmed that even when aluminum hydroxide was added to the annealing separator, the aluminum contained therein did not migrate into the coating. Moreover, when the unreacted annealing separator after the finish annealing was investigated, MgAl 2 O 4 was formed in the unreacted separating agent.

以上の点から、アルミ化合物を添加することによる磁気特性のバラツキ改善効果について、発明者らは、以下のとおり考えた。
一般に仕上焼鈍はコイル状に鋼板を巻いた状態で行うため、コイル外巻部と中巻部で温度分布が生じる。これによりコイル内部で面圧が高まり、層間の隙間が狭くなる。その結果、層間雰囲気のガス流通性が抑制され、磁気特性が劣化することがある。
From the above points, the inventors considered the effect of improving variation in magnetic properties by adding an aluminum compound as follows.
In general, finish annealing is performed in a state in which a steel sheet is wound in a coil shape, and thus a temperature distribution is generated in the outer coil winding portion and the middle winding portion. This increases the surface pressure inside the coil and narrows the gap between the layers. As a result, the gas flowability of the interlayer atmosphere is suppressed, and the magnetic characteristics may be deteriorated.

しかし、焼鈍分離剤にアルミ化合物を添加すると、仕上焼鈍中にスピネル(MgAl2O4)が焼鈍分離剤の中で合成される。このスピネルは、マグネシアよりも低密度であるため、焼鈍途中でコイル焼き締りによる層間雰囲気の流通性を阻害することなく、水和水の排出などの働きを持つ。その結果、鋼板内部の析出物が酸化により分解されることなく、結晶粒成長抑制力が保持されるため、磁気特性が向上する。 However, when an aluminum compound is added to the annealing separator, spinel (MgAl 2 O 4 ) is synthesized in the annealing separator during finish annealing. Since this spinel has a lower density than magnesia, the spinel has a function of discharging hydrated water and the like without hindering the circulation of the interlayer atmosphere due to coil tightening during annealing. As a result, since the precipitates inside the steel sheet are not decomposed by oxidation and the crystal grain growth inhibitory force is maintained, the magnetic properties are improved.

なお、上記焼鈍分離剤で重要なのが、Al化合物の累積50%径を1.5μm以上とすると共に、MgOの累積90%径を2〜10μmと低めに抑えることである。
Al化合物の累積50%径を大きくするのは、Alの被膜中への移行を防ぐためである。粒径が小さいと、化合物中のAlイオンの拡散が進みすぎて、被膜中に拡散してしまい、鋼板間の層間を確保するという目的が得られなくなる。
In addition, what is important in the above annealing separator is to keep the cumulative 50% diameter of the Al compound to 1.5 μm or more and to keep the cumulative 90% diameter of MgO as low as 2 to 10 μm.
The reason why the cumulative 50% diameter of the Al compound is increased is to prevent migration of Al into the coating. When the particle size is small, the diffusion of Al ions in the compound proceeds excessively and diffuses into the coating, and the purpose of securing the interlayer between the steel sheets cannot be obtained.

他方、MgOの累積90%径を低めにするのは、焼鈍分離剤の厚みを厚くして巻き取ったコイルの鋼板間の隙間を確保するためである。すなわち、この値が大きすぎると、微細なMgO粒子やAl化合物粒子が粗大MgO粒子の隙間に入り込み、焼鈍分離剤が緻密に充填されて却って隙間が狭くなる。MgOとAl化合物の粒子サイズのバランスを保つことにより、鋼板間の隙間が確保できるのである。
ここで、累積90%径および累積50%径とは、レーザー回折式粒度分布計で測定した粒子径の、小さい方から数えて累積90%に相当する粒子径および累積50%に相当する粒子径である。なお、累積50%径は、粒子の平均径に相当する。
On the other hand, the reason why the cumulative 90% diameter of MgO is lowered is to secure a gap between the steel sheets of the coil wound by increasing the thickness of the annealing separator. That is, if this value is too large, fine MgO particles and Al compound particles enter the gaps between the coarse MgO particles, and the annealing separation agent is densely filled and the gaps are narrowed. By maintaining the particle size balance of MgO and Al compound, a gap between the steel plates can be secured.
Here, the cumulative 90% diameter and the cumulative 50% diameter are the particle diameters corresponding to 90% cumulative and 50% cumulative particle diameters counted from the smallest of the particle diameters measured with a laser diffraction particle size distribution meter. It is. The 50% cumulative diameter corresponds to the average particle diameter.

次に、本発明を適用する方法性電磁鋼板の鋼素材(スラブ)が有すべき成分組成と、好ましい成分組成について説明する。なお、以下に示す鋼板成分の残部は、Feおよび不可避的不純物からなる。
C:0.002〜0.10mass%
Cは、0.002mass%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなど、製造に支障を来たす欠陥を生ずるようになる。一方、0.10mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.002〜0.10mass%の範囲とするのが好ましい。より好ましくは0.010〜0.080mass%の範囲である。
Next, the component composition that the steel material (slab) of the method electrical steel sheet to which the present invention is applied should have and a preferable component composition will be described. In addition, the remainder of the steel plate component shown below consists of Fe and an unavoidable impurity.
C: 0.002 to 0.10 mass%
If C is less than 0.002 mass%, the grain boundary strengthening effect due to C is lost, and defects such as cracks in the slab are produced. On the other hand, if it exceeds 0.10 mass%, it will be difficult to reduce to 0.005 mass% or less where demagnetization annealing does not cause magnetic aging. Therefore, C is preferably in the range of 0.002 to 0.10 mass%. More preferably, it is the range of 0.010-0.080 mass%.

Si:2.0〜8.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減すのに必要な元素である。上記効果は、2.0mass%未満では十分ではなく、一方、8.0mass%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.0〜8.0mass%の範囲とするのが好ましい。より好ましくは2.5〜4.5mass%の範囲である。
Si: 2.0-8.0mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.0 mass%, it is not sufficient. On the other hand, if it exceeds 8.0 mass%, the workability deteriorates and it becomes difficult to produce by rolling. Therefore, Si is preferably in the range of 2.0 to 8.0 mass%. More preferably, it is the range of 2.5-4.5 mass%.

Mn:0.005〜1.0mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.005mass%未満では十分ではなく、一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とするのが好ましい。より好ましくは0.02〜0.20mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.005 mass%, it is not sufficient. On the other hand, if it exceeds 1.0 mass%, the magnetic flux density of the product plate decreases. Therefore, Mn is preferably in the range of 0.005 to 1.0 mass%. More preferably, it is the range of 0.02-0.20 mass%.

上記Si,CおよびMn以外の成分については、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とに分けられる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010〜0.050mass%、N:0.003〜0.020mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用する場合には、前述した量のMnと、S:0.002〜0.030mass%およびSe:0.003〜0.030mass%のうちの1種または2種を含有させることが好ましい。それぞれ添加量が、上記下限値より少ないと、インヒビター効果が十分に得られない一方で、上限値を超えると、インヒビター成分がスラブ加熱時に未固溶で残存し、磁気特性の低下をもたらすからである。なお、AlN系とMnS・MnSe系のインヒビターは上記範囲内で併用して用いてもよい。
About components other than the said Si, C, and Mn, in order to produce secondary recrystallization, it is divided into the case where an inhibitor is utilized, and the case where it does not.
First, in the case of using an inhibitor to cause secondary recrystallization, for example, when using an AlN-based inhibitor, Al and N are Al: 0.010 to 0.050 mass%, N: 0.003 to 0.020 mass%, respectively. It is preferable to make it contain in the range. Moreover, when utilizing a MnS * MnSe type | system | group inhibitor, it is preferable to contain 1 type or 2 types of Mn of the amount mentioned above, and S: 0.002-0.030mass% and Se: 0.003-0.030mass%. . If the added amount is less than the above lower limit value, the inhibitor effect cannot be sufficiently obtained, whereas if the upper limit value is exceeded, the inhibitor component remains undissolved during slab heating, resulting in a decrease in magnetic properties. is there. AlN and MnS / MnSe inhibitors may be used in combination within the above ranges.

他方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%未満、N:0.0050mass%未満、S:0.002mass%未満およびSe:0.003mass%未満に低減した鋼素材を用いるのが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the contents of Al, N, S and Se, which are the above-described inhibitor forming components, are reduced as much as possible, Al: less than 0.01 mass%, N: It is preferable to use a steel material reduced to less than 0.0050 mass%, S: less than 0.002 mass%, and Se: less than 0.003 mass%.

本発明の方向性電磁鋼板における上記成分以外に、磁気特性の改善を目的として、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を適宜添加してもよい。   In addition to the above components in the grain-oriented electrical steel sheet of the present invention, Ni: 0.010-1.50 mass%, Cr: 0.01-0.50 mass%, Cu: 0.01-0.50 mass%, P: 0.005-0.50 for the purpose of improving magnetic properties. mass%, Sb: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, Mo: 0.005-0.100 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.0100 mass% Nb: 0.0010 to 0.0100 mass%, V: 0.001 to 0.010 mass%, and Ta: 0.001 to 0.010 mass% may be added as appropriate.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を、常法の精錬プロセスで溶製した後、従来公知の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造して、鋼素材としてもよい。上記スラブ等は、常法に従い、例えば、インヒビター成分を含有する場合には、1400℃程度まで加熱し、一方、インヒビター成分を含まない場合は、1300℃以下の温度に加熱した後、熱間圧延に供する。なお、インヒビター成分を含有しない場合には、鋳造後、加熱することなく直ちに熱間圧延してもよい。また、薄鋳片の場合には、熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進めてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
After melting the steel having the above-described component composition by a conventional refining process, a steel material (slab) may be produced by a conventionally known ingot-bundling rolling method or continuous casting method, or A thin cast slab having a thickness of 100 mm or less may be manufactured by direct casting to produce a steel material. The slab, etc., according to a conventional method, for example, when containing an inhibitor component, is heated to about 1400 ° C., whereas when not containing an inhibitor component, after heating to a temperature of 1300 ° C. or less, hot rolling To serve. In addition, when not containing an inhibitor component, you may hot-roll immediately after casting, without heating. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the subsequent process may be performed as it is.

次いで、熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。熱延焼鈍を施す場合の熱延板焼鈍の焼鈍温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶の発達が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり、整粒の一次再結晶組織を得ることが難しくなるからである。   Next, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary. In order to obtain good magnetic properties, the annealing temperature of hot-rolled sheet annealing in the case of performing hot-rolling annealing is preferably in the range of 800 to 1150 ° C. If it is less than 800 degreeC, the band structure formed by hot rolling will remain, it will become difficult to obtain the primary recrystallized structure of grain size, and the development of secondary recrystallization will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it becomes difficult to obtain a primary recrystallized structure of sized particles.

熱延後あるいは熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに、一次再結晶組織におけるGoss核が減少して製品板の磁気特定が低下する傾向がある。一方、1200℃を超えると、熱延板焼鈍のときと同様、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなるからである。   The hot-rolled sheet after hot-rolling or after hot-rolled sheet annealing is subjected to one or more cold rollings or two or more cold-rolling sandwiching the intermediate annealing to form a cold-rolled sheet having a final thickness. The annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. When the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing tend to be finer, and the Gos nuclei in the primary recrystallized structure tend to decrease and the magnetic characteristics of the product plate tend to decrease. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains become too coarse as in the case of hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of grain size.

また、最終板厚とする冷間圧延(最終冷間圧延)は、冷間圧延時の鋼板温度を100〜300℃に上昇させて行うことや、冷間圧延の途中で100〜300℃の温度で時効処理を1回または複数回施すことが、一次再結晶集合組織を改善し、磁気特性を向上させるのに有効である。   In addition, cold rolling (final cold rolling) with a final sheet thickness is performed by increasing the steel plate temperature during cold rolling to 100 to 300 ° C, or at a temperature of 100 to 300 ° C during the cold rolling. In order to improve the primary recrystallization texture and to improve the magnetic properties, it is effective to apply the aging treatment once or plural times.

最終板厚とした冷延板は、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。温度は700〜900℃、時間は30〜300秒の範囲とする。700℃未満、もしくは30秒未満では、脱炭が不十分となったり一次再結晶粒径が小さすぎるため磁気特性が劣化する一方で、900℃を超えたり300秒を超えたりすると、一次粒径が大きくなりすぎて、やはり磁気特性が劣化する。   The cold-rolled sheet having the final thickness is then subjected to decarburization annealing that also serves as primary recrystallization annealing. The temperature is 700 to 900 ° C. and the time is 30 to 300 seconds. If it is less than 700 ° C or less than 30 seconds, decarburization will be insufficient or the primary recrystallized grain size will be too small and the magnetic properties will deteriorate. Becomes too large, and the magnetic characteristics deteriorate.

脱炭焼鈍後に焼鈍分離剤を塗布するが、この焼鈍分離剤を工夫することが本発明の最も重要な点である。
すなわち、焼鈍分離剤には累積90%径が2〜10μmのMgO:100質量部に対し、累積50%径が1.5μm以上、ビッカース硬度が16GPa以下のAl化合物をAl2O3換算で20〜150質量部添加するのが、本発明の最も大きな特徴である。
An annealing separator is applied after decarburization annealing, and it is the most important point of the present invention to devise this annealing separator.
That is, in the annealing separator, an Al compound having a cumulative 50% diameter of 1.5 μm or more and a Vickers hardness of 16 GPa or less is 20 to 20% in terms of Al 2 O 3 with respect to 100 parts by mass of MgO having a cumulative 90% diameter of 2 to 10 μm. The addition of 150 parts by mass is the greatest feature of the present invention.

Al化合物の添加量が20質量部未満であると本発明の効果が得られない一方で、150質量部より多いと、MgOの相対的な分量が少なくなりすぎて被膜形成不良となり、これに連動して磁気特性も劣化するからである。
また、Al化合物の累積50%径が1.5μm未満では、Alが被膜中に浸入してしまったり、MgOの粒子の隙間にAl化合物が入り込んで、Al化合物の充填率が高くなりすぎ、仕上焼鈍中の層間の隙間が確保できなくなったりする。そのため、Al化合物の累積50%径は1.5μm以上とする。なお、Al化合物の累積50%径の上限は特に制限されないものの、工業的には、50μm程度である。
If the amount of Al compound added is less than 20 parts by mass, the effect of the present invention cannot be obtained. On the other hand, if it exceeds 150 parts by mass, the relative amount of MgO becomes too small, resulting in poor film formation. This is because the magnetic characteristics are also deteriorated.
Also, if the 50% cumulative diameter of Al compound is less than 1.5μm, Al will infiltrate into the coating or Al compound will enter the gaps between MgO particles, the filling rate of Al compound will be too high, and finish annealing It may become impossible to secure a gap between the inner layers. Therefore, the 50% cumulative diameter of the Al compound is set to 1.5 μm or more. Although the upper limit of the 50% cumulative diameter of the Al compound is not particularly limited, it is about 50 μm industrially.

また、MgO粒子の累積90%径が2μm未満であると、粒径が微細で、粒度分布が狭くなりすぎるために、MgOがフロキュレートな凝集を起こして、仕上焼鈍前の充填率が低くなっても、焼鈍中にMgO粒子の焼結によって焼き締まりが生じ、最終的な充填率はかえって高くなってしまう。一方、MgO粒子の累積90%径が10μmを超えると、粗大粒の隙間にAl化合物が入り込んでAl化合物の充填率が高まり、仕上焼鈍時の隙間が確保できなくなる。   Also, if the cumulative 90% diameter of MgO particles is less than 2 μm, the particle size is too fine and the particle size distribution becomes too narrow, causing MgO to flocculate and lower the filling rate before finish annealing. However, the sintering of MgO particles occurs during annealing, and the final filling rate becomes rather high. On the other hand, when the cumulative 90% diameter of MgO particles exceeds 10 μm, the Al compound enters the gaps between the coarse grains, the Al compound filling rate increases, and it becomes impossible to secure the gaps during finish annealing.

本発明におけるAl化合物のビッカース硬度は16GPa以下とする。16GPaを超えると、仕上焼鈍中に面圧で鋼板に押し疵を作る原因となるからである。なお、Al化合物のビッカース硬度の下限は特に制限されないものの、工業的には、1GPa程度である。   The Vickers hardness of the Al compound in the present invention is 16 GPa or less. This is because if it exceeds 16 GPa, it will cause the steel sheet to be pressed with surface pressure during finish annealing. Although the lower limit of the Vickers hardness of the Al compound is not particularly limited, it is industrially about 1 GPa.

また、焼鈍分離剤には、MgOとAl化合物以外にも、従来公知の種々の添加物を用いることができる。たとえば、Ca,Sr,Ba,Ti,Mn,Mo,Fe,Cu,Zn,NiおよびAlの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物、硫化物等である。これらは1種のみでも、または複数混合のいずれでも使用可能である。   In addition to MgO and Al compounds, various conventionally known additives can be used for the annealing separator. For example, Ca, Sr, Ba, Ti, Mn, Mo, Fe, Cu, Zn, Ni and Al oxides, hydroxides, sulfates, carbonates, nitrates, borates, chlorides, sulfides, etc. is there. These can be used either alone or in combination.

焼鈍分離剤塗布後、鋼板をコイル状に巻き取った状態で仕上焼鈍を施し、Goss方位に高度に集積させた二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させる。
仕上焼鈍の焼鈍温度は、二次再結晶を発現のためには800℃以上で行うことが、また、二次再結晶を完了させるためには1100℃まで行うことが好ましい。その後フォルステライト被膜を形成させるために、引き続き1200℃程度の温度まで昇温するのが好ましい。
After the annealing separator is applied, finish annealing is performed in a state where the steel sheet is wound in a coil shape, and a secondary recrystallized structure highly accumulated in the Goss orientation is developed and a forsterite film is formed.
The annealing temperature of the finish annealing is preferably performed at 800 ° C. or more for the purpose of achieving secondary recrystallization and to 1100 ° C. for completing the secondary recrystallization. Thereafter, in order to form a forsterite film, it is preferable that the temperature is subsequently increased to about 1200 ° C.

仕上焼鈍後の鋼板コイルは、その後、鋼板表面に付着した未反応の焼鈍分離剤を除去するための水洗やブラッシング、酸洗等を行った後、平坦化焼鈍を施して最終製品とする。   The steel plate coil after the finish annealing is then subjected to flattening annealing after performing water washing, brushing, pickling, etc. to remove the unreacted annealing separator adhering to the steel plate surface to obtain a final product.

なお、鉄損をより低減するためには、磁区細分化処理を施すことが好ましい。処理方法としては、一般的に実施されているような、最終製品板に溝を形成したり、レーザー照射やプラズマ照射により、線状または点状に熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した鋼板等、中間工程の鋼板表面にエッチング加工を施して溝を形成したりする方法等を用いることができる。   In order to further reduce the iron loss, it is preferable to perform a magnetic domain refinement process. As a processing method, a method of forming a groove in a final product plate or introducing a thermal strain or a shock strain in a linear or dotted manner by laser irradiation or plasma irradiation, which is generally performed, a final plate For example, a method of forming a groove by etching the steel sheet surface in an intermediate process, such as a steel sheet cold-rolled to a thickness, can be used.

〔実施例1〕
C:0.070mass%、Si:3.43mass%、Mn:0.08mass%、Al:0.025mass%、Se:0.025mass%およびN:0.01mass%含有し、残部Feおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1420℃の温度に加熱した後、熱間圧延して、板厚:2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延で最終板厚を0.23mmの冷延板に仕上げて脱炭焼鈍した。脱炭焼鈍は50vol%H2−50vol%N2、露点:55℃の湿潤雰囲気下で840℃×100秒保持した。
[Example 1]
C: 0.070mass%, Si: 3.43mass%, Mn: 0.08mass%, Al: 0.025mass%, Se: 0.025mass% and N: 0.01mass% Containing steel slab consisting of the remainder Fe and inevitable impurities Manufactured by a casting method, heated to a temperature of 1420 ° C, hot-rolled to a hot-rolled sheet with a thickness of 2.4 mm, subjected to hot-rolled sheet annealing at 1000 ° C for 50 seconds, and then primary cold After rolling to an intermediate thickness of 1.8 mm by rolling and intermediate annealing at 1100 ° C. for 20 seconds, a final cold rolled sheet with a final thickness of 0.23 mm was finished by secondary cold rolling and decarburized annealing. Decarburization annealing was held at 840 ° C. for 100 seconds in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 , dew point: 55 ° C.

次いで、焼鈍分離剤として各種累積90%径を持つMgO:100質量部に対し、TiO2を5質量部と各種Al化合物の添加量を変更して添加した粉体をスラリー状にして鋼板表面に塗布し、乾燥したのち、さらに1200℃×10時間の純化処理を伴う仕上焼鈍を施した。なお、仕上焼鈍の雰囲気を、純化処理する1200℃保定時はH2、昇温時および降温時はN2とした。
このときの磁気特性の測定結果を表1に示す。
Next, with respect to 100 parts by mass of MgO having a cumulative 90% diameter as an annealing separator, 5 parts by mass of TiO 2 and various amounts of added Al compounds are changed into a slurry form on the steel sheet surface. After coating and drying, finish annealing accompanied by a purification treatment at 1200 ° C. for 10 hours was further performed. The atmosphere of the finish annealing was H 2 when kept at 1200 ° C. for purification, and N 2 when raising and lowering the temperature.
Table 1 shows the measurement results of the magnetic properties at this time.

Figure 0006191568
Figure 0006191568

同表から、本発明を適用することで良好な磁気特性がばらつきなく均一に達成できていることがわかる。   From the table, it can be seen that by applying the present invention, good magnetic characteristics can be achieved uniformly without variation.

〔実施例2〕
表2に記載の成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1380℃の温度に加熱した後、熱間圧延して板厚:2.0mmの熱延板とし、1030℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終板厚が0.23mmの冷延板に仕上げた。その後、脱炭焼鈍を施した。脱炭焼鈍は、50vol%H2−50vol%N2、露点:55℃の湿潤雰囲気下で840℃×100秒保持した。次いで、累積90%径が5.0μmのMgO:100質量部に対して、硫酸ストロンチウムを2質量部と水酸化リチウムを0.2質量部、累積50%径(平均粒径):3.2μm、ビッカース硬度1GPaのAl(OH)3を2質量部または80質量部添加した焼鈍分離剤を鋼板表面に塗布、乾燥した後、さらに1220℃×4時間の純化処理を伴う仕上焼鈍を施した。なお、仕上焼鈍の雰囲気を、純化処理する1220℃保定時はH2、昇温時および降温時はArとした。
上記のようにして得た仕上焼鈍コイルの磁気特性を、実施例1と同様の方法で評価した。
評価結果を表2に併記する。
[Example 2]
A steel slab having the composition shown in Table 2 and the balance consisting of Fe and inevitable impurities is manufactured by a continuous casting method, heated to a temperature of 1380 ° C., and then hot-rolled to obtain a sheet thickness of 2.0 mm. A hot-rolled sheet was subjected to hot-rolled sheet annealing at 1030 ° C. for 10 seconds, followed by cold rolling to finish a cold-rolled sheet having a final sheet thickness of 0.23 mm. Thereafter, decarburization annealing was performed. Decarburization annealing was held at 840 ° C. for 100 seconds in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 and dew point: 55 ° C. Next, MgO with a cumulative 90% diameter of 5.0 μm: 100 parts by mass of strontium sulfate and 2 parts by mass of lithium hydroxide, cumulative 50% diameter (average particle diameter): 3.2 μm, Vickers hardness of 1 GPa An annealing separator containing 2 parts by mass or 80 parts by mass of Al (OH) 3 was applied to the surface of the steel sheet and dried, followed by a final annealing with a purification treatment at 1220 ° C. for 4 hours. Note that the atmosphere of the finish annealing was H 2 at the time of 1220 ° C. in which the purification treatment was performed, and Ar at the time of temperature increase and decrease.
The magnetic properties of the finish annealing coil obtained as described above were evaluated in the same manner as in Example 1.
The evaluation results are also shown in Table 2.

Figure 0006191568
Figure 0006191568

同表から、本発明を満足する成分を持つコイルは、焼鈍分離剤に適正な粒径と硬度のAl化合物を添加することによって、優れた磁気特性がばらつきなく得られることがわかる。   It can be seen from the table that the coil having the components satisfying the present invention can obtain excellent magnetic characteristics without variation by adding an Al compound having an appropriate particle size and hardness to the annealing separator.

Claims (5)

成分として、mass%で、C:0.002〜0.10%、Si:2.0〜8.0%、Mn:0.005〜1.0%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍を行う一連の工程からなる方向性電磁鋼板の製造方法において、
上記焼鈍分離剤として、累積90%径を2〜10μmの範囲としたMgO:100質量部に対し、累積50%径を1.5μm以上、ビッカース硬度を16GPa以下としたAl化合物をAl2O3換算で20〜150質量部含むことを特徴とする、方向性電磁鋼板の製造方法。
As a component, it is mass%, C: 0.002 to 0.10%, Si: 2.0 to 8.0%, Mn: 0.005 to 1.0%, the steel material consisting of Fe and inevitable impurities as the balance is hot-rolled and heated. Decarburization that also serves as the primary recrystallization annealing by forming a rolled sheet and subjecting it to hot-rolled sheet annealing as necessary, followed by cold rolling of the final sheet thickness by cold rolling at least once with intermediate annealing In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps of applying annealing separator to the steel sheet surface and performing finish annealing after annealing.
As the above annealing separator, Mg compound with 90% cumulative diameter in the range of 2-10μm: Al compound with 50% cumulative diameter of 1.5μm or more and Vickers hardness of 16GPa or less for 100 parts by mass is converted to Al 2 O 3 A method for producing a grain-oriented electrical steel sheet, comprising 20 to 150 parts by mass.
前記鋼素材の成分組成に加えてさらに、mass%で、Al:0.010〜0.050%およびN:0.003〜0.020%を含有し、あるいは、Al:0.010〜0.050%、N:0.003〜0.020%、Se:0.003〜0.030%および/またはS:0.002〜0.03%を含有することを特徴とする、請求項1に記載の方向性電磁鋼板の製造方法。   In addition to the component composition of the steel material, mass: Al: 0.010 to 0.050% and N: 0.003 to 0.020%, or Al: 0.010 to 0.050%, N: 0.003 to 0.020%, Se: The method for producing a grain-oriented electrical steel sheet according to claim 1, comprising 0.003 to 0.030% and / or S: 0.002 to 0.03%. 前記鋼素材の成分組成に加えてさらに、mass%で、Se:0.003〜0.030%および/またはS:0.002〜0.03%を含有することを特徴とする、請求項1に記載の方向性電磁鋼板の製造方法。   The grain-oriented electrical steel sheet according to claim 1, further comprising, in addition to the component composition of the steel material, mass%, Se: 0.003-0.030% and / or S: 0.002-0.03%. Production method. 前記鋼素材の成分組成に加えてさらに、mass%で、Al:0.01%未満およびN:0.0050%未満を含有し、Se:0.003%未満およびS:0.002%未満を含有することを特徴とする、請求項1に記載の方向性電磁鋼板の製造方法。   In addition to the component composition of the steel material, in mass%, Al: less than 0.01% and N: less than 0.0050%, Se: less than 0.003% and S: less than 0.002%, The manufacturing method of the grain-oriented electrical steel sheet according to claim 1. 前記鋼素材の成分組成に加えてさらに、mass%で、Ni:0.010〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sb:0.005〜0.50%、Sn;0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.100%、B:0.0002〜0.0025%、Te:0.0005〜0.0100%、Nb:0.0010〜0.0100%、V:0.001〜0.010%およびTa:0.001〜0.010%のうちから選ばれる1種または2種以上を含有することを特徴とする、請求項1〜4の何れか1項に記載の方向性電磁鋼板の製造方法。 In addition to the composition of the steel material, mass: Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Sn: 0.005 to 0.50%, Bi: 0.005 to 0.50%, Mo: 0.005 to 0.100%, B: 0.0002 to 0.0025%, Te: 0.0005 to 0.0100%, Nb: 0.0010 to 0.0100%, V: 0.001 to 0.010% and Ta The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 4, further comprising one or more selected from 0.001 to 0.010%.
JP2014191538A 2014-09-19 2014-09-19 Method for producing grain-oriented electrical steel sheet Active JP6191568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014191538A JP6191568B2 (en) 2014-09-19 2014-09-19 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014191538A JP6191568B2 (en) 2014-09-19 2014-09-19 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2016060953A JP2016060953A (en) 2016-04-25
JP6191568B2 true JP6191568B2 (en) 2017-09-06

Family

ID=55797207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014191538A Active JP6191568B2 (en) 2014-09-19 2014-09-19 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6191568B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6572956B2 (en) * 2016-10-19 2019-09-11 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101909218B1 (en) 2016-12-21 2018-10-17 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
JP7196622B2 (en) * 2019-01-16 2022-12-27 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
CN110277238B (en) * 2019-07-16 2021-03-12 山东精创磁电产业技术研究院有限公司 Soft magnetic composite material with high saturation magnetic flux density and high strength and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138021A (en) * 1979-04-11 1980-10-28 Nippon Steel Corp Manufacture of annealing separation agent for electromagnetic steel plate
JPH04341519A (en) * 1990-04-13 1992-11-27 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having superior iron loss
JPH0474871A (en) * 1990-07-13 1992-03-10 Kawasaki Steel Corp Separating agent for annealing for grain-oriented silicon steel sheet
JPH05140637A (en) * 1991-11-18 1993-06-08 Kawasaki Steel Corp Separation agent for annealing for grain-oriented silicon steel plate

Also Published As

Publication number Publication date
JP2016060953A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP6168173B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2878687B1 (en) Method for producing grain-oriented electrical steel sheet
CN107849656B (en) Method for producing grain-oriented electromagnetic steel sheet
JP5854233B2 (en) Method for producing grain-oriented electrical steel sheet
EP3144400B1 (en) Method for producing grain-oriented electromagnetic steel sheet
KR101620763B1 (en) Grain-oriented electrical steel sheet and method of producing the same
EP2963131B1 (en) Method for producing grain-oriented electrical steel sheet
EP3144399B1 (en) Method for producing grain-oriented electrical steel sheet
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
EP3214188B1 (en) Production method for oriented grain-electromagnetic steel sheet
JP6825681B2 (en) Electrical steel sheet and its manufacturing method
KR102542693B1 (en) Grain-oriented electrical steel sheet and method for producing same
JP6191568B2 (en) Method for producing grain-oriented electrical steel sheet
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP6579078B2 (en) Method for producing grain-oriented electrical steel sheet
JP2011195875A (en) Method for producing grain-oriented magnetic steel sheet
JP4810777B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP2019085632A (en) Grain-oriented electrical steel sheet and production method for the same
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
CN116940695A (en) Method for producing oriented electrical steel sheet, and hot-rolled steel sheet for oriented electrical steel sheet
JP2016084540A (en) Method of producing grain oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250