JP2019085632A - Grain-oriented electrical steel sheet and production method for the same - Google Patents

Grain-oriented electrical steel sheet and production method for the same Download PDF

Info

Publication number
JP2019085632A
JP2019085632A JP2017216673A JP2017216673A JP2019085632A JP 2019085632 A JP2019085632 A JP 2019085632A JP 2017216673 A JP2017216673 A JP 2017216673A JP 2017216673 A JP2017216673 A JP 2017216673A JP 2019085632 A JP2019085632 A JP 2019085632A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
less
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017216673A
Other languages
Japanese (ja)
Inventor
渡邉 誠
Makoto Watanabe
誠 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017216673A priority Critical patent/JP2019085632A/en
Publication of JP2019085632A publication Critical patent/JP2019085632A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

To provide a method for achieving mirror formation at a high level without deterioration due to hysteresis loss while maintaining a high magnetic flux density.SOLUTION: A production method of a grain-oriented electrical steel sheet comprises a series of steps of: forming a cold rolled sheet having a final thickness by single cold rolling or multiple cold rolling with intermediate annealing of a steel material composed of C: 0.02-0.08% or less, Si: 2.5-4.5% and Mn: 0.03-0.30%, and the balance Fe with inevitable impurities; performing decarburization annealing which also serves as a primary recrystallization; and applying annealing separation agent thereto, followed by finish annealing. The oxygen basis weight is 0.8 g/mor less and the residual C content is 150 ppm or less on a surface of the steel sheet after the decarburization annealing. The finish annealing is carried out under a pressure of 10 Pa or less at a temperature of 500°C or more.SELECTED DRAWING: Figure 1

Description

本発明は、主として大型のモータや発電機の鉄心材料として用いられる、フォルステライト(Mg2SiO4)を主体とする下地被膜(グラス被膜)を有しない、鉄損が低くかつ磁束密度の高い方向性電磁鋼板の製造方法に関するものである。 The present invention is used as an iron core material of a large motor or generator, has no undercoat (glass coating) mainly composed of forsterite (Mg 2 SiO 4 ), has a low core loss and a high magnetic flux density The present invention relates to a method of manufacturing a magnetic steel sheet.

方向性電磁鋼板は、主にトランスの鉄心材料として使用されることから、磁気特性に優れること、特に鉄損が低いことが強く求められている。そのため方向性電磁鋼板は、冷間圧延したSi含有鋼板に、一次再結晶焼鈍を兼ねた脱炭焼鈍を施し、MgOを主剤とする焼鈍分離剤を塗布した後、仕上焼鈍において二次再結晶を起こさせ、結晶粒を{110}<001>方位(いわゆるゴス方位)に高度にそろえる方法で製造されている。上記仕上焼鈍には、二次再結晶と、最高1200℃程度の温度まで昇温する純化処理とを合わせて10日間程度を要するため、通常、コイルに巻いた状態で行うバッチ焼鈍により行われている。   Since a grain-oriented electrical steel sheet is mainly used as a core material of a transformer, it is strongly demanded that the magnetic properties be excellent, in particular that the iron loss be low. For this reason, the grain-oriented electrical steel sheet is subjected to decarburizing annealing that also serves as primary recrystallization annealing on a cold-rolled Si-containing steel sheet, and after applying an annealing separator containing MgO as a main ingredient, secondary annealing in finish annealing It is produced by a method in which the crystal grains are highly aligned to the {110} <001> orientation (so-called Goth orientation). Since the above-mentioned finish annealing requires about 10 days by combining the secondary recrystallization and the purification treatment for raising the temperature to a maximum temperature of about 1200 ° C., it is usually carried out by batch annealing carried out in a coiled state. There is.

上記仕上焼鈍中においては、脱炭焼鈍時に鋼板表面に形成されるSiO2を主体としたサブスケールと、脱炭焼鈍後に鋼板表面に塗布したMgOを主剤とする焼鈍分離剤とが、MgO+SiO2→Mg2SiO4の反応を起こし、鋼板表面にガラス質のフォルステライト被膜が形成される。 During the final annealing, a subscale of SiO 2 as a main component formed on the steel sheet surface during decarburization annealing, and annealing separating agent to a main agent the coated MgO on the steel sheet surface after decarburization annealing, MgO + SiO 2 → A reaction of Mg 2 SiO 4 is caused to form a vitreous forsterite film on the surface of the steel sheet.

この被膜は硬質であるため、電磁鋼板に剪断によるスリット加工や、打ち抜き加工を施してコアに成形する際に、金型が摩耗し易いことから、金型を頻繁に研磨したり交換したりする必要があった。このため、金型による打抜き性を向上させることも、方向性電磁鋼板の重要な課題となっていた。   Since the coating is hard, when the electromagnetic steel sheet is slitted by shearing or punched and formed into a core, the mold is abraded easily, so the mold is frequently polished or replaced I needed it. For this reason, improving the punchability of the die has also been an important issue of the grain-oriented electrical steel sheet.

さらに、近年、磁気特性を向上させる要求がさらに高まっているが、これを解決するために被膜−地鉄界面を平滑化させて粗面に起因した磁壁移動のピンニングをなくすという方法も鋭意検討されている。具体的には、フォルステライト被膜を極力形成させないことが必要とされ、そのための方法が多数提案されている。   Furthermore, in recent years, the need to improve the magnetic properties has further increased, but in order to solve this, the method of smoothing the film-base iron interface and eliminating the pinning of the domain wall movement due to the rough surface has been intensively studied. ing. Specifically, it is necessary not to form the forsterite film as much as possible, and many methods therefor have been proposed.

例えば、特許文献1には、焼鈍分離剤中に塩化物を添加する方法が、また、特許文献2には、脱炭焼鈍後の酸素目付量を低く抑えた上で、焼鈍分離剤の主剤にAl2O3を用いる方法が、それぞれ開示されている。さらに、特許文献3には仕上焼鈍中に低熱膨張性の被膜を形成させて、地鉄と被膜との間に働く応力で被膜を剥離させる方法が開示されている。 For example, in Patent Document 1, a method of adding a chloride in the annealing separator is also used, and in Patent Document 2, after suppressing the oxygen per unit area after decarburizing annealing to a low level, the main agent of the annealing separator is used. Methods using Al 2 O 3 are disclosed respectively. Further, Patent Document 3 discloses a method of forming a low thermal expansion coating during finish annealing and peeling off the film by the stress acting between the base iron and the film.

特開平09−49027号公報Japanese Patent Application Laid-Open No. 09-49027 特開平08−269558号公報Japanese Patent Application Publication No. 08-269558 特開平10−8141号公報JP 10-8141 A

しかしながら、特許文献1に記載の方法では、仕上焼鈍の低温域で被膜が剥離するものの、その後の高温域で塩素イオンが系外に抜けた後に再度被膜形成反応が起こってしまうため、十分な鏡面化が得られないという問題が生じていた。また、AlNとかMnSといった鋼中のインヒビター成分が塩化物の影響を受けて劣化するために、二次再結晶挙動が変化し、高い磁束密度が得られないという問題もあった。さらに、仕上焼鈍時に有害な塩素ガスが排出されて、それがガス配管や炉体を損傷させたり、ガスの廃棄のための処理コストが増大するという問題も生じていた。   However, according to the method described in Patent Document 1, although the film peels off in the low temperature region of finish annealing, the film formation reaction occurs again after the chloride ions are released outside the system in the high temperature region thereafter, so a sufficient mirror surface The problem was that no In addition, since the inhibitor components in the steel such as AlN and MnS are degraded by the influence of chloride, there is a problem that the secondary recrystallization behavior is changed and a high magnetic flux density can not be obtained. Furthermore, harmful chlorine gas is discharged at the time of finish annealing, which causes problems such as damage to gas piping and furnace body and an increase in processing cost for discarding the gas.

特許文献2に記載の方法は、上記した反応を抑制するためにAl2O3を用いているものの、実際はAl2O3が内部のSiO2と反応して薄い被膜が形成されて十分な鏡面化が得られなかったり、微細なAl2O3が鋼中に析出してヒステリシス損が劣化するという問題が生じていた。さらに、脱炭焼鈍時の酸素目付量を低く抑えるために焼鈍雰囲気の露点を低下させなければならないが、その際には脱炭も不良となってCが最終製品まで残存し、これが磁気特性を時効劣化させるという問題もあった。 Although the method described in Patent Document 2 uses Al 2 O 3 to suppress the above reaction, in fact, Al 2 O 3 reacts with the internal SiO 2 to form a thin film, and thus a sufficient mirror surface is obtained. reduction is can not be obtained, the hysteresis loss has occurred deteriorates fine Al 2 O 3 precipitated in the steel. Furthermore, the dew point of the annealing atmosphere must be lowered in order to reduce the amount of oxygen per unit area at the time of decarburization annealing, but at that time the decarburization also becomes defective and C remains to the final product, which causes the magnetic properties There was also a problem of aging deterioration.

特許文献3に記載の方法は、一旦成膜したのちにその被膜が剥離するという過程を経るため、被膜の凹凸がそのまま地鉄表面に残り、ヒステリシス損が十分改善されないという問題があった。   The method described in Patent Document 3 has a problem that the unevenness of the film remains as it is on the surface of the ground iron and the hysteresis loss is not sufficiently improved since the film is once peeled off and the film is peeled off.

これらの他にも、鏡面化のための多数の方法が提案されているが、いずれも上記のようなヒステリシス損の劣化や薄い被膜の残存などの問題が十分解決できたとは言い難い状況にある。しかも、近年の環境に対する関心の高まりから、磁気特性をさらに改善するために、様々な添加元素を鋼中に含有させる技術が開発されたり、環境規制の厳格化に伴い有害物質の使用や排出が厳しく規制されたり、省エネルギー推進のため、高級電磁鋼板の使用量が増えて、そのために大量ロットを処理する必要が生じ、仕上焼鈍コイルが大型化してコイル内での不均一性が増大するといった種々の環境変化が生じている。このような条件下では従来技術で鏡面化と高い磁束密度をコイル全長全幅で両立させることはさらに困難な状況となっている。   Besides these, many methods for mirror formation have been proposed, but it is difficult to say that all the problems such as the deterioration of the hysteresis loss and the remaining of the thin film as described above have been sufficiently solved. . In addition, from the recent increase in environmental concerns, in order to further improve the magnetic properties, techniques have been developed to incorporate various additive elements into the steel, and the use and discharge of harmful substances are being made with stricter environmental regulations. In order to be strictly regulated or to promote energy saving, the amount of use of high-grade electromagnetic steel sheets is increased, and it is therefore necessary to process a large number of lots, so that the finish annealing coil becomes large and nonuniformity in the coil increases. Environmental change has occurred. Under such conditions, it is more difficult in the prior art to achieve both mirror formation and high magnetic flux density over the entire length of the coil.

本発明は、以上の事情に鑑みてなされたものであり、高い磁束密度を保ったまま、ヒステリシス損による劣化のない高いレベルでの鏡面化を実現する方法について提案するものである。   The present invention has been made in view of the above-described circumstances, and proposes a method for achieving a high-level mirror finish without deterioration due to hysteresis loss while maintaining a high magnetic flux density.

まず、本発明を開発する契機となった実験について説明する。
<実験1>
C:0.06質量%、Si:3.4質量%、Mn:0.07質量%、Al:0.03質量%、N:0.007質量%およびSe:0.02質量%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1400℃に加熱し、熱間圧延して板厚2.2mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚の1.7mmとし、1100℃×80秒の中間焼鈍を施した後、200℃の温間圧延により最終板厚が0.23mmの冷延板とした。
次いで、50vol%H2−50vol%N2、PH2O/PH2が0.35の湿潤雰囲気下で820℃×100秒保持する脱炭焼鈍を施した。このときの脱炭焼鈍後の酸素目付量は0.78g/m2、残留C量は90ppmであった。
その後、焼鈍分離剤としてコージェライト、2MgO・2Al2O3・5SiO2を用いて、これをスラリー状にして鋼板の表面に塗布、乾燥したのち、1200℃までを20℃/hで昇温して5時間保定する仕上焼鈍を施した。このときの仕上焼鈍の雰囲気は、常温でNガスパージした後減圧し、500℃〜1200℃の温度域で大気圧10Paから0.01Paまで変更する調節を行った。かくして得られた仕上焼鈍後の鋼板の、酸素目付量(鋼板両面)、残留C量および磁束密度を測定した。その測定結果を、図1〜3に示す。
First, an experiment that led to the development of the present invention will be described.
<Experiment 1>
A steel containing S: 0.06 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, Al: 0.03 mass%, N: 0.007 mass% and Se: 0.02 mass% is melted, and a steel slab is cast by a continuous casting method. And then hot rolled to make a 2.2 mm thick hot rolled sheet, subjected to hot rolled sheet annealing at 1050 ° C. × 60 seconds, and then primary cold rolled to form an intermediate sheet thickness After being subjected to an intermediate annealing at 1100 ° C. for 80 seconds, the cold rolled sheet having a final thickness of 0.23 mm was obtained by warm rolling at 200 ° C.
Was then subjected to decarburization annealing 50vol% H 2 -50vol% N 2 , PH 2 O / PH 2 holds 820 ° C. × 100 seconds under a humid atmosphere of 0.35. The amount of oxygen per unit area after decarburizing annealing at this time was 0.78 g / m 2 , and the amount of residual C was 90 ppm.
Then, cordierite as annealing separator, using 2MgO · 2Al 2 O 3 · 5SiO 2, which applied to the surface of the steel sheet in a slurry, after drying, the temperature was raised up to 1200 ° C. at 20 ° C. / h Finish annealing for 5 hours. At this time, the atmosphere for finish annealing was adjusted by reducing the pressure after purging with N 2 gas at normal temperature, and changing the atmospheric pressure from 10 5 Pa to 0.01 Pa in a temperature range of 500 ° C. to 1200 ° C. The amount of oxygen per area (both sides of the steel plate), the amount of residual C and the magnetic flux density of the steel plate after finish annealing thus obtained were measured. The measurement results are shown in FIGS.

図1からわかる通り、仕上焼鈍の雰囲気圧力を下げていくと仕上焼鈍後の酸素目付量が低下して鏡面化するとともに、図2に示すように、脱炭も改善されてくる。特に、10Paよりも低くなると、図1に示す通り、膜なし鏡面材として満足なレベルまで酸素目付量が低下し、また図2に示す通り、残留C量も減少しCの純化も促進される。その結果、図3に示すように、雰囲気圧力を10Pa以下にすることによって磁束密度も向上することになる。   As can be seen from FIG. 1, as the atmosphere pressure of finish annealing is lowered, the amount of oxygen per unit area after finish annealing is reduced to become mirror-like, and as shown in FIG. 2, decarburization is also improved. In particular, if the pressure is lower than 10 Pa, as shown in FIG. 1, the per-area oxygen coverage decreases to a satisfactory level as a filmless mirror material, and as shown in FIG. . As a result, as shown in FIG. 3, the magnetic flux density is also improved by setting the atmospheric pressure to 10 Pa or less.

この原因を解明するため、雰囲気圧力0.01Paと大気圧とで仕上焼鈍したサンプルについて、化学成分を分析した。このときの結果を表1に示す。大気圧では、元の成分と比べNはむしろ高くなっている。C、AlおよびOは低下しているが、その減量は小さい。これに対して、減圧した条件では、C、N、Alのいずれも10ppm以下となっており、Oも著しく低減している。従って、これらの不純物濃度が低下したことが磁気特性改善、表面被膜除去による鏡面化が実現する主原因といえる。   In order to clarify this cause, the chemical composition was analyzed about the sample finished annealing by atmospheric pressure 0.01 Pa and atmospheric pressure. The results at this time are shown in Table 1. At atmospheric pressure, N is rather high compared to the original component. C, Al and O decrease, but their weight loss is small. On the other hand, under the reduced pressure conditions, all of C, N and Al are 10 ppm or less, and O is also significantly reduced. Therefore, it can be said that the decrease in the concentration of these impurities is the main cause for the improvement of the magnetic characteristics and the realization of the mirror surface by the removal of the surface film.

Figure 2019085632
Figure 2019085632

このように不純物濃度が低下した原因としては、本発明者らは以下の通りに考えている。
まず、窒素については大気圧ではむしろ増大しているが、これはパージしたN2ガスが仕上焼鈍中に鋼中に浸入したためと考えられる。しかし、減圧することにより、これらの浸入は抑えられ、さらに減圧すると、逆に鋼中から揮発して抜けていく。脱炭焼鈍で形成された酸化物についても同様に、減圧により揮発して表面から脱離していく。それとともに、低圧化においては、脱炭反応が促進されて脱炭反応が起こり、Cが低下する。これらにより、鏡面化と純化が両立される。
The present inventors consider as follows the cause of the decrease in impurity concentration as described above.
First, nitrogen is rather increased at atmospheric pressure, presumably because the purged N 2 gas infiltrated into the steel during finish annealing. However, depressurization suppresses the infiltration of these, and further depressurization causes the steel to volatilize and escape from the steel. The oxides formed by the decarburization annealing are similarly volatilized under reduced pressure and desorbed from the surface. At the same time, at low pressure, decarburization reaction is promoted, decarburization reaction occurs, and C is reduced. By these, mirrorization and purification are compatible.

このような表面反応を起こすには、焼鈍分離剤が非反応性の物質であることが肝要である。従来用いられているMgOのようなものであれば、表面にMg2SiO4を形成して脱窒や脱炭の障害になる。非反応性の分離剤としては、例えばケイ酸塩、アルミン酸塩のような物質が挙げられる。これらを用いることにより表面に被膜が形成されず、鋼中のCやAl等の拡散速度の低下は抑えられる。さらに、減圧下での仕上焼鈍と組み合わせることにより、これらの元素が表面に容易に排出される結果、純化が達成されるのである。
本発明は、以上の実験結果に基づくものであり、その要旨は、次のとおりである。
In order to cause such surface reactions, it is essential that the annealing separator be a non-reactive substance. If it is something like MgO used conventionally, it will become an obstacle of denitrification and decarburization by forming Mg 2 SiO 4 on the surface. Non-reactive separating agents include, for example, materials such as silicates and aluminates. By using these, a film is not formed on the surface, and a decrease in the diffusion rate of C, Al or the like in steel can be suppressed. Furthermore, in combination with finish annealing under reduced pressure, purification is achieved as a result of these elements being easily discharged to the surface.
The present invention is based on the above experimental results, and the summary thereof is as follows.

1.質量%で、
C:0.02〜0.08%以下、
Si:2.5〜4.5%および
Mn:0.03〜0.30%
を含み、残部Feおよび不可避的不純物の成分組成を有する鋼素材に、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶を兼ねた脱炭焼鈍を施してから焼鈍分離剤を塗布し、仕上焼鈍する一連の工程よりなる方向性電磁鋼板の製造方法であって、前記脱炭焼鈍後の鋼板表面における酸素目付量を0.8g/m以下かつ残留C量を150ppm以下とするとともに、前記仕上焼鈍は500℃以上での圧力が10Pa以下である雰囲気で行う方向性電磁鋼板の製造方法。
ここで、前記酸素目付量は、鋼板の表裏両面での酸素目付量の合計である。
1. In mass%,
C: 0.02 to 0.08% or less,
Si: 2.5 to 4.5% and
Mn: 0.03 to 0.30%
A steel material having the composition of the balance Fe and the inevitable impurities, and made into a final thickness cold-rolled sheet by cold rolling once or twice or more with intermediate annealing interposed, and decarburizing that doubles as primary recrystallization. A method for producing a grain oriented electrical steel sheet comprising a series of steps of applying annealing separators after annealing and finish annealing, wherein the coated amount of oxygen on the steel sheet surface after decarburizing annealing is 0.8 g / m 2 or less And while making residual C amount into 150 ppm or less, the manufacturing method of the directionality electromagnetic steel sheet which performs the said finish annealing in the atmosphere whose pressure in 500 degreeC or more is 10 Pa or less.
Here, the oxygen coverage is the sum of the oxygen coverage on both the front and back sides of the steel sheet.

2.前記焼鈍分離剤は、少なくとも50%が、Mg、Al、Mn、Zr、CaおよびSrのいずれか1種または2種以上のケイ酸塩、Mg、Fe、Ca、Mn、Ni、Zr、Coのいずれか1種または2種以上のアルミン酸塩、およびこれらの複合酸化物である前記1に記載の方向性電磁鋼板の製造方法。 2. The annealing separator is at least 50% of one or more of Mg, Al, Mn, Zr, Ca, and Sr, or Mg, Fe, Ca, Mn, Ni, Zr, Co The method for producing a grain-oriented electrical steel sheet according to 1 above, which is any one or more aluminates and composite oxides thereof.

3.前記鋼素材は、前記成分組成に加えてさらに、質量%で、
Al:0.010〜0.040%および
N:0.003〜0.012%
を含有する前記1または2に記載の方向性電磁鋼板の製造方法。
3. In addition to the above-mentioned component composition, the above-mentioned steel material is further in mass%,
Al: 0.010 to 0.040% and N: 0.003 to 0.012%
The manufacturing method of the directionality electromagnetic steel sheet as described in said 1 or 2 containing B.

4.前記鋼素材は、前記成分組成に加えてさらに、質量%で、
Se:0.003〜0.030%および
S:0.002〜0.030%
のいずれか1種または2種を含有する前記1、2または3に記載の方向性電磁鋼板の製造方法。
4. In addition to the above-mentioned component composition, the above-mentioned steel material is further in mass%,
Se: 0.003 to 0.030% and S: 0.002 to 0.030%
The manufacturing method of the grain-oriented electrical steel sheet of said 1, 2 or 3 containing any 1 type or 2 types of.

5.前記鋼素材は、前記成分組成に加えてさらに、質量%で、
Ni:0.01〜1.50%、
Cr:0.01〜0.50%、
Cu:0.01〜0.50%、
P:0.005〜0.20%、
Sb:0.005〜0.20%、
Sn;0.005〜0.50%、
Bi:0.005〜0.10%、
Mo:0.005〜0.10%、
B:0.0002〜0.0025%、
Te:0.0005〜0.010%、
Nb:0.001〜0.010%、
V:0.001〜0.010%、
Ti:0.001〜0.010%および
Ta:0.001〜0.010%
のうちから選ばれる1種または2種以上を含有する前記1〜4のいずれかに記載の方向性電磁鋼板の製造方法。
5. In addition to the above-mentioned component composition, the above-mentioned steel material is further in mass%,
Ni: 0.01 to 1.50%,
Cr: 0.01 to 0.50%,
Cu: 0.01 to 0.50%,
P: 0.005 to 0.20%,
Sb: 0.005 to 0.20%,
Sn: 0.005 to 0.50%,
Bi: 0.005 to 0.10%,
Mo: 0.005 to 0.10%,
B: 0.0002 to 0.0025%,
Te: 0.0005 to 0.010%,
Nb: 0.001 to 0.010%,
V: 0.001 to 0.010%,
Ti: 0.001 to 0.010% and
Ta: 0.001 to 0.010%
The manufacturing method of the directionality electromagnetic steel sheet in any one of said 1-4 containing 1 type (s) or 2 or more types selected from among them.

6.前記仕上焼鈍後の鋼板の表面における酸素目付量が0.5g/m以下かつ残留C量が40ppm以下である前記1から5のいずれかに記載の方向性電磁鋼板の製造方法。 6. The method for producing a grain-oriented electrical steel sheet according to any one of 1 to 5, wherein the surface area of the steel sheet after the finish annealing is 0.5 g / m 2 or less and the residual C amount is 40 ppm or less.

本発明によれば、フォルステライト(Mg2SiO4)を主体とする下地被膜を有しない、鉄損が低くかつ磁束密度の高い方向性電磁鋼板を製造することができる。 According to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet having a low core loss and a high magnetic flux density without having an undercoat film mainly composed of forsterite (Mg 2 SiO 4 ).

仕上焼鈍の雰囲気圧力と酸素目付量との関係を示す図である。It is a figure which shows the relationship between the atmosphere pressure of finish-annealing, and an oxygen area weight. 仕上焼鈍の雰囲気圧力と残留C量との関係を示す図である。It is a figure which shows the relationship between the atmosphere pressure of finish annealing, and the amount of residual C. 仕上焼鈍の雰囲気圧力と磁束密度との関係を示す図である。It is a figure which shows the relationship between the atmospheric pressure of finish annealing, and a magnetic flux density.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
まず、本発明に従って方向性電磁鋼板を製造する際の出発材である鋼素材の成分組成から順に説明する。なお、以下に示す成分組成に関する「%」表示は、特に断らないかぎり「質量%」を意味する。
C:0.02〜0.08%
Cは、0.02%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなど、製造に支障を来たす欠陥を生ずるようになる。一方、0.08%を超えると、最終仕上焼鈍後に磁気時効の起こらない0.005%以下に低減することが困難となる。よって、Cは0.02〜0.08%の範囲とするのが好ましい。より好ましくは、0.025〜0.075%の範囲である。
Next, the method for producing the grain-oriented electrical steel sheet of the present invention will be described.
First, component compositions of a steel material which is a starting material for producing a grain-oriented electrical steel sheet according to the present invention will be described in order. In addition, "%" display regarding the component composition shown below means "mass%" unless otherwise indicated.
C: 0.02 to 0.08%
If the content of C is less than 0.02%, the grain boundary strengthening effect of C is lost, and defects such as cracks in the slab occur, which cause problems in production. On the other hand, when it exceeds 0.08%, it becomes difficult to reduce to 0.005% or less where magnetic aging does not occur after final finish annealing. Therefore, C is preferably in the range of 0.02 to 0.08%. More preferably, it is in the range of 0.025 to 0.075%.

Si:2.5〜4.5%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。この効果は、2.5%未満では十分ではなく、一方4.5%を超えると、加工性が低下し圧延して製造することが困難となる。よって、Siは2.5〜4.5%の範囲とする。好ましくは、2.8〜4.0%の範囲である。
Si: 2.5 to 4.5%
Si is an element necessary to increase the specific resistance of steel and to reduce iron loss. This effect is not sufficient if it is less than 2.5%, while if it exceeds 4.5%, the processability is reduced and it becomes difficult to produce by rolling. Therefore, Si is made into 2.5 to 4.5% of range. Preferably, it is in the range of 2.8 to 4.0%.

Mn:0.03〜0.30%
Mnは、鋼の熱間加工性を改善するために必要な元素である。この効果は、0.03%未満では十分ではなく、一方、0.3%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.03〜0.30%の範囲とする。好ましくは、0.04〜0.20%の範囲である。
以上の成分を含み、残部はFeおよび不可避的不純物である。
Mn: 0.03 to 0.30%
Mn is an element necessary to improve the hot workability of steel. This effect is not sufficient if it is less than 0.03%, while if it exceeds 0.3%, the magnetic flux density of the product plate will be reduced. Therefore, Mn is in the range of 0.03 to 0.30%. Preferably, it is in the range of 0.04 to 0.20%.
Containing the above components, the balance is Fe and unavoidable impurities.

本発明では、上記した基本成分組成に加えて、結晶粒成長の抑制力を補強するために、さらにAlおよびN、あるいはAl、Nと、Sおよび/またはSeを含有することもできる。
Al:0.010〜0.040%
Alはインヒビター構成元素として、用いられる。使用する場合、0.010%より少ないと、インヒビター効果が十分に得られず、一方、0.040%を超えると、二次再結晶が不安定となって磁気特性が大きくばらつく。よって、Alは0.010〜0.040%とするのが好ましい。より好ましくは、0.015〜0.030%である。
In the present invention, in addition to the above-described basic component composition, Al and N, or Al and N, and S and / or Se can also be contained in order to reinforce the grain growth suppressing power.
Al: 0.010 to 0.040%
Al is used as an inhibitor constituent element. When it is used, if it is less than 0.010%, the inhibitor effect is not sufficiently obtained, while if it exceeds 0.040%, the secondary recrystallization becomes unstable and the magnetic characteristics are largely dispersed. Therefore, it is preferable to make Al into 0.010 to 0.040%. More preferably, it is 0.015 to 0.030%.

N:0.003〜0.012%
Nは、AlとともにインヒビターのAlNを構成する元素である。0.012%を超えると、フクレや穴などの表面欠陥が発生するので、これ以下とする。下限については、製造工程途中で増窒処理を行う場合と行わない場合があるが、いずれの場合も0.003%以上とする。これを下回ると、たとえ増窒処理をしたとしてもインヒビター抑制力不足となる。
なお、AlNをインヒビターとして使用しない方法もあるが、この場合はAlを100ppm未満、窒素を50ppm未満に抑える必要がある。
これ以外には、SやSeを利用することも可能である。
N: 0.003 to 0.012%
N is an element which constitutes AlN of the inhibitor together with Al. If it exceeds 0.012%, surface defects such as blisters and holes occur, so the content is made smaller. The lower limit may be 0.003% or more in any of the cases where the nitrification treatment is performed or not performed in the middle of the manufacturing process. If it is less than this, even if the renitrification treatment is performed, the inhibitor inhibitory power is insufficient.
There is also a method which does not use AlN as an inhibitor, but in this case, it is necessary to suppress Al to less than 100 ppm and nitrogen to less than 50 ppm.
Besides this, it is also possible to use S or Se.

S:0.002〜0.030%またはSe:0.003〜0.030%
SおよびSeは、上記したMnとともにMnSe,MnS等のインヒビターを構成する元素として使用することができる。これらの析出物とAlNが複合析出することにより、二次再結晶焼鈍の高温でも安定して抑制力を発揮できるようになる。Sが0.002%未満でかつSeが0.003%未満であれば、抑制力不足となって二次再結晶不良となる。また、Sが0.03%を超えるかSeが0.03%を超えると、ヘゲなどの表面欠陥が発生する。従ってこの範囲内とする。
S: 0.002 to 0.030% or Se: 0.003 to 0.030%
S and Se can be used as an element which comprises inhibitors, such as MnSe and MnS, with above-mentioned Mn. The composite precipitation of these precipitates and AlN makes it possible to exert the suppressing power stably even at high temperatures of secondary recrystallization annealing. If S is less than 0.002% and Se is less than 0.003%, the suppressing power is insufficient and secondary recrystallization defects occur. Also, if S exceeds 0.03% or Se exceeds 0.03%, surface defects such as baldness occur. Therefore, it is in this range.

本発明の方向性電磁鋼板における上記成分以外に、さらなる磁気特性の改善を目的として、Ni:0.01〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.20%、Sb:0.005〜0.20%、Sn;0.005〜0.50%、Bi:0.005〜0.10%、Mo:0.005〜0.10%、B:0.0002〜0.0025%、Te:0.0005〜0.010%、Nb:0.001〜0.010%、V:0.001〜0.010%、Ti:0.001〜0.010%およびTa:0.001〜0.010%のうちから選ばれる1種または2種以上を適宜添加してもよい。   In addition to the above components in the grain-oriented electrical steel sheet of the present invention, Ni: 0.01 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.20%, for the purpose of further improving the magnetic properties. Sb: 0.005 to 0.20%, Sn: 0.005 to 0.50%, Bi: 0.005 to 0.10%, Mo: 0.005 to 0.10%, B: 0.0002 to 0.0025%, Te: 0.0005 to 0.010%, Nb: 0.001 to 0.010%, V One or more selected from 0.001 to 0.010%, Ti: 0.001 to 0.010%, and Ta: 0.001 to 0.010% may be appropriately added.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは常法に従い、1350℃程度まで加熱し、熱間圧延に供する。また、薄鋳片の場合には、熱間圧延してもよいし熱間圧延を省略してそのまま以後の工程に進めてもよい。
Next, the method for producing the grain-oriented electrical steel sheet of the present invention will be described.
After the steel having the above-described composition is melted in a conventional refining process, a steel material (slab) may be manufactured by a conventionally known ingot-slab rolling method or continuous casting method, or directly Thin cast pieces having a thickness of 100 mm or less may be produced by a casting method. The above-mentioned slab is heated to about 1350 ° C. and subjected to hot rolling according to a conventional method. In the case of thin cast pieces, hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the subsequent steps.

次いで、熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の焼鈍温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。すなわち、800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶の発達が阻害される、虞がある。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり整粒の一次再結晶組織を得ることが難しくなる、虞がある。   Next, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as required. It is preferable to make the annealing temperature of this hot-rolled sheet annealing into the range of 800-1150 degreeC, in order to acquire a favorable magnetic characteristic. That is, if the temperature is less than 800 ° C., the band structure formed by hot rolling remains, making it difficult to obtain a primary recrystallization structure of sized grains, which may inhibit the development of secondary recrystallization. On the other hand, if the temperature exceeds 1150 ° C., the grain size after hot-rolled sheet annealing becomes too coarse, and there is also a possibility that it may be difficult to obtain a primary recrystallized structure of sized grains.

熱間圧延後あるいは熱延板焼鈍後の熱延板(或いは前記薄鋳片)は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに一次再結晶組織におけるGoss核が減少して製品板の磁気特定が低下する傾向がある。一方、1200℃を超えると、熱延板焼鈍のときと同様、結晶粒が粗大化し過ぎて整粒の一次再結晶組織を得ることが難しくなる。   The hot-rolled sheet (or the thin cast strip) after hot rolling or after hot-rolled sheet annealing is cold-rolled to a final thickness by two or more cold-rollings that sandwich one cold rolling or intermediate annealing. It will be a board. It is preferable to make the annealing temperature of the said intermediate annealing into the range of 900-1200 degreeC. If the temperature is less than 900 ° C., recrystallized grains after intermediate annealing become finer, and Goss nuclei in the primary recrystallized structure tend to be reduced, and the magnetic specification of the product plate tends to be lowered. On the other hand, if the temperature exceeds 1200 ° C., as in the case of hot-rolled sheet annealing, the crystal grains become too coarse, and it becomes difficult to obtain a primary recrystallized structure of sized grains.

また、最終板厚とする冷間圧延(最終冷間圧延)は、冷間圧延時の鋼板温度を100℃〜300℃に上昇させて行うことや、冷間圧延の途中で100〜300℃の温度で時効処理を1回または複数回施すことが、一次再結晶集合組織を改善し、磁気特性を向上させるのに有効である。   In addition, cold rolling (final cold rolling) to be the final plate thickness is performed by raising the steel plate temperature during cold rolling to 100 ° C. to 300 ° C., or 100 to 300 ° C. in the middle of cold rolling The application of one or more aging treatments at temperature is effective to improve the primary recrystallization texture and improve the magnetic properties.

最終板厚とした冷延板は、その後一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。温度は700℃〜900℃、時間は30〜300秒の範囲とする。脱炭焼鈍の温度が700℃未満、もしくは同時間が30秒未満では、一次再結晶粒径が小さすぎるため磁気特性が劣化し、一方900℃を超えたり300秒を超えたりすると、一次粒径が大きくなりすぎて、やはり磁気特性が劣化する。
なお、脱炭焼鈍の雰囲気におけるpH2O/pH2は、概ね0.1〜0.4の範囲とする。なぜなら、これは、以下に示す通り、残留C量や酸素目付量を適正化するためである。pH2O/pH2が0.1より低いと残留C量が高くなりすぎ、0.4より高いと酸素目付量が高くなりすぎる、虞がある。
Thereafter, the cold-rolled sheet having the final thickness is subjected to decarburization annealing which also serves as primary recrystallization annealing. The temperature is in the range of 700 ° C. to 900 ° C., and the time is in the range of 30 to 300 seconds. If the temperature of decarburization annealing is less than 700 ° C., or if the same time is less than 30 seconds, the primary recrystallized grain size is too small and the magnetic properties deteriorate, while if it exceeds 900 ° C. or exceeds 300 seconds, the primary grain size Becomes too large, and the magnetic properties also deteriorate.
In addition, pH 2 O / pH 2 in the atmosphere of decarburization annealing is about 0.1 to 0.4 in general. This is because, as described below, the amount of residual C and the amount of coated oxygen are optimized. If pH 2 O / pH 2 is lower than 0.1, the amount of residual C becomes too high, and if it is higher than 0.4, there is a fear that the coated amount of oxygen becomes too high.

ここで、脱炭焼鈍後の鋼板における、酸素目付量および残留C量を適正範囲に調整する必要がある。脱炭焼鈍を同一雰囲気条件で行った場合にも、素材成分や脱炭焼鈍前までの通板条件により、脱炭焼鈍後の酸素目付量や残留C量は異なってくる。   Here, in the steel sheet after decarburization annealing, it is necessary to adjust the amount of oxygen per unit area and the amount of residual C in an appropriate range. Even when the decarburization annealing is performed under the same atmosphere conditions, the amount of oxygen coverage and the amount of residual C after decarburization annealing differ depending on the material components and the sheet passing conditions before decarburization annealing.

まず、脱炭焼鈍後の酸素目付量は0.8g/m2以下とする。酸素目付量が0.8g/m2を超えると、いかに仕上焼鈍中に酸素が揮発して除去されるにしても酸素が残存し、微量の被膜形成をまねくため、この範囲内とする。また、残留C量は150ppm以下とする。なぜなら、この範囲を超えると、いかに仕上焼鈍中にCが揮発して除去されるにしても十分ではなく、製品板にCが残存し、トランス等で使用中に磁気時効により鉄損が劣化するためである。 First, the oxygen coverage after decarburization annealing is 0.8 g / m 2 or less. If the weight per unit area of oxygen exceeds 0.8 g / m 2 , oxygen remains even if the oxygen is volatilized and removed during finish annealing, which results in formation of a small amount of film, so this range is taken. In addition, the amount of residual C is 150 ppm or less. Because if this range is exceeded, it is not enough how C volatilizes and is removed during finish annealing, C remains on the product plate, and iron loss is deteriorated by magnetic aging during use in a transformer etc. It is for.

なお、脱炭焼鈍後の鋼板における、酸素目付量および残留C量を上記の範囲内にするには、上記の脱炭焼鈍の雰囲気pH2O/pH2を調節する方法が最も簡便である。 In order to bring the oxygen coverage and the residual C amount in the above-described range in the steel sheet after decarburizing annealing, the method of adjusting the atmosphere pH 2 O / pH 2 of the above decarburizing annealing is the simplest.

次いで、焼鈍分離剤を塗布するが、このとき焼鈍分離剤の主剤として、つまり焼鈍分離剤の50%以上に、Mg、Al、Mn、Zr、CaおよびSrのいずれか1種または2種以上のケイ酸塩、Mg、Fe、Ca、Mn、Ni、Zr、Coのいずれか1種または2種以上のアルミン酸塩、およびこれらの複合酸化物を用いることが重要である。これらを用いることにより、被膜形成が行われず、均一な膜なし化が実現される。さらに、これに添加剤を用いることも可能である。   Then, an annealing separator is applied, and at this time, as a main agent of the annealing separator, that is, 50% or more of the annealing separator, Mg, Al, Mn, Zr, Ca, and Sr any one or more of It is important to use any one or more aluminates of silicate, Mg, Fe, Ca, Mn, Ni, Zr, Co, and complex oxides thereof. By using these, film formation is not performed and uniform film elimination is realized. Furthermore, it is also possible to use additives for this.

添加剤としては、Li、Na、K、Ca、Sr、Ba、Sb、Ti、B、Sn、Ni、FeまたはMg等の酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物または硫化物等のいずれをも使用可能である。これらは単独添加に限らず、複合添加することも可能である。添加量は0.5〜15%とする。この範囲より少なすぎると効果がなく、多すぎると、これらが反応源となるため、膜が薄く形成される、可能性がある。以上の添加剤の残部は、上記した主剤であることが好ましい。   Additives include oxides such as Li, Na, K, Ca, Sr, Ba, Sb, Ti, B, Sn, Ni, Fe or Mg, hydroxides, sulfates, carbonates, nitrates, borates Any of chloride, sulfide and the like can be used. These may be added not only singly but also in combination. The addition amount is 0.5 to 15%. If the amount is less than this range, there is no effect, and if the amount is too large, the film may be formed thin because these become reaction sources. The balance of the above additives is preferably the main agent described above.

上記した焼鈍分離剤を鋼板に塗布後、該鋼板をコイル状に巻き取った状態で仕上焼鈍を施す。
仕上焼鈍の温度は、二次再結晶を発現のためには800℃以上で行うことが好ましい。また、二次再結晶を完了させるためには1050℃程度以上、さらに純化のためには1100℃以上で行うことが好ましい。
After applying the above-mentioned annealing separator to a steel plate, finish annealing is performed in the state which wound up the steel plate in the shape of a coil.
It is preferable to carry out the temperature of finish annealing at 800 ° C. or higher in order to develop secondary recrystallization. Further, in order to complete the secondary recrystallization, it is preferable to carry out at about 1050 ° C. or higher, and further, at 1100 ° C. or higher for purification.

この仕上焼鈍を、減圧下の雰囲気で行うことが、極めて重要である。すなわち、仕上焼鈍後の鋼板の酸素目付量および残留C量をともに低減させ、優れた磁気特性を得るためには、先に図1および2において示した通り、仕上焼鈍を500℃以上での圧力が10Pa以下である雰囲気で行うことが肝要である。かような雰囲気で仕上焼鈍を行うことによって、酸素目付量が0.5g/m以下かつ残留C量が40ppm以下の鋼板が得られる。 It is extremely important to perform this finish annealing in an atmosphere under reduced pressure. That is, in order to reduce both the amount of oxygen per area and the amount of residual C of the steel sheet after finish annealing and to obtain excellent magnetic properties, as shown in FIGS. 1 and 2 above, the pressure of finish annealing at 500 ° C. or higher It is important to carry out in an atmosphere of 10 Pa or less. By performing finish annealing in such an atmosphere, a steel plate having an oxygen coverage of not more than 0.5 g / m 2 and a residual C content of not more than 40 ppm can be obtained.

ここで、仕上焼鈍後の鋼板の酸素目付量:0.5g/m以下かつ残留C量:40ppm以下を調整目標とするのは、まず、酸素目付量は0.5g/mを超えると、被膜が残留し十分な膜なし化が達成できないことになるからである。また、残留C量は、40ppmを超えると、トランスを組んで使用している間に炭化物が析出し、磁気時効により鉄損が劣化してしまうためである。 Here, the target for adjustment of oxygen coverage of the steel sheet after finish annealing: 0.5 g / m 2 or less and residual carbon content: 40 ppm or less is the coating target, first, when the oxygen coverage is over 0.5 g / m 2 , the coating The reason is that there is a problem that sufficient film elimination can not be achieved. On the other hand, if the amount of residual C exceeds 40 ppm, carbides are precipitated during use in a transformer, resulting in deterioration of iron loss due to magnetic aging.

さらに、仕上焼鈍を減圧下の雰囲気で行うことによって、Goss方位に高度に集積させた二次再結晶組織も同時に得られる。この原因については十分わかっていないが、真空中で焼鈍することにより、表面エネルギーを駆動力とした再結晶が起こっているためと考えている。   Furthermore, by performing finish annealing in an atmosphere under reduced pressure, a secondary recrystallized structure highly accumulated in the Goss orientation can be obtained simultaneously. Although the cause is not sufficiently understood, it is considered that recrystallization using a surface energy as a driving force is occurring by annealing in vacuum.

なお、仕上焼鈍において、焼鈍分離剤や純化の揮発ガスなどで一時的に雰囲気圧が10Paを超えることもあるが、仕上焼鈍における500℃以上での平均雰囲気圧が10Pa以下であれば、所望の特性を達成することが可能である。一方、下限は、特に限定する必要はないが、真空度を高めるほど設備コストがかかることから、10−4Pa以上とすることが好ましい。 In the final annealing, although the atmospheric pressure may temporarily exceed 10 Pa due to the annealing separator and the volatilization gas for purification, it is desirable if the average atmospheric pressure at 500 ° C. or higher in the final annealing is 10 Pa or less. It is possible to achieve the property. On the other hand, the lower limit is not particularly limited, but the equipment cost is increased as the degree of vacuum is increased, and therefore, the lower limit is preferably 10 −4 Pa or more.

仕上焼鈍後は、鋼板表面に付着した未反応の焼鈍分離剤を除去するための水洗やブラッシング、酸洗等を行う。そして、コーティングを塗布し、平坦化焼鈍を行う。このときの温度は800℃〜900℃とする。この温度が800℃より低いと、形状矯正能力が不十分のため歩留まりが低下し、900℃を超える温度で行うと、鋼板がクリープ変形して鉄損が劣化するため、この範囲内とすることが好ましい。   After the finish annealing, water washing, brushing, pickling and the like are performed to remove the unreacted annealing separator attached to the steel sheet surface. Then, a coating is applied and flattening annealing is performed. The temperature at this time is 800 ° C. to 900 ° C. If this temperature is lower than 800 ° C., the yield is lowered due to insufficient shape correction ability, and if it is carried out at a temperature higher than 900 ° C., the steel plate creeps and the iron loss is deteriorated. Is preferred.

なお、本発明に従って被膜のない鏡面化された鋼板が得られるため、その後PVDやCVD等の方法でセラミックス被膜を被成させるのに有効である。PVDおよびCVD等の前処理に電解エッチングや化学研磨、機械研磨を施すことも可能である。これらのセラミックス被膜を被成させたあと、従来の張力コーティングを施すこともできる。さらに鉄損をより低減するためには、磁区細分化処理を施すことも可能である。処理方法としては、一般的に実施されているような、最終製品板に溝を形成したり、レーザー照射や電子ビーム照射により、線状または点状に熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した鋼板等の、中間工程の鋼板表面にエッチング加工を施して溝を形成したりする方法等を用いることができる。本発明の鏡面化とこれらの磁区細分化方法とを併用することにより、鉄損を著しく低減することが可能となる。   In addition, since the mirror-coated steel plate which does not have a film is obtained according to this invention, it is effective in depositing a ceramic film by methods, such as PVD and CVD, after that. It is also possible to subject the pretreatment such as PVD and CVD to electrolytic etching, chemical polishing and mechanical polishing. After these ceramic coatings are applied, conventional tension coatings can also be applied. Furthermore, in order to further reduce iron loss, it is also possible to perform magnetic domain refinement processing. As a processing method, a method of forming a groove in the final product plate, introducing a thermal strain or impact strain in a linear or point shape by laser irradiation or electron beam irradiation, as generally practiced, final It is possible to use a method of forming a groove by performing etching on the surface of the steel plate in an intermediate step, such as a steel plate cold-rolled to a plate thickness. By combining the mirror formation of the present invention and these magnetic domain refining methods, it is possible to significantly reduce iron loss.

C:0.070%、Si:3.43%、Mn:0.08%、Se:0.02%、Al:0.02%、N:0.007%、P:0.02%、Sn:0.05%およびBi:0.02%を含み、残部Feおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1350℃の温度に加熱した後、熱間圧延して、板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚が0.23mmの冷延板に仕上げて脱炭焼鈍した。脱炭焼鈍は50vol%H2−50vol%N2、露点35℃の湿潤雰囲気下で840℃×100秒保持して行った。このときの鋼板両面での酸素目付量は0.5g/m2であり、C量は60ppmであった。 C: 0.070%, Si: 3.43%, Mn: 0.08%, Se: 0.02%, Al: 0.02%, N: 0.007%, P: 0.02%, Sn: 0.05% and Bi: 0.02%, the balance being Fe and A steel slab consisting of unavoidable impurities is manufactured by a continuous casting method, heated to a temperature of 1350 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm, hot-rolled sheet annealing at 1000 ° C. × 50 seconds And then perform an intermediate annealing at 1100 ° C for 20 seconds to obtain an intermediate plate thickness of 1.8 mm by primary cold rolling, and then finish the cold rolled sheet with a final plate thickness of 0.23 mm by secondary cold rolling. It was decarburized and annealed. Decarburization annealing was conducted held 50vol% H 2 -50vol% N 2 , 840 ℃ × 100 seconds under a humid atmosphere with a dew point of 35 ° C.. The surface weight of oxygen on both sides of the steel plate at this time was 0.5 g / m 2 , and the amount of C was 60 ppm.

次いで、焼鈍分離剤として表2のA〜Iの焼鈍分離剤を用いてスラリー状にして鋼板表面に塗布、乾燥した。さらに1200℃×10時間の純化処理を伴う仕上焼鈍を施した。仕上焼鈍時の雰囲気圧が500℃以上純化温度域までの平均で0.008Paとなるよう減圧調整した。その後、未反応分離剤を除去して、コーティングを塗布し、平坦化焼鈍を850℃×20sで炉内張力13.7MPaで行い、最終製品とした。   Subsequently, it was made into a slurry form using the annealing separator of A to I of Table 2 as an annealing separator, and it apply | coated and dried on the steel plate surface. Furthermore, finish annealing with a purification treatment at 1200 ° C. for 10 hours was applied. The pressure was adjusted so that the atmospheric pressure during finish annealing was 0.008 Pa on average at 500 ° C. or more until the purification temperature range. Thereafter, the unreacted separating agent is removed, a coating is applied, and flattening annealing is performed at 850 ° C. × 20 s under a furnace tension of 13.7 MPa to obtain a final product.

かくして得られた鋼板の被膜外観、仕上焼鈍後の酸素目付量および磁束密度を表2に示す。いずれの焼鈍分離剤を用いても、鋼板表面は均一に鏡面化しており、かつ高い磁気特性が得られている。   The appearance of the film of the steel plate thus obtained, the surface area of oxygen after finish annealing, and the magnetic flux density are shown in Table 2. The steel sheet surface is uniformly mirror-polished and high magnetic properties are obtained regardless of which annealing separator is used.

Figure 2019085632
Figure 2019085632

C:0.06%、Si:3.40%、Mn:0.07%、Se:0.02%、Cu:0.06%、Sb:0.03%およびCr:0.03%を含み、残部Feおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1400℃の温度に加熱した後、熱間圧延して、板厚2.4mmの熱延板とし、900℃×50秒の熱延板焼鈍を施した後、一次冷間圧延により1.5mmの中間板厚とし、1000℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚が0.20mmの冷延板に仕上げて脱炭焼鈍した。脱炭焼鈍は840℃×100秒の保持で、雰囲気は50vol%H2−50vol%N2で露点を各種変更して行うことにより、脱炭焼鈍後の酸素目付量、残留C量を各種変更した。 Continuous casting of steel slab containing C: 0.06%, Si: 3.40%, Mn: 0.07%, Se: 0.02%, Cu: 0.06%, Sb: 0.03% and Cr: 0.03% and the balance Fe and unavoidable impurities And heated to a temperature of 1400 ° C and hot rolled to a hot-rolled sheet with a thickness of 2.4 mm, subjected to hot-rolled sheet annealing at 900 ° C for 50 seconds, and then by primary cold rolling The intermediate plate thickness was 1.5 mm, and after intermediate annealing at 1000 ° C. for 20 seconds, secondary cold rolling was performed to finish a cold-rolled plate having a final plate thickness of 0.20 mm and decarburizing annealing. In the decarburization annealing is maintained for 840 ° C. × 100 seconds, the atmosphere by performing with various changing the dew point at 50vol% H 2 -50vol% N 2 , oxygen basis weight after decarburization annealing, various modifications residual C amount did.

次いで、焼鈍分離剤として表2のAの粉体をスラリー状にして鋼板表面に塗布、乾燥した。さらに1200℃×10時間の純化処理を伴う仕上焼鈍を施した。仕上焼鈍の雰囲気圧は、500℃以上1200℃までの平均で0.002Paであった。
その後、未反応分離剤を除去して、コーティングを塗布し、平坦化焼鈍を850℃×20sで行い、最終製品とした。
このときの被膜外観、仕上焼鈍後の酸素目付量(鋼板両面)、残留C量および磁束密度を表3に示す。脱炭焼鈍後の酸素目付量と残留C量を適正化することにより、さらに均一な膜なしと高い磁気特性が得られている。
Subsequently, the powder of A of Table 2 was made into a slurry form as an annealing separator, and it apply | coated and dried on the steel plate surface. Furthermore, finish annealing with a purification treatment at 1200 ° C. for 10 hours was applied. The atmosphere pressure of finish annealing was 0.002 Pa in an average of 500 ° C. or more and 1200 ° C.
Thereafter, the unreacted separating agent is removed, a coating is applied, and flattening annealing is performed at 850 ° C. for 20 seconds to obtain a final product.
The appearance of the film at this time, the amount of oxygen per unit area (both sides of the steel plate) after finish annealing, the amount of residual C and the magnetic flux density are shown in Table 3. By optimizing the amount of oxygen coverage and the amount of residual C after decarburization annealing, even more uniform film absence and high magnetic properties are obtained.

Figure 2019085632
Figure 2019085632

表4に示す各種成分を持つ鋼塊を、1350℃の温度に加熱した後、熱間圧延して、板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚が0.27mmの冷延板に仕上げて脱炭焼鈍した。脱炭焼鈍は50vol%H−50vol%N、露点を40℃〜55℃の範囲で調整することにより脱炭焼鈍後の酸素目付量と残留C量を変更し、湿潤雰囲気下で840℃×100秒保持して行った。 A steel ingot having various components shown in Table 4 was heated to a temperature of 1350 ° C. and hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm and subjected to hot-rolled sheet annealing at 1000 ° C. × 50 seconds After that, an intermediate plate thickness of 1.8 mm is obtained by primary cold rolling, and after intermediate annealing at 1100 ° C. for 20 seconds, secondary cold rolling is performed to finish a cold rolled sheet having a final thickness of 0.27 mm and decarburization. Annealed. Decarburization annealing changes the 50vol% H 2 -50vol% N 2 , oxygen basis weight and the residual C amount after decarburization annealing by adjusting the dew point in the range of 40 ℃ ~55 ℃, 840 ℃ in humidified atmosphere It went by holding for 100 seconds.

次いで、焼鈍分離剤として表2のIの粉体をスラリー状にして鋼板表面に塗布、乾燥した。さらに1200℃×10時間の純化処理を伴う仕上焼鈍を施した。仕上焼鈍の雰囲気は、500℃から1200℃までの平均雰囲気圧が0.0001Paとなるように減圧して行った。その後、未反応分離剤を除去して、コーティングを塗布し、平坦化焼鈍を850℃×20sで行い、最終製品とした。
このときの被膜外観、仕上焼鈍後の酸素目付量(鋼板両面)、残留C量および磁束密度を表4に示す。脱炭焼鈍後の酸素目付量が本発明の範囲内にあることにより、さらに均一な膜なしと高い磁気特性が得られている。
Subsequently, the powder of I of Table 2 was made into a slurry form as an annealing separator, and it apply | coated and dried on the steel plate surface. Furthermore, finish annealing with a purification treatment at 1200 ° C. for 10 hours was applied. The atmosphere for finish annealing was performed under reduced pressure so that the average atmospheric pressure from 500 ° C. to 1200 ° C. was 0.0001 Pa. Thereafter, the unreacted separating agent is removed, a coating is applied, and flattening annealing is performed at 850 ° C. for 20 seconds to obtain a final product.
The appearance of the film at this time, the amount of oxygen per unit area after finishing annealing (both sides of the steel plate), the amount of residual C and the magnetic flux density are shown in Table 4. When the oxygen coverage after decarburization annealing is within the range of the present invention, more uniform film absence and high magnetic properties are obtained.

Figure 2019085632
Figure 2019085632

Claims (6)

質量%で、
C:0.02〜0.08%以下、
Si:2.5〜4.5%および
Mn:0.03〜0.30%
を含み、残部Feおよび不可避的不純物の成分組成を有する鋼素材に、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶を兼ねた脱炭焼鈍を施してから焼鈍分離剤を塗布し、仕上焼鈍する一連の工程よりなる方向性電磁鋼板の製造方法であって、前記脱炭焼鈍後の鋼板表面における酸素目付量を0.8g/m以下かつ残留C量を150ppm以下とするとともに、前記仕上焼鈍は500℃以上での圧力が10Pa以下である雰囲気で行う方向性電磁鋼板の製造方法。
In mass%,
C: 0.02 to 0.08% or less,
Si: 2.5 to 4.5% and
Mn: 0.03 to 0.30%
A steel material having the composition of the balance Fe and the inevitable impurities, and made into a final thickness cold-rolled sheet by cold rolling once or twice or more with intermediate annealing interposed, and decarburizing that doubles as primary recrystallization. A method for producing a grain oriented electrical steel sheet comprising a series of steps of applying annealing separators after annealing and finish annealing, wherein the coated amount of oxygen on the steel sheet surface after decarburizing annealing is 0.8 g / m 2 or less And while making residual C amount into 150 ppm or less, the manufacturing method of the directionality electromagnetic steel sheet which performs the said finish annealing in the atmosphere whose pressure in 500 degreeC or more is 10 Pa or less.
前記焼鈍分離剤は、少なくとも50%が、Mg、Al、Zr、Mn、CaおよびSrのいずれか1種または2種以上のケイ酸塩、Mg、Fe、Ca、Mn、Ni、Zr、Coのいずれか1種または2種以上のアルミン酸塩、およびこれらの複合酸化物である請求項1に記載の方向性電磁鋼板の製造方法。   The annealing separator is at least 50% of one or more of Mg, Al, Zr, Mn, Ca and Sr, one or more of Mg, Fe, Ca, Mn, Ni, Zr, Co The method for producing a grain-oriented electrical steel sheet according to claim 1, which is any one or more kinds of aluminates and composite oxides thereof. 前記鋼素材は、前記成分組成に加えてさらに、質量%で、
Al:0.010〜0.040%および
N:0.003〜0.012%
を含有する請求項1または2に記載の方向性電磁鋼板の製造方法。
In addition to the above-mentioned component composition, the above-mentioned steel material is further in mass%,
Al: 0.010 to 0.040% and N: 0.003 to 0.012%
The manufacturing method of the directionality electromagnetic steel sheet of Claim 1 or 2 containing B.
前記鋼素材は、前記成分組成に加えてさらに、質量%で、
Se:0.003〜0.030%および
S:0.002〜0.030%
のいずれか1種または2種を含有する請求項1、2または3に記載の方向性電磁鋼板の製造方法。
In addition to the above-mentioned component composition, the above-mentioned steel material is further in mass%,
Se: 0.003 to 0.030% and S: 0.002 to 0.030%
The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3 containing any one or two of them.
前記鋼素材は、前記成分組成に加えてさらに、質量%で、
Ni:0.01〜1.50%、
Cr:0.01〜0.50%、
Cu:0.01〜0.50%、
P:0.005〜0.20%、
Sb:0.005〜0.20%、
Sn;0.005〜0.50%、
Bi:0.005〜0.10%、
Mo:0.005〜0.10%、
B:0.0002〜0.0025%、
Te:0.0005〜0.010%、
Nb:0.001〜0.010%、
V:0.001〜0.010%、
Ti:0.001〜0.010%および
Ta:0.001〜0.010%
のうちから選ばれる1種または2種以上を含有する請求項1から4のいずれかに記載の方向性電磁鋼板の製造方法。
In addition to the above-mentioned component composition, the above-mentioned steel material is further in mass%,
Ni: 0.01 to 1.50%,
Cr: 0.01 to 0.50%,
Cu: 0.01 to 0.50%,
P: 0.005 to 0.20%,
Sb: 0.005 to 0.20%,
Sn: 0.005 to 0.50%,
Bi: 0.005 to 0.10%,
Mo: 0.005 to 0.10%,
B: 0.0002 to 0.0025%,
Te: 0.0005 to 0.010%,
Nb: 0.001 to 0.010%,
V: 0.001 to 0.010%,
Ti: 0.001 to 0.010% and
Ta: 0.001 to 0.010%
The manufacturing method of the directionality electromagnetic steel sheet in any one of Claim 1 to 4 containing 1 type (s) or 2 or more types selected from them.
前記仕上焼鈍後の鋼板の表面における酸素目付量が0.5g/m以下かつ残留C量が40ppm以下である請求項1から5のいずれかに記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 5, wherein the surface area of the steel sheet after the finish annealing is 0.5 g / m 2 or less and the residual C amount is 40 ppm or less.
JP2017216673A 2017-11-09 2017-11-09 Grain-oriented electrical steel sheet and production method for the same Pending JP2019085632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017216673A JP2019085632A (en) 2017-11-09 2017-11-09 Grain-oriented electrical steel sheet and production method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017216673A JP2019085632A (en) 2017-11-09 2017-11-09 Grain-oriented electrical steel sheet and production method for the same

Publications (1)

Publication Number Publication Date
JP2019085632A true JP2019085632A (en) 2019-06-06

Family

ID=66763918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216673A Pending JP2019085632A (en) 2017-11-09 2017-11-09 Grain-oriented electrical steel sheet and production method for the same

Country Status (1)

Country Link
JP (1) JP2019085632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022168887A1 (en) * 2021-02-04 2022-08-11

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022168887A1 (en) * 2021-02-04 2022-08-11
WO2022168887A1 (en) * 2021-02-04 2022-08-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet production method and annealing separator used for same
JP7392848B2 (en) 2021-02-04 2023-12-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet and annealing separator used therein

Similar Documents

Publication Publication Date Title
EP2878687B1 (en) Method for producing grain-oriented electrical steel sheet
JP6327364B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2957644B1 (en) Method for producing grain-oriented electrical steel sheet
EP2644716B1 (en) Method for producing directional electromagnetic steel sheet
JP5954347B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP3530770A1 (en) Hot-rolled steel sheet for manufacturing electrical steel, and method for manufacturing same
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP6825681B2 (en) Electrical steel sheet and its manufacturing method
JP7299511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2019099827A (en) Manufacturing method of grain-oriented electromagnetic steel sheet
JP6624028B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6191568B2 (en) Method for producing grain-oriented electrical steel sheet
JP6579078B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP2019085632A (en) Grain-oriented electrical steel sheet and production method for the same
JP4810777B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2005264280A (en) Grain-oriented electromagnetic steel sheet having superior stamping property and peeling resistance of coating, and manufacturing method therefor
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP7299512B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2015086437A (en) Method for manufacturing oriented electromagnetic steel sheet
JP3508436B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003193141A (en) Method of producing grain oriented silicon steel sheet having excellent coating property