JP2003193141A - Method of producing grain oriented silicon steel sheet having excellent coating property - Google Patents
Method of producing grain oriented silicon steel sheet having excellent coating propertyInfo
- Publication number
- JP2003193141A JP2003193141A JP2001393133A JP2001393133A JP2003193141A JP 2003193141 A JP2003193141 A JP 2003193141A JP 2001393133 A JP2001393133 A JP 2001393133A JP 2001393133 A JP2001393133 A JP 2001393133A JP 2003193141 A JP2003193141 A JP 2003193141A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- grain
- hot
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、変圧器の鉄心など
に使用される方向性電磁鋼板の製造方法に関し、特にそ
の被膜特性の有利な改善を図ったものである。
【0002】
【従来の技術】方向性電磁鋼板の製造に際しては、イン
ヒビターと呼ばれる析出物を使用して、最終仕上焼鈍中
にゴス方位粒と呼ばれる{110}<001>方位粒を
優先的に二次再結晶させることが、一般的な技術として
使用されている。例えば、特公昭40−15644 号公報に
は、インヒビターとしてAlN,MnSを使用する方法が、
また特公昭51−13469 号公報には、インヒビターとして
MnS, MnSeを使用する方法が開示され、いずれも工業的
に実用化されている。これらとは別に、CuSeとBNを添
加する技術が特公昭58−42244 号公報に、またTi,Zr,
V等の窒化物を使用する方法が特公昭46−40855 号公報
に開示されている。
【0003】これらのインヒビターを用いる方法は、安
定して二次再結晶粒を発達させるのに有用な方法である
が、析出物を微細に分散させなければならないので、熱
延前のスラブ加熱を1300℃以上の高温で行うことが必要
とされる。しかしながら、スラブの高温加熱は、設備コ
ストが嵩むことの他、熱延時に生成するスケール量も増
大することから歩留りが低下し、また設備のメンテナン
スが煩雑になる等の問題がある。
【0004】これに対して、インヒビターを使用しない
で方向性電磁鋼板を製造する方法が、特開昭64−55339
号、特開平2−57635 号、特開平7−76732 号および特
開平7−197126号各公報に開示されている。これらの技
術に共通していることは、表面エネルギーを駆動力とし
て{110}面を優先的に成長させることを意図してい
ることである。表面エネルギー差を有効に利用するため
には、表面の寄与を大きくするために板厚を薄くするこ
とが必然的に要求される。例えば、特開昭64−55339 号
公報に開示の技術では板厚が 0.2mm以下に、また特開平
2−57635 号公報に開示の技術では板厚が0.15mm以下
に、それぞれ制限されている。しかしながら、現在使用
されている方向性電磁鋼板の板厚は0.20mm以上がほとん
どであるため、上記したような表面エネルギーを利用し
た方法で通常の方向性電磁鋼板を製造することは難し
い。
【0005】さらに、表面エネルギーを利用する方法で
は、表面酸化層の形成を抑制して最終仕上焼鈍を行わね
ばならず、たとえばMgO のような焼鈍分離剤を塗布焼鈍
することができないので、最終仕上焼鈍後に通常の方向
性電磁鋼板と同様な酸化物被膜を形成することはできな
い。例えば、珪酸化物被膜は、焼鈍分離剤としてMgOを
主成分として塗布した時に形成される被膜であるが、こ
の被膜は鋼板表面に張力を与えるだけでなく、その上に
さらに塗布焼き付けられるリン酸塩を主体とする絶縁張
力コーティングの密着性を確保する機能を担っている。
従って、かような珪酸化物がない場合には鉄損は大幅に
劣化する。
【0006】この点、珪酸化物被膜を形成し、かつイン
ヒビター成分を使用しないで、熱延圧下率を30%以上、
熱延板厚を 1.5mm以下とすることにより二次再結晶させ
る技術が特開平11−61263 号公報に、さらにゴス方位へ
の二次再結晶粒の方位集積を行う技術が特開2000−1293
56号公報に開示されており、表面酸化被膜がないために
鉄損が劣るという問題点が解決されつつある。しかしな
がら、上記の方法では、インヒビターを利用した従来の
方向性電磁鋼板と比較すると、良好な外観と十分な密着
性を有する珪酸化物被膜は形成できていない。
【0007】
【発明が解決しようとする課題】インヒビターとして利
用される代表的な析出物として、MnS,MnSe,AlN等が
挙げられるが、これらの成分を低減した場合の被膜形成
に及ぼす影響について調査を行ったところ、特にS,Se
を含有しない電磁鋼板では、脱炭焼純時に形成されるSi
O2を主体とするサブスケ−ルの形態が著しく変化してい
ることが判明した。すなわち、一般に、S,Seには内部
酸化を抑制する効果があるため、通常のインヒビターを
利用する方向性電磁鋼板に含まれる範囲のSやSeが含有
されていると、サブスケールは鋼板内部への酸化進行が
適度に抑制され、比較的薄くて緻密な被膜となるが、含
有されていない場合にはSiO2が鋼板内部へ樹状成長を主
体とした生成挙動を呈し、その後に焼鈍分離剤との反応
により形状された珪酸化物被膜には緻密さがなく、十分
な密着性を示さないことが見出された。
【0008】また、Alについても、同様に、Siの替わり
にAlが酸化されることによって相対的にSiO2の形成を抑
制する効果があると考えられ、従ってAl濃度を低減する
とSやSeを低減したときと同様に脱炭焼鈍時のサブスケ
ールの形態が劣化する。
【0009】従来から、脱炭焼鈍後のサブスケールの被
膜品質を改善する手法は数多く提案されているが、いず
れもインヒビター成分を含む鋼成分を前提としており、
サブスケールの形態を大幅に変更させるものではなかっ
た。
【0010】本発明は、上記の実状に鑑み開発されたも
ので、インヒビターを含まない鋼を素材として方向性電
磁鋼板を製造する場合に、該鋼板に対して優れた密着性
を有する珪酸化物被膜を形成することができる、被膜特
性に優れた方向性電磁鋼板の新規な製造方法を提案する
ことを目的とする。
【0011】
【課題を解決するための手段】以下、本発明の解明経緯
について説明する。さて、発明有らは、上記の問題を解
決すべく鋭意研究を重ねた結果、被膜形成に及ぼすCu元
素の添加効果に着目した。すなわち、インヒビター成分
を含まない成分系について脱炭焼鈍時のサブスケール形
成に及ぼすCu添加の影響について調査したところ、適量
のCuを添加すると、SiO2主体のサブスケールが、樹状を
主体とした形態から球状あるいはラメラ状を主体とした
薄くて緻密な酸化物被膜に変化することが見出されたの
である。
【0012】但し、出鋼成分中にCuを予め大量に添加す
ると、熱間圧延時に表面割れを起こし易く、最終製品の
表面性状を劣化させるおそれがある。従って、脱炭焼鈍
時に表面酸化に関与する表面近傍についてのみ、Cu濃度
を高めることが重要である。
【0013】なお、方向性電磁鋼板へのCu添加について
は、特開平4−341519号公報に、インヒビション効果を
補強する手段として鋼中へ添加する手法が、また特開平
3−240922号公報には、磁気特性と共にベンド特性を改
善する手段として、脱炭焼鈍後の鋼板表面にCuを付着さ
せる技術が開示されている。しかしながら、これらはい
ずれも、インヒビター成分を含む鋼成分を前提としたも
のであり、インヒビター成分を含まない成分系について
は何ら考慮が払われていない。
【0014】また、発明者らは、サブスケールの形態を
変化させる成分として、SiO2の主原料となるSi自身にも
着目した。すなわち、脱炭焼鈍にいたる方向性電磁鋼板
の一連の製造工程における熱延板焼純あるいは中間焼純
において、鋼板表面は酸化を受けて酸化スケールが形成
されると、最表層のSiは消費され、板厚中心部と比較し
て表面近傍のSi濃度は低下する。従って、このSiの表面
での濃度低下を利用することで、インヒビター成分を含
まない成分系の脱炭焼鈍時におけるSiO2の急速な成長を
抑制し、サブスケールの形態を樹状から球状あるいはラ
メラ状に変化させることが可能となる。
【0015】本発明は、上述したように、脱炭焼純直後
における鋼板表層部のCuおよびSi濃度分布が、脱炭焼鈍
時に形成されるサブスケールの形態に及ぼす影響につい
て研究を進めた末に、完成されたものである。
【0016】すなわち、本発明は、質量%で、C:0.08
%以下, Si:2.0 〜8.0 %、Mn:0.005 〜3.0 %および
Cu:0.005 〜0.3 %を含み、Alを 100 ppm未満、S, Se
をそれぞれ50ppm 以下に低減した溶鋼を用いて製造した
鋼スラブを、熱間圧延し、ついで必要に応じて熱延板焼
鈍を施したのち、1回または中間焼鈍を挟む2回以上の
冷間圧延を施し、ついで脱炭焼鈍後、焼鈍分離剤を適用
して最終仕上焼鈍を施すことからなる方向性電磁鋼板の
製造方法において、脱炭焼鈍直前の鋼板について、板厚
中心部に対する表層部のCuの濃度比を1.20以上とし、か
つSiの該濃度比を0.90以下としたことを特徴とする被膜
特性に優れた方向性電磁鋼板の製造方法である。
【0017】
【発明の実施の形態】以下、本発明を具体的に説明す
る。まず、本発明を由来するに至った実験結果について
説明する。なお、成分に関する「%」表示は特に断らな
い限り質量%(mass%)を意味する。C:40ppm 、Si:
3.40%、Mn:0.25%、Al:30ppm 、S:5ppm 、Se:5
ppm、N:10ppm およびCu:0.05%を含み、残部はFeお
よび不可避的不純物の組成になる鋼スラブを、連続鋳造
後、1150℃に加熱したのち、熱間圧延によって2.5mm厚
の熱延板とし、ついで1000℃で、酸素ポテンシャル〔P
(H2O)/P(H2)〕が0.50の雰囲気中にて熱延板焼鈍を施し
たのち、中間焼鈍を挟む2回の冷間圧延によって0.30mm
の最終板厚に仕上げた。この時、中間焼鈍の酸素ポテン
シャルはP(H2O)/P(H2)=0.35の一定とする一方、焼鈍
時間とその後の酸洗条件を種々に変更して、板厚方向に
わたって、種々のCuおよびSi濃度分布を持つ最終冷延板
を作製した。ついで、これらを 830℃の湿水素雰囲気中
にて脱炭焼鈍し、その後MgO を主体とする焼純分維剤を
塗布後、1120℃まで昇温する最終仕上焼鈍を行った。か
くして得られた最終焼鈍板のフォルステライト被膜の外
観と曲げ密着性について調べた結果を、CuおよびSiの板
厚中心部に対する表層部の濃度比について調べた結果と
併せて、表1に示す。
【0018】ここに、CuおよびSiの濃度比は、GDS
(Glow Discharge Spectrometer)を用いて板厚方向の強
度分布を調べ、板厚中心および表面における測定強度か
らバックグラウンドを除いた値の比で評価した。なお、
測定法としては、CuやSiの濃度を評価できる測定法であ
れば、GDSに限らず、SIMS(Secondary Ion Mass Spe
ctroscopy)等の物理分析やその他の化学分析であっても
かまわない。また、曲げ密着性については、種々の径を
持つ丸棒に試料を沿わせて曲げを行い、被膜がはく離し
ない最小直径で評価した。
【0019】
【表1】【0020】同表に示したとおり、Cuの濃度比が1.20以
上でかつ、Siの濃度比が0.90以下の場合に、被膜外観が
良好でしかも曲げ密着性に優れたフォルステライト被膜
が得られることが分かる。これに対し、Cu濃度比および
Si濃度比のいずれかが適合しない場合には、良好な外観
が得られなかったり、十分な曲げ密着性が得られなかっ
たりした。
【0021】ここに、表面におけるSi濃度分布は主に、
中間焼鈍時にSiを含む表面酸化物を形成させて、表面近
傍のSiを消費させたのち、形成させた表面酸化物を酸洗
もしくは研削等で除去することにより、制御が可能であ
る。また、上記した実験例のような焼鈍時間の調整だけ
でなく、焼鈍雰囲気の酸化性や焼鈍温度を変更すること
によっても制御可能で、中間焼鈍を行わない場合には、
熱延板焼鈍時にSi濃度を調整すればよい。
【0022】一方、表面におけるCuの濃化については、
上記焼鈍後に行われる酸洗条件が重要である。すなわ
ち、Cuは、酸化力のある硝酸等により溶解するが、酸化
力の弱い塩酸やリン酸等で酸洗処理を行うと、Cuは溶解
せずにFeのみが溶解するため、結果として表面における
Cuの濃度を相対的に高めることができる。但し、酸洗時
間が長かったり、濃度が高かったりした場合には、Cuの
濃度上昇には有利であるが、焼鈍時に形成された表面の
低Si層が酸洗によって減少してしまうので、適切な酸濃
度や液温度、処理時間を選択しなければならないのはい
うまでもない。
【0023】
【作用】本発明において、インヒビター成分を含まない
鋼において二次再結晶が発現する理由は必ずしも明らか
ではないが、以下のように考えている。さて、発明者ら
は、ゴス方位粒が二次再結晶する理由について鋭意研究
を重ねた結果、一次再結晶組織における方位差角が20〜
45°である粒界が重要な役割を果たしていることを発見
し、Acta Material 45巻(1997)1285頁に報告した。
【0024】すなわち、方向性電磁鋼板の二次再結晶直
前の状態である一次再結晶組織を解析し、様々な結晶方
位を持つ各々の結晶粒の周囲の粒界について、粒界方位
差角が20〜45°である粒界の全体に対する割合を調査し
たところ、ゴス方位が最も高い頻度を持つことが解明さ
れた。方位差角が20〜45°の粒界は、C. G. Dunnらによ
る実験データ(AIME Transaction 188巻(1949)368
頁)によれば、高エネルギー粒界である。この高エネル
ギー粒界は粒界内の自由空間が大きく乱雑な構造をして
いる。粒界拡散は粒界を通じて原子が移動する過程であ
るので、粒界中の自由空間の大きい、高エネルギー粒界
の方が粒界拡散は速い。二次再結晶は、インヒビターと
呼ばれる析出物の拡散律速による成長に伴って発現する
ことが知られている。高エネルギー粒界上の析出物は、
仕上焼鈍中に優先的に粗大化が進行するので、優先的に
ピン止めがはずれて粒界移動を開始し、ゴス粒が成長す
る機構を示した。
【0025】発明者らは、この研究をさらに発展させ
て、ゴス方位粒の二次再結晶の本質的要因は、一次再結
晶組織中の高エネルギー粒界の分布状態にあり、インヒ
ビターの役割は、高エネルギー粒界と他の粒界の移動速
度差を生じさせることにあることを見い出した。従っ
て、この理論に従えば、インヒビターを用いなくとも、
粒界の移動速度差を生じさせることができれば、二次再
結晶させることが可能となる。
【0026】さて、鋼中に存在する不純物元素は、粒界
とくに高エネルギー粒界に偏析し易いため、不純物元素
を多く含む場合には、高エネルギー粒界と他の粒界の移
動速度に差がなくなっているものと考えられる。この
点、素材の高純度化によって、上記したような不純物元
素の影響を排除することができれば、高エネルギー粒界
の構造に依存する本来的な移動速度差が顕在化して、ゴ
ス方位粒の二次再結晶が可能になるものと考えられる。
【0027】さらに、粒界移動速度差を利用して安定し
た二次再結晶を可能とするためには、一次再結晶組織を
できる限り均一な粒径分布に保つことが肝要である。と
いうのは、均一な粒径分布が保たれている場合には、ゴ
ス方位粒以外の結晶粒は粒界移動速度の小さい低エネル
ギー粒界の頻度が大きいため、粒成長が抑制されている
状態、いわゆるTexture Inhibition効果の発揮により、
粒界移動速度が大きい高エネルギー粒界の頻度が最大で
あるゴス方位粒の選択的粒成長としての二次再結晶が進
行するからである。これに対し、粒径分布が一様でない
場合には、隣接する結晶粒同士の粒径差を駆動力とする
正常粒成長が起こるため、粒界移動速度差と異なる要因
で成長する結晶粒が選択されるために、Texture Inhibi
tion効果が発揮されずに、ゴス方位粒の選択的粒成長が
起こらなくなる。
【0028】ところが、工業生産の上では、インヒビタ
ー成分を完全に除去することは実用上困難なので、不可
避的に含有されてしまうが、熱延加熱温度が高い場合に
は、加熱後に固溶した微量不純物としてのインヒビター
成分が熱延時に不均一に微細析出する結果、粒界移動が
局所的に抑制されて粒径分布が極めて不均一になり、二
次再結晶の発達が阻害される。そのためインヒビター成
分を低減することが第一であるが、不可避的に混入する
微量のインヒビター成分の微細析出を回避して無害化す
るためには、熱延前の加熱温度を圧延可能な範囲で、で
きる限り低めに抑えることが有効である。
【0029】次に、本発明において、素材であるスラブ
の成分組成を前記の範囲に限定した理由について説明す
る。
C:0.08%以下
C量が0.08%を超えると、磁気時効の起こらない 50ppm
以下まで低減することが困難になるので、Cは0.08%以
下に制限した。
Si:2.0 〜8.0 %
Siは、鋼の電気抵抗を増大し鉄損を低減するのに有用な
元素であるので、2.0%以上含有させる。しかしなが
ら、含有量が 8.0%を超えると加工性が著しく低下して
冷間圧延が困難となる。そこでSi量は 2.0〜8.0 %の範
囲に限定した。
Mn:0.005 〜3.0 %
Mnは、熱間加工性を改善するために有用な元素である
が、含有量が 0.005%未満ではその添加効果に乏しく、
一方 3.0%を超えると磁束密度の低下を招くので、Mn量
は 0.005〜3.0 %の範囲とする。
【0030】Cu:0.005 〜0.3 %
Cuは、上述した被膜改善効果を得るためには、少なくと
も 0.005%含有させる必要があるが、0.3 %を超えると
熱間圧延時に表面割れが生じ、製品の表面性状が劣化す
るおそれがあるので、Cu量は 0.005〜0.3 %の範囲に限
定した。
【0031】Al:100 ppm 未満、S, Seはそれぞれ 50p
pm以下
また、不純物元素であるAlは 100 ppm未満、S, Seにつ
いても 50ppm以下、好ましくは 30ppm以下に低減するこ
とが、良好に二次再結晶させる上で不可欠である。その
他、Nや、窒化物形成元素であるTi, Nb, B, Ta, V等
についても、それぞれ50 ppm以下に低減することが鉄損
の劣化を防止し、良好な加工性を確保する上で有効であ
る。
【0032】以上、必須成分および抑制成分について説
明したが、本発明では、その他にも以下に述べる元素を
適宜含有させることができる。
Ni:0.005 〜1.50%、Sn:0.01〜0.50%、Sb:0.005 〜
0.50%、P:0.005 〜0.50%、Cr:0.01〜1.50%のうち
から選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させる有用
元素である。しかしながら、含有量が0.01%未満では磁
気特性の向上量が小さく、一方1.50%を超えると二次再
結晶が不安定になり磁気特性が劣化するので、Ni量は
0.005〜1.50%とした。また、Sn,Sb,P, Crはそれぞ
れ、鉄損の向上に有用な元素であるが、いずれも上記範
囲の下限値に満たないと鉄損の向上効果が小さく、一方
上限量を超えると二次再結晶粒の発達が阻害されるの
で、それぞれSn:0.01〜0.50%,Sb:0.005 〜0.50%,
P:0.005 〜0.50%,Cr:0.01〜1.5 %の範囲で含有さ
せる必要がある。
【0033】次に、本発明の製造工程について説明す
る。上記の好適成分組成に調整した溶鋼を、転炉、電気
炉などを用いる公知の方法で精錬し、必要があれば真空
処理などを施したのち、通常の造塊法や連続鋳造法を用
いてスラブを製造する。また、直接鋳造法を用いて 100
mm以下の厚さの薄鋳片を直接製造してもよい。スラブ
は、通常の方法で加熱して熱間圧延するが、鋳造後、加
熱せずに直ちに熱延に供してもよい。また、薄鋳片の場
合には、熱間圧延を行っても良いし、熱間圧延を省略し
てそのまま以後の工程に進めてもよい。熱間圧延前のス
ラブ加熱温度は1250℃以下に抑えることが、熱延時に生
成するスケール量を低減する上で特に望ましい。また、
結晶組織の微細化および不可避的に混入するインヒビタ
ー成分の弊害を無害化して、均一な整粒一次再結晶組織
を実現する意味でもスラブ加熱温度の低温化が望まし
い。
【0034】ついで、必要に応じて熱延板焼鈍を施す。
ゴス組織を製品板において高度に発達させるためには、
熱延板焼鈍温度は 800〜1100℃の範囲が好適である。と
いうのは、熱延板焼鈍温度が 800℃未満では熱延でのバ
ンド組織が残留し、整粒の一次再結晶組織を実現するこ
とが困難になる結果、二次再結晶の発達が阻害され、一
方熱延板焼鈍温度が1100℃を超えると、不可避的に混入
するインヒビター成分が固溶し冷却時に不均一に再析出
するために、整粒一次再結晶組繊を実現することが困難
となり、やはり二次再結晶の発達が阻害されるからであ
る。また、熱延板焼鈍温度が1100℃を超えると、熱延板
焼鈍後の粒径が粗大化しすぎることも、整粒の一次再結
晶組織を実現する上で極めて不利である。
【0035】熱延板焼鈍後、1回または中間焼鈍を挟む
2回以上の冷間圧延を施したのち、脱炭焼鈍を施して、
Cを磁気時効の起こらない 50ppm以下好ましくは 30ppm
以下まで低減する。上記の冷間圧延において、圧延温度
を 100〜250 ℃に上昇させて圧延を行うことや、冷間圧
延の途中で 100〜250 ℃の範囲での時効処理を1回また
は複数回行うことが、ゴス組織を発達させる上で有効で
ある。
【0036】最終冷延後の脱炭焼鈍は、湿潤雰囲気を使
用して 700〜1000℃の温度で行うことが好適である。ま
た、脱炭焼鈍後に浸珪法によってにSi量を増加させる技
術を併用してもよい。ここに、上記した脱炭焼鈍に至る
までに、熱延板焼鈍や中間焼鈍における焼鈍温度、時
間、雰囲気酸化度、さらには酸洗条件を適切に制御する
ことによって、板厚中心部に対する表層部のCu濃度比を
1.20以上、またSi濃度比を0.90以下に制御することが重
要である。なお、本発明において、鋼板の表層部とは、
板厚1/10 深さまでをいい、例えば板厚が0.30mmの場
合、鋼板の表面から30μm までを意味する。
【0037】その後、焼鈍分離剤を適用して、最終仕上
焼鈍を施すことにより二次再結晶組織を発達させるとと
もに珪酸化物被膜を形成させる。最終仕上焼鈍は、二次
再結晶発現のために 800℃以上で行う必要があるが、80
0 ℃までの加熱速度は磁気特性に大きな影響を与えない
ので任意の条件でよい。
【0038】その後、平坦化焼鈍を施して形状を矯正す
る。ついで、上記の平坦化焼鈍後、鉄損の改善を目的と
して、鋼板表面に張力を付与する絶縁コーティングを施
すことが有利である。さらに、公知の磁区細分化技術を
適用できることはいうまでもない。
【0039】
【実施例】実施例1
C:200ppm, Si:3.30%, Mn:0.20%, Al:25ppm ,
S:4ppm , Se:5ppm,N:12ppm およびCu:0.10%を
含み、残部はFeおよび不可避的不純物の組成になる鋼ス
ラブを、連続鋳造後、熱間圧延し、ついで 950℃、60秒
の熱延板焼鈍を施したのち、酸洗し、冷間圧延によって
最終板厚:0.35mmに仕上げた。この時、熱延板焼鈍にお
ける焼鈍温度と酸素ポテンシャルおよび熱延板焼鈍後の
酸洗条件を種々に変更して、板厚方向にわたり種々のCu
およびSi濃度分布を持つ最終冷延板を作製した。なお、
酸洗温度は80℃、酸洗時間は60秒の一定とした。つい
で、これらを湿水素雰囲気中にて 830℃で脱炭焼鈍し、
その後MgOを主体とする焼鈍分離剤を塗布してから1120
℃まで昇温する最終仕上焼鈍を行った。かくして得られ
た最終焼鈍板のフォルステライト被膜の外観と曲げ密着
性について調べた結果を、CuおよびSiの板厚中心部に対
する表層部の濃度比についてGDSを用いて調べた結果
と併せて、表2に示す。
【0040】
【表2】
【0041】同図から明らかなように、Cu濃度比が1.20
以上でかつSi濃度比が0.90以下の試料No.1, 2では、均
一で良好な外観を呈し、また曲げ密着性にも優れたフォ
ルステライト被膜をうることができた。これに対し、熱
延板焼鈍時のスケール形成が不十分であったり、その後
の酸洗条件が不適切であった試料No.3〜5はいずれも、
Cu濃度比やSi濃度比が適正範囲から外れたため、全体に
フォステライト膜が薄く、または形成が不完全であり、
被膜密着性にも劣っていた。
【0042】実施例2
C:300ppm,Si:3.40%,Mn:0.30%,Al:40ppm ,
S:5ppm ,Se:4ppm,N:15ppm およびCu:0.25%
を含み、残部はFeおよび不可避的不純物の組成になる鋼
スラブを、連続鋳造後、熱間圧延し、ついで酸素ポテン
シャル〔P(H2O)/P(H2)〕が0.60の雰囲気中にて1000
℃, 60秒の熱延板焼鈍を施したのち、中間焼鈍を挟む2
回の冷間圧延によって、最終板厚:0.30mmに仕上げた。
この時、中間焼鈍条件を1000℃、60秒とし、焼鈍時の酸
素ポテンシャルとその後の酸洗条件を種々に変更して、
板厚方向にわたり種々のCuおよびSi濃度分布を持つ最終
冷延板を作製した。ついで、これらを湿水素雰囲気中に
て 840℃で脱炭焼鈍し、その後CaOを主体とする焼鈍分
離剤を塗布してから1100℃まで昇温する最終仕上焼鈍を
行った。かくして得られた最終焼鈍板の珪酸化物被膜の
外観と曲げ密着性について調べた結果を、CuおよびSiの
板厚中心部に対する表層部の濃度比についてGDSを用
いて調べた結果と併せて、表3に示す。
【0043】
【表3】【0044】同表に示したとおり、Cu濃度比およびSi濃
度比が本発明の範囲を満足する試料No.1, 2はいずれ
も、均一で良好な外観を呈し、また曲げ密着性にも優れ
た珪酸化物被膜を得ることができた。これに対し、中間
焼鈍時のスケール形成が不十分であったり、その後の酸
洗が過剰となり、Cu濃度比やSi濃度比が適正範囲から外
れた試料No.3〜5はいずれも、珪酸化物被膜が薄かった
り、ほとんど形成されず不完全であり、また被膜密着性
にも劣っていた。
【0045】
【発明の効果】かくして、本発明によれば、インヒビタ
ーを利用せずに二次再結晶を生じさせる方法によって方
向性電磁鋼板を製造する場合に、板厚中心部に対する表
層部のCuの濃度比およびSi濃度比を適正に制御すること
により、被膜外観が良好で、しかも被膜密着性に優れた
珪酸化物被膜をそなえる方向性電磁鋼板を安定して得る
ことができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used for a transformer iron core and the like, and particularly to improve the coating properties thereof. Is. [0002] In the production of grain-oriented electrical steel sheets, precipitates called inhibitors are used to preferentially remove {110} <001> -oriented grains called goth-oriented grains during final finish annealing. Subsequent recrystallization is used as a common technique. For example, Japanese Patent Publication No. 40-15644 discloses a method using AlN, MnS as an inhibitor.
Japanese Patent Publication No. 51-13469 discloses an inhibitor.
A method using MnS and MnSe is disclosed, and both are industrially put into practical use. Apart from these, a technique for adding CuSe and BN is disclosed in Japanese Patent Publication No. 58-42244, and Ti, Zr,
A method using a nitride such as V is disclosed in Japanese Patent Publication No. 46-40855. [0003] The method using these inhibitors is a useful method for stably developing secondary recrystallized grains. However, since the precipitates must be finely dispersed, slab heating before hot rolling is performed. It is necessary to carry out at a high temperature of 1300 ° C or higher. However, high-temperature heating of the slab has problems such as an increase in equipment cost and an increase in the amount of scale generated during hot rolling, resulting in a decrease in yield and complicated maintenance of the equipment. On the other hand, a method for producing a grain-oriented electrical steel sheet without using an inhibitor is disclosed in JP-A-64-55339.
No. 2-57635, No. 7-76732 and No. 7-197126. What is common to these techniques is that the {110} plane is intended to grow preferentially using surface energy as the driving force. In order to effectively use the surface energy difference, it is necessary to reduce the plate thickness in order to increase the contribution of the surface. For example, in the technique disclosed in Japanese Patent Laid-Open No. 64-55339, the thickness is limited to 0.2 mm or less, and in the technique disclosed in Japanese Patent Laid-Open No. 2-57635, the thickness is limited to 0.15 mm or less. However, since the thickness of the grain-oriented electrical steel sheet that is currently used is almost 0.20 mm or more, it is difficult to produce a normal grain-oriented electrical steel sheet by the method using the surface energy as described above. Furthermore, in the method using the surface energy, the final finish annealing must be performed while suppressing the formation of the surface oxide layer. For example, an annealing separator such as MgO cannot be applied and annealed. An oxide film similar to that of a normal grain-oriented electrical steel sheet cannot be formed after annealing. For example, a silicate coating is a coating formed when MgO is applied as a main component as an annealing separator, but this coating not only gives tension to the steel sheet surface, but also a phosphate that is applied and baked on it. It is responsible for ensuring the adhesion of the insulation tension coating mainly composed of.
Therefore, when there is no such silicate, the iron loss is greatly deteriorated. In this respect, the hot rolling reduction ratio is 30% or more without forming a silicate film and using an inhibitor component.
A technique for performing secondary recrystallization by setting the hot-rolled sheet thickness to 1.5 mm or less is disclosed in JP-A-11-61263, and a technique for performing orientation accumulation of secondary recrystallized grains in the Goss orientation is disclosed in JP-A 2000-1293.
No. 56 discloses a problem that iron loss is inferior because there is no surface oxide film. However, in the above method, a silicate film having a good appearance and sufficient adhesion cannot be formed as compared with a conventional grain-oriented electrical steel sheet using an inhibitor. [0007] Typical precipitates used as inhibitors include MnS, MnSe, AlN and the like. The effect of reducing these components on film formation is investigated. In particular, S, Se
In the case of electrical steel sheets that do not contain Si,
It was found that the shape of the subscale mainly composed of O 2 changed significantly. That is, in general, since S and Se have an effect of suppressing internal oxidation, if S or Se in a range included in a grain-oriented electrical steel sheet using a normal inhibitor is contained, the subscale moves into the steel sheet. Oxidation progress is moderately suppressed, resulting in a relatively thin and dense film, but when it is not contained, SiO 2 exhibits a generation behavior mainly consisting of dendritic growth inside the steel sheet, and then an annealing separator. It was found that the silicate coating formed by the reaction with the above is not dense and does not show sufficient adhesion. Similarly, Al is considered to have an effect of relatively suppressing the formation of SiO 2 by oxidizing Al instead of Si. Therefore, when Al concentration is reduced, S and Se are reduced. As with the reduction, the subscale form during decarburization annealing deteriorates. Conventionally, many methods for improving the quality of the subscale coating after decarburization annealing have been proposed, but all of them are premised on steel components including inhibitor components.
It did not change the form of the subscale significantly. The present invention has been developed in view of the above circumstances, and in the case of producing a grain-oriented electrical steel sheet using a steel containing no inhibitor as a raw material, a silicate film having excellent adhesion to the steel sheet. It is an object of the present invention to propose a novel method for producing a grain-oriented electrical steel sheet having excellent coating properties. Means for Solving the Problems The elucidation process of the present invention will be described below. As a result of intensive studies to solve the above problems, the inventors have focused on the effect of Cu element addition on the film formation. In other words, were investigated the effect of Cu addition on subscale formed during decarburization annealing the component system containing no inhibitor component, the addition of an appropriate amount of Cu, the sub-scale SiO 2 principal was mainly dendritic It was found that the shape changed to a thin and dense oxide film mainly composed of spherical or lamellar shapes. However, if a large amount of Cu is added in advance to the steel output component, surface cracking is likely to occur during hot rolling, and the surface properties of the final product may be deteriorated. Therefore, it is important to increase the Cu concentration only in the vicinity of the surface involved in surface oxidation during decarburization annealing. As for the addition of Cu to the grain-oriented electrical steel sheet, Japanese Patent Laid-Open No. 4-341519 discloses a method of adding into steel as a means for reinforcing the inhibition effect, and Japanese Patent Laid-Open No. 3-240922. Discloses a technique for adhering Cu to the surface of a steel sheet after decarburization annealing as means for improving the bend characteristics as well as the magnetic characteristics. However, all of these are based on steel components including an inhibitor component, and no consideration is given to a component system that does not include an inhibitor component. The inventors have also paid attention to Si itself, which is the main raw material for SiO 2 , as a component that changes the subscale form. In other words, in hot-rolled sheet annealing or intermediate annealing in a series of production processes of grain-oriented electrical steel sheets leading to decarburization annealing, when the steel sheet surface is oxidized to form an oxide scale, the outermost layer Si is consumed. The Si concentration in the vicinity of the surface is lower than that in the central part of the plate thickness. Therefore, by utilizing this decrease in the concentration of Si on the surface, rapid growth of SiO 2 during decarburization annealing of component systems that do not contain inhibitor components is suppressed, and the subscale morphology is changed from dendritic to spherical or lamellar. It becomes possible to change the shape. As described above, the present invention has been studied on the influence of the Cu and Si concentration distribution in the surface layer of the steel sheet immediately after decarburization annealing on the form of the subscale formed during decarburization annealing. It has been completed. That is, in the present invention, the mass% is C: 0.08.
%, Si: 2.0 to 8.0%, Mn: 0.005 to 3.0% and
Cu: 0.005 to 0.3%, Al less than 100 ppm, S, Se
Steel slabs manufactured using molten steel each reduced to 50 ppm or less are hot-rolled and then subjected to hot-rolled sheet annealing as necessary, followed by one or more cold rollings sandwiching intermediate annealing Then, after decarburization annealing, in the method of manufacturing a grain-oriented electrical steel sheet that is subjected to final finish annealing by applying an annealing separator, the steel layer immediately before decarburization annealing, the surface layer portion Cu to the center of the plate thickness This is a method for producing a grain-oriented electrical steel sheet having excellent coating properties, characterized in that the concentration ratio of Si is 1.20 or more and the concentration ratio of Si is 0.90 or less. DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. First, the experimental results that led to the present invention will be described. In addition, unless otherwise indicated, the "%" display regarding a component means the mass% (mass%). C: 40 ppm, Si:
3.40%, Mn: 0.25%, Al: 30ppm, S: 5ppm, Se: 5
A steel slab containing ppm, N: 10 ppm and Cu: 0.05%, the balance being Fe and inevitable impurities, is heated to 1150 ° C after continuous casting, and then hot-rolled to a thickness of 2.5 mm by hot rolling Then, at 1000 ° C., the oxygen potential [P
(H 2 O) / P (H 2 )] after hot-rolled sheet annealing in an atmosphere of 0.50, then 0.30 mm by cold rolling twice with intermediate annealing
Finished to the final thickness. At this time, the oxygen potential of the intermediate annealing is kept constant at P (H 2 O) / P (H 2 ) = 0.35, while the annealing time and the subsequent pickling conditions are variously changed over the thickness direction. The final cold-rolled sheet with Cu and Si concentration distribution was prepared. Subsequently, these were decarburized and annealed in a wet hydrogen atmosphere at 830 ° C., and after that, a final finishing annealing was performed in which the temperature was raised to 1120 ° C. after application of a sintered pure fiber mainly composed of MgO. The results of examining the appearance and bending adhesion of the forsterite film of the final annealed plate thus obtained are shown in Table 1 together with the results of examining the concentration ratio of the surface layer to the center of the thickness of Cu and Si. Here, the concentration ratio of Cu and Si is GDS.
(Glow Discharge Spectrometer) was used to examine the strength distribution in the plate thickness direction, and the evaluation was made by the ratio of the values obtained by removing the background from the measured strength at the plate thickness center and the surface. In addition,
The measurement method is not limited to GDS as long as it can evaluate the concentration of Cu or Si, but SIMS (Secondary Ion Mass Spe
ctroscopy) or other chemical analysis or other chemical analysis. The bending adhesion was evaluated by the minimum diameter at which the film was not peeled off by bending the sample along a round bar having various diameters. [Table 1] As shown in the table, when the Cu concentration ratio is 1.20 or more and the Si concentration ratio is 0.90 or less, a forsterite film having good coating appearance and excellent bending adhesion can be obtained. I understand. In contrast, the Cu concentration ratio and
When either of the Si concentration ratios was not suitable, a good appearance could not be obtained or sufficient bending adhesion could not be obtained. Here, the Si concentration distribution on the surface is mainly
Control can be performed by forming a surface oxide containing Si during intermediate annealing, consuming Si near the surface, and then removing the formed surface oxide by pickling or grinding. Moreover, not only the adjustment of the annealing time as in the above-described experimental example, but also control is possible by changing the oxidizing property and annealing temperature of the annealing atmosphere.
What is necessary is just to adjust Si density | concentration at the time of hot-rolled sheet annealing. On the other hand, regarding the concentration of Cu on the surface,
The pickling conditions performed after the annealing are important. That is, Cu dissolves with nitric acid having oxidizing power, but when pickling with hydrochloric acid or phosphoric acid having weak oxidizing power, Cu does not dissolve but only Fe dissolves.
The concentration of Cu can be relatively increased. However, if the pickling time is long or the concentration is high, it is advantageous for increasing the Cu concentration, but the surface low Si layer formed during annealing is reduced by pickling, so it is appropriate. Needless to say, the acid concentration, liquid temperature, and treatment time must be selected. In the present invention, the reason why secondary recrystallization occurs in steel containing no inhibitor component is not necessarily clear, but is considered as follows. Now, as a result of intensive studies on the reason why Goss orientation grains undergo secondary recrystallization, the inventors have found that the orientation difference angle in the primary recrystallization structure is 20 to 20
It was discovered that the grain boundaries at 45 ° play an important role and reported in Acta Material Vol. 45 (1997), p. 1285. That is, the primary recrystallization structure, which is the state immediately before the secondary recrystallization of the grain-oriented electrical steel sheet, is analyzed, and the grain boundary orientation difference angle is about the grain boundary around each crystal grain having various crystal orientations. When the ratio of the grain boundaries to 20 to 45 ° with respect to the whole was investigated, it was clarified that the Goss orientation had the highest frequency. Grain boundaries with misorientation angles of 20-45 ° are experimental data by CG Dunn et al. (AIME Transaction 188 (1949) 368
According to page), it is a high energy grain boundary. This high energy grain boundary has a messy structure with a large free space within the grain boundary. Grain boundary diffusion is a process in which atoms move through the grain boundary. Therefore, grain boundary diffusion is faster in a high energy grain boundary with a large free space in the grain boundary. It is known that secondary recrystallization occurs with the growth of precipitates called inhibitors, which is controlled by diffusion rate. Precipitates on high energy grain boundaries
Since coarsening preferentially progresses during finish annealing, the pinning is preferentially released and grain boundary migration starts, indicating the mechanism by which goth grains grow. The inventors have further developed this study, and the essential factor of secondary recrystallization of Goss-oriented grains is the distribution of high energy grain boundaries in the primary recrystallization structure, and the role of inhibitors is It has been found that there is a difference in moving speed between high energy grain boundaries and other grain boundaries. Therefore, according to this theory, without using an inhibitor,
If a difference in the moving speed of the grain boundary can be generated, secondary recrystallization can be performed. The impurity elements present in the steel are likely to segregate at the grain boundaries, particularly at high energy grain boundaries, and therefore when there are many impurity elements, there is a difference in the moving speed between the high energy grain boundaries and other grain boundaries. It is thought that is missing. In this regard, if the influence of the impurity elements as described above can be eliminated by increasing the purity of the material, the inherent difference in the moving speed depending on the structure of the high energy grain boundary becomes obvious, and the two goss-oriented grains are It is considered that next recrystallization is possible. Furthermore, in order to enable stable secondary recrystallization using the grain boundary moving speed difference, it is important to keep the primary recrystallization structure as uniform as possible in the particle size distribution. This is because, when a uniform grain size distribution is maintained, the crystal grains other than the Goss orientation grains have a low frequency of low energy grain boundaries with a low grain boundary moving speed, and thus the grain growth is suppressed. By so-called Texture Inhibition effect,
This is because secondary recrystallization proceeds as selective grain growth of goth-oriented grains having the highest frequency of high energy grain boundaries with a high grain boundary moving speed. On the other hand, when the grain size distribution is not uniform, normal grain growth using the grain size difference between adjacent crystal grains as a driving force occurs. Texture Inhibi to be selected
The selective effect of goth-oriented grains does not occur unless the effect is exhibited. However, in industrial production, it is practically difficult to completely remove the inhibitor component, so it is inevitably contained. However, when the hot rolling heating temperature is high, a small amount of solid solution dissolved after heating is present. As a result of the non-uniform fine precipitation of the inhibitor component as an impurity during hot rolling, grain boundary migration is locally suppressed, the particle size distribution becomes extremely nonuniform, and the development of secondary recrystallization is inhibited. Therefore, it is the first to reduce the inhibitor component, but in order to avoid the fine precipitation of the trace amount of the inhibitor component inevitably mixed, in order to make it harmless, the heating temperature before hot rolling is within a rollable range, It is effective to keep it as low as possible. Next, the reason why the component composition of the material slab is limited to the above range in the present invention will be described. C: 0.08% or less Magnetic aging does not occur when the C content exceeds 0.08% 50ppm
C is limited to 0.08% or less because it is difficult to reduce it to below. Si: 2.0 to 8.0% Si is an element useful for increasing the electrical resistance of steel and reducing iron loss, so 2.0% or more is contained. However, if the content exceeds 8.0%, the workability is remarkably lowered and cold rolling becomes difficult. Therefore, the Si content is limited to the range of 2.0 to 8.0%. Mn: 0.005 to 3.0% Mn is an element useful for improving the hot workability, but if the content is less than 0.005%, its addition effect is poor,
On the other hand, if it exceeds 3.0%, the magnetic flux density will be reduced, so the Mn content should be in the range of 0.005 to 3.0%. Cu: 0.005 to 0.3% Cu is required to be contained at least 0.005% in order to obtain the above-described film improvement effect. However, if it exceeds 0.3%, surface cracks occur during hot rolling, and the surface of the product. Since the properties may deteriorate, the Cu content is limited to a range of 0.005 to 0.3%. Al: less than 100 ppm, S and Se are 50p each
In addition, it is indispensable to reduce the content of Al, which is an impurity element, to less than 100 ppm, and to reduce S and Se to 50 ppm or less, preferably 30 ppm or less, in order to achieve good secondary recrystallization. In addition, N and nitride-forming elements such as Ti, Nb, B, Ta, and V can be reduced to 50 ppm or less to prevent deterioration of iron loss and ensure good workability. It is valid. As described above, the essential component and the suppressing component have been described. However, in the present invention, other elements described below can be appropriately contained. Ni: 0.005 to 1.50%, Sn: 0.01 to 0.50%, Sb: 0.005 to
At least one Ni selected from 0.50%, P: 0.005 to 0.50%, and Cr: 0.01 to 1.50% is a useful element that improves the magnetic properties by improving the hot rolled sheet structure. However, if the content is less than 0.01%, the improvement in magnetic properties is small. On the other hand, if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate.
0.005 to 1.50%. Sn, Sb, P, and Cr are elements useful for improving the iron loss. If any of the elements does not satisfy the lower limit of the above range, the effect of improving the iron loss is small. Since the development of the next recrystallized grains is inhibited, Sn: 0.01 to 0.50%, Sb: 0.005 to 0.50%,
It is necessary to contain P in the range of 0.005 to 0.50% and Cr: 0.01 to 1.5%. Next, the manufacturing process of the present invention will be described. The molten steel adjusted to the above preferred component composition is refined by a known method using a converter, an electric furnace, etc., and if necessary, after vacuum treatment, etc., using a normal ingot forming method or continuous casting method Manufacture slabs. Also, using direct casting method, 100
A thin cast slab having a thickness of mm or less may be directly produced. The slab is heated and hot-rolled by a normal method, but may be subjected to hot rolling immediately after casting without being heated. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the subsequent process may be performed as it is. It is particularly desirable to suppress the slab heating temperature before hot rolling to 1250 ° C. or less in order to reduce the amount of scale generated during hot rolling. Also,
It is desirable to lower the slab heating temperature in order to realize a uniform sized primary recrystallized structure by making the crystal structure finer and the harmful effects of the unavoidably mixed inhibitor components. Next, hot-rolled sheet annealing is performed as necessary.
In order to develop Goss tissue in the product board,
The hot-rolled sheet annealing temperature is preferably in the range of 800 to 1100 ° C. This is because when the annealing temperature of the hot-rolled sheet is less than 800 ° C, the band structure in the hot-rolling remains and it becomes difficult to realize the primary recrystallized structure of the sized particles, thereby inhibiting the development of secondary recrystallization. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C, the unavoidably mixed inhibitor components dissolve and re-precipitate non-uniformly during cooling, making it difficult to achieve a sized primary recrystallized fabric. This is also because the development of secondary recrystallization is inhibited. Further, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after hot-rolled sheet annealing is too coarse, which is extremely disadvantageous for realizing a primary recrystallized structure of sized particles. After the hot-rolled sheet annealing, the steel sheet is subjected to cold rolling at least once with one or more intermediate annealings, followed by decarburization annealing.
C does not cause magnetic aging 50ppm or less, preferably 30ppm
Reduce to: In the cold rolling described above, the rolling temperature is raised to 100 to 250 ° C, or the aging treatment in the range of 100 to 250 ° C is performed once or a plurality of times during the cold rolling, It is effective in developing Gothic tissue. The decarburization annealing after the final cold rolling is preferably performed at a temperature of 700 to 1000 ° C. using a humid atmosphere. Moreover, you may use together the technique which increases Si amount by the siliconization method after decarburization annealing. Here, by appropriately controlling the annealing temperature, time, atmospheric oxidation degree, and pickling conditions in hot-rolled sheet annealing and intermediate annealing until the above decarburization annealing, the surface layer part with respect to the center part of the sheet thickness Cu concentration ratio
It is important to control 1.20 or more and Si concentration ratio to 0.90 or less. In the present invention, the surface layer portion of the steel sheet is
Thickness up to 1/10 depth. For example, when the thickness is 0.30mm, it means up to 30μm from the surface of the steel plate. Thereafter, a secondary recrystallization structure is developed and a silicate film is formed by applying a final finish annealing by applying an annealing separator. Final finish annealing must be performed at 800 ° C or higher for secondary recrystallization.
The heating rate up to 0 ° C. does not have a great influence on the magnetic properties, so any conditions are acceptable. Thereafter, flattening annealing is performed to correct the shape. Then, after the above-described flattening annealing, for the purpose of improving the iron loss, it is advantageous to provide an insulating coating that imparts tension to the steel sheet surface. Furthermore, it goes without saying that known magnetic domain refinement techniques can be applied. Example 1 C: 200 ppm, Si: 3.30%, Mn: 0.20%, Al: 25 ppm,
A steel slab containing S: 4 ppm, Se: 5 ppm, N: 12 ppm and Cu: 0.10%, with the balance being Fe and inevitable impurities, was hot-rolled after continuous casting, and then 950 ° C. for 60 seconds. After hot-rolled sheet annealing, it was pickled and finished to a final sheet thickness of 0.35 mm by cold rolling. At this time, the annealing temperature and oxygen potential in the hot-rolled sheet annealing and the pickling conditions after the hot-rolled sheet annealing were changed variously, and various kinds of Cu in the sheet thickness direction were changed.
And the final cold rolled sheet with Si concentration distribution was fabricated. In addition,
The pickling temperature was constant at 80 ° C. and the pickling time was 60 seconds. Next, these were decarburized and annealed at 830 ° C in a wet hydrogen atmosphere,
Then, after applying an annealing separator mainly composed of MgO, 1120
Final finish annealing was performed to raise the temperature to 0 ° C. The results of examining the appearance and bending adhesion of the forsterite film of the final annealed plate thus obtained, together with the results of examining the concentration ratio of the surface layer part to the center part of the thickness of Cu and Si using GDS, It is shown in 2. [Table 2] As is clear from the figure, the Cu concentration ratio is 1.20.
Sample Nos. 1 and 2 having a Si concentration ratio of 0.90 or less were able to obtain a forsterite film having a uniform and good appearance and excellent bending adhesion. On the other hand, all of the sample Nos. 3 to 5 in which the scale formation at the time of hot-rolled sheet annealing was insufficient or the subsequent pickling conditions were inappropriate,
Because the Cu concentration ratio and Si concentration ratio are out of the appropriate range, the entire fosterite film is thin or incompletely formed.
The film adhesion was also poor. Example 2 C: 300 ppm, Si: 3.40%, Mn: 0.30%, Al: 40 ppm,
S: 5 ppm, Se: 4 ppm, N: 15 ppm and Cu: 0.25%
The steel slab having a composition of Fe and unavoidable impurities is hot-rolled after continuous casting, and then in an atmosphere having an oxygen potential [P (H 2 O) / P (H 2 )] of 0.60 1000
After hot-rolled sheet annealing for 60 seconds at ℃, sandwich intermediate annealing 2
The final sheet thickness was 0.30 mm by cold rolling.
At this time, the intermediate annealing condition is 1000 ° C., 60 seconds, the oxygen potential during annealing and the subsequent pickling conditions are variously changed,
The final cold-rolled sheets with various Cu and Si concentration distributions in the sheet thickness direction were prepared. Subsequently, these were decarburized and annealed at 840 ° C. in a wet hydrogen atmosphere, and then a final finish annealing was performed in which the temperature was raised to 1100 ° C. after applying an annealing separator mainly composed of CaO. The results of examining the appearance and bending adhesiveness of the silicate coating on the final annealed plate thus obtained, together with the results of examining the concentration ratio of the surface layer portion with respect to the center portion of the thickness of Cu and Si using GDS, 3 shows. [Table 3] As shown in the table, Sample Nos. 1 and 2 whose Cu concentration ratio and Si concentration ratio satisfy the scope of the present invention both have a uniform and good appearance and excellent bending adhesion. A silicic oxide coating could be obtained. On the other hand, all of the sample Nos. 3 to 5 where the scale formation during the intermediate annealing was insufficient, or the subsequent pickling was excessive, and the Cu concentration ratio and the Si concentration ratio were out of the appropriate ranges, were all silicates. The film was thin or was hardly formed and was incomplete, and the film adhesion was inferior. Thus, according to the present invention, when a grain-oriented electrical steel sheet is produced by a method of causing secondary recrystallization without using an inhibitor, the Cu of the surface layer portion with respect to the center portion of the plate thickness is produced. By appropriately controlling the concentration ratio and the Si concentration ratio, it is possible to stably obtain a grain-oriented electrical steel sheet having a silicate film having good coating appearance and excellent coating adhesion.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 康之 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 JA04 LA02 RA04 SA02 TA01 5E041 AA02 CA02 HB15 NN01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Yasuyuki Hayakawa 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Shi) Kawasaki Steel Co., Ltd. Mizushima Works (72) Inventor Mitsumasa Kurosawa 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Shi) Kawasaki Steel Co., Ltd. Mizushima Works F-term (reference) 4K033 AA02 JA04 LA02 RA04 SA02 TA01 5E041 AA02 CA02 HB15 NN01
Claims (1)
8.0 %、Mn:0.005 〜3.0 %およびCu:0.005 〜0.3 %
を含み、Alを 100 ppm未満、S, Seをそれぞれ50ppm 以
下に低減した溶鋼を用いて製造した鋼スラブを、熱間圧
延し、ついで必要に応じて熱延板焼鈍を施したのち、1
回または中間焼鈍を挟む2回以上の冷間圧延を施し、つ
いで脱炭焼鈍後、焼鈍分離剤を適用して最終仕上焼鈍を
施すことからなる方向性電磁鋼板の製造方法において、 脱炭焼鈍直前の鋼板について、板厚中心部に対する表層
部のCuの濃度比を1.20以上とし、かつSiの該濃度比を0.
90以下としたことを特徴とする被膜特性に優れた方向性
電磁鋼板の製造方法。[Claim 1] In mass%, C: 0.08% or less, Si: 2.0 to
8.0%, Mn: 0.005 to 3.0% and Cu: 0.005 to 0.3%
A steel slab manufactured using molten steel containing less than 100 ppm Al and less than 50 ppm each of S and Se is hot-rolled and then subjected to hot-rolled sheet annealing as necessary.
In a method for producing grain-oriented electrical steel sheets, which is subjected to cold rolling at least twice with intermediate or intermediate annealing, followed by decarburization annealing, and then applying final finish annealing by applying an annealing separator, immediately before decarburization annealing. For the steel sheet, the concentration ratio of Cu in the surface layer portion relative to the center portion of the plate thickness is 1.20 or more, and the concentration ratio of Si is 0.
A method for producing a grain-oriented electrical steel sheet having excellent coating properties, characterized by being 90 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001393133A JP4239456B2 (en) | 2001-12-26 | 2001-12-26 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001393133A JP4239456B2 (en) | 2001-12-26 | 2001-12-26 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003193141A true JP2003193141A (en) | 2003-07-09 |
JP4239456B2 JP4239456B2 (en) | 2009-03-18 |
Family
ID=27600196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001393133A Expired - Lifetime JP4239456B2 (en) | 2001-12-26 | 2001-12-26 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4239456B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011158328A (en) * | 2010-01-29 | 2011-08-18 | Nippon Steel Corp | Oxide coating film adhesion strength evaluation method and its evaluation device of directional electromagnetic steel plate |
WO2017073615A1 (en) * | 2015-10-26 | 2017-05-04 | 新日鐵住金株式会社 | Grain-oriented electromagnetic steel sheet and decarburized steel sheet used for producing same |
JP2019099827A (en) * | 2017-11-28 | 2019-06-24 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electromagnetic steel sheet |
WO2021261515A1 (en) | 2020-06-24 | 2021-12-30 | 日本製鉄株式会社 | Method for producing electromagnetic steel sheet |
WO2021261517A1 (en) | 2020-06-24 | 2021-12-30 | 日本製鉄株式会社 | Production method for grain-oriented electrical steel sheet |
WO2022211053A1 (en) | 2021-03-31 | 2022-10-06 | 日本製鉄株式会社 | Non-oriented electric steel sheet and method for manufacturing non-oriented electric steel sheet |
-
2001
- 2001-12-26 JP JP2001393133A patent/JP4239456B2/en not_active Expired - Lifetime
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011158328A (en) * | 2010-01-29 | 2011-08-18 | Nippon Steel Corp | Oxide coating film adhesion strength evaluation method and its evaluation device of directional electromagnetic steel plate |
KR102062553B1 (en) | 2015-10-26 | 2020-01-06 | 닛폰세이테츠 가부시키가이샤 | De grained steel sheet used in oriented electrical steel sheet and its manufacture |
CN108138291A (en) * | 2015-10-26 | 2018-06-08 | 新日铁住金株式会社 | Grain-oriented magnetic steel sheet and the decarburization steel plate for its manufacture |
JPWO2017073615A1 (en) * | 2015-10-26 | 2018-08-16 | 新日鐵住金株式会社 | Oriented electrical steel sheet and decarburized steel sheet used for manufacturing the same |
RU2695736C1 (en) * | 2015-10-26 | 2019-07-25 | Ниппон Стил Корпорейшн | Electrotechnical steel sheet with oriented grain structure and decarbonized steel sheet used for its production |
WO2017073615A1 (en) * | 2015-10-26 | 2017-05-04 | 新日鐵住金株式会社 | Grain-oriented electromagnetic steel sheet and decarburized steel sheet used for producing same |
US10907234B2 (en) | 2015-10-26 | 2021-02-02 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and decarburized steel sheet used for manufacturing the same |
JP2019099827A (en) * | 2017-11-28 | 2019-06-24 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electromagnetic steel sheet |
WO2021261515A1 (en) | 2020-06-24 | 2021-12-30 | 日本製鉄株式会社 | Method for producing electromagnetic steel sheet |
WO2021261517A1 (en) | 2020-06-24 | 2021-12-30 | 日本製鉄株式会社 | Production method for grain-oriented electrical steel sheet |
KR20220134013A (en) | 2020-06-24 | 2022-10-05 | 닛폰세이테츠 가부시키가이샤 | Method for manufacturing grain-oriented electrical steel sheet |
KR20230006645A (en) | 2020-06-24 | 2023-01-10 | 닛폰세이테츠 가부시키가이샤 | Manufacturing method of electrical steel sheet |
WO2022211053A1 (en) | 2021-03-31 | 2022-10-06 | 日本製鉄株式会社 | Non-oriented electric steel sheet and method for manufacturing non-oriented electric steel sheet |
KR20230107900A (en) | 2021-03-31 | 2023-07-18 | 닛폰세이테츠 가부시키가이샤 | Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet |
US11970750B2 (en) | 2021-03-31 | 2024-04-30 | Nippon Steel Corporation | Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP4239456B2 (en) | 2009-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5479448B2 (en) | Method for producing directional silicon steel with high electromagnetic performance | |
JP4258349B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2006152387A (en) | Grain oriented silicon steel sheet having excellent magnetic characteristic | |
JP4784347B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6436316B2 (en) | Method for producing grain-oriented electrical steel sheet | |
KR20170141252A (en) | Oriented electromagnetic steel sheet and method for producing same | |
JP6798474B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2001303214A (en) | Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method | |
JP2003253341A (en) | Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property | |
JP4206665B2 (en) | Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties | |
JP3846064B2 (en) | Oriented electrical steel sheet | |
JP4239458B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4258185B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP4239456B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2022512498A (en) | Directional electrical steel sheet and its manufacturing method | |
JP3948284B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2003213339A (en) | Method for producing grain oriented silicon steel sheet having excellent magnetic property | |
JP3885428B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4239457B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH02294428A (en) | Production of grain-oriented silicon steel sheet having high magnetic flux density | |
JP4259269B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4258156B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2004115858A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property | |
JP4211447B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4259025B2 (en) | Oriented electrical steel sheet having excellent bend characteristics and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070501 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081215 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4239456 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |