JP5228563B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5228563B2
JP5228563B2 JP2008078618A JP2008078618A JP5228563B2 JP 5228563 B2 JP5228563 B2 JP 5228563B2 JP 2008078618 A JP2008078618 A JP 2008078618A JP 2008078618 A JP2008078618 A JP 2008078618A JP 5228563 B2 JP5228563 B2 JP 5228563B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
final
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008078618A
Other languages
Japanese (ja)
Other versions
JP2009228117A (en
Inventor
今村  猛
峰男 村木
之啓 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008078618A priority Critical patent/JP5228563B2/en
Publication of JP2009228117A publication Critical patent/JP2009228117A/en
Application granted granted Critical
Publication of JP5228563B2 publication Critical patent/JP5228563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、変圧器の鉄心材料に供して好適な方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet that is suitable for use as a core material of a transformer.

電圧変換用の大型変圧器や柱上変圧器には、そのエネルギーロスを低減するために、方向性電磁鋼板が使用されている。方向性電磁鋼板は、ゴス方位と呼ばれる{110}<001>方位を有する粒のみを選択的に巨大成長させることによって、鉄の磁化容易軸である<001>方位を一方向に配向させ、鉄損と呼ばれるエネルギーロスを低減している。
鉄損は、低いほど好ましいため、<001>方位の配向度を改善するだけでなく、たとえば磁区細分化処理と呼ばれる処理を鋼板に施すことによって、磁区幅を減少させ、励磁時の磁壁の移動距離を短くすることで低鉄損化を達成している。
Directional electrical steel sheets are used for large voltage transformers and pole transformers to reduce energy loss. The grain-oriented electrical steel sheet orients the <001> orientation, which is the easy axis of iron, in one direction by selectively growing only grains having the {110} <001> orientation called the Goss orientation. Energy loss called loss is reduced.
Since the iron loss is preferably as low as possible, it not only improves the degree of orientation in the <001> orientation, but also reduces the magnetic domain width by, for example, applying a treatment called magnetic domain refinement to the steel sheet, and moves the domain wall during excitation. Low iron loss has been achieved by shortening the distance.

磁区細分化処理方法としては、<001>方位に配向している圧延方向とほぼ垂直に物理的な溝や歪を導入させる方法が一般的であり、かような方法として、突起を有するロールで圧下する方法(特許文献1)、プラズマ照射により熱歪を導入する方法(特許文献2)、レーザ照射により熱歪を導入する方法(特許文献3)および化学的にエッチングする方法(特許文献4)等が開発されている。
特開昭60−96719号公報 特公平7−72300号公報 特公昭58−26405号公報 特公平6−57857号公報
As a method for subdividing the magnetic domain, a method of introducing physical grooves and strains almost perpendicular to the rolling direction oriented in the <001> direction is generally used. A method of reducing (Patent Document 1), a method of introducing thermal strain by plasma irradiation (Patent Document 2), a method of introducing thermal strain by laser irradiation (Patent Document 3), and a method of chemically etching (Patent Document 4) Etc. have been developed.
JP 60-96719 Japanese Patent Publication No. 7-72300 Japanese Patent Publication No.58-26405 Japanese Patent Publication No. 6-57857

その他、鋼板の表面を鏡面のように平滑化することで、磁壁移動時の障害を除去し、移動を円滑にせしめて低鉄損化する方法も知られている。鏡面化の方法としては、焼鈍分離剤として使用しているMgO中に種々の添加剤を加えて、フォルステライトと地鉄との界面の結合を弱くすることで、フォルステライト形成後に剥離させる方法(特許文献5,6)、フォルステライト被膜が形成した後に物理的もしくは化学的に被膜を除去する方法(特許文献7)および焼鈍分離剤としてフォルステライトを形成しない酸化物や無機物を使用する方法(特許文献8,9)等が提案されている。
特開平2−228481号公報 特開平7−173642号公報 特公平3−74488号公報 特開平5−156362号公報 特開平5−43943号公報
In addition, a method is also known in which the surface of a steel plate is smoothed like a mirror surface to remove obstacles during domain wall movement, thereby smoothing the movement and reducing iron loss. As a mirror surface method, various additives are added to MgO used as an annealing separator to weaken the bond at the interface between forsterite and ground iron, and then peel off after forsterite formation ( Patent Documents 5 and 6), a method of physically or chemically removing a forsterite film after it has been formed (Patent Document 7), and a method of using an oxide or inorganic material that does not form forsterite as an annealing separator (patent Documents 8, 9) have been proposed.
Japanese Patent Laid-Open No. 2-228481 JP 7-173642 A Japanese Patent Publication No. 3-74488 JP-A-5-156362 JP-A-5-43943

上記した従来法の中でも、フォルステライト被膜の形成を阻止すべく、焼鈍分離剤としてアルミナを使用する方法が盛んに検討されている。
アルミナは、安価であり、しかも種々の粒度のものが市販されているため、塗布性や鋼板への付着性を粒度調節によって変更することが容易である。また、アルミナは、極めて安定な物質であることから、例えばアルミナの酸素が離脱し、鋼中のSiと酸化物を形成して、特性を劣化させるおそれもない。
Among the conventional methods described above, in order to prevent the formation of a forsterite film, a method of using alumina as an annealing separator has been actively studied.
Since alumina is inexpensive and has various particle sizes, it is easy to change the applicability and the adhesion to the steel sheet by adjusting the particle size. In addition, since alumina is a very stable substance, for example, oxygen of alumina is released, and there is no possibility that Si and oxides in steel are formed to deteriorate characteristics.

しかしながら、フォルステライト被膜を形成させることなく、表面鏡面化による鉄損の低減を検討している際に、最終仕上焼鈍を1200℃のような高温で行うと、磁気特性が劣化することが判明した。
かような現象は、フォルステライト被膜を形成する通常の方向性電磁鋼板の製造方法の場合には発生しなかった現象である。
However, when considering the reduction of iron loss by surface mirroring without forming a forsterite film, it was found that if final finish annealing was performed at a high temperature such as 1200 ° C, the magnetic properties deteriorated. .
Such a phenomenon is a phenomenon that did not occur in the case of a normal method of manufacturing a grain-oriented electrical steel sheet for forming a forsterite film.

本発明は、上記の問題を有利に解決するもので、表面を鏡面化した材料(以下、鏡面化材という)の最終仕上焼鈍に際しても、磁気特性の劣化を招くことのない、方向性電磁鋼板の新しい製造方法を提案することを目的とする。   The present invention advantageously solves the above-described problem, and is a grain-oriented electrical steel sheet that does not cause deterioration of magnetic properties even in the final finish annealing of a material having a mirror-finished surface (hereinafter referred to as a mirror-finished material). The purpose is to propose a new manufacturing method.

さて、発明者らは、鏡面化材の最終仕上焼鈍時に懸念される磁気特性の劣化を解決すべく、鋭意検討を重ねた結果、最終仕上焼鈍前の鋼板の表面を平滑化し、かつ最終仕上焼鈍温度を低温化することによって、磁気特性の劣化が有利に回避できることを知見した。
本発明は上記の知見に立脚するものである。
Now, the inventors to solve the deterioration of the magnetic properties of concern during the final finish annealing of mirror-material, a result of intensive studies, the final Finish sintered blunt surface before the steel sheet is smoothed, and the final It has been found that magnetic property deterioration can be advantageously avoided by lowering the finish annealing temperature.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.10%以下、Si:2.0〜8.0%、Mn:0.005〜1.0%およびS:0.0005〜0.0026%を含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終冷延板とし、ついで一次再結晶焼鈍後、焼鈍分離剤を塗布してから、最終仕上焼鈍を施す一連の製造工程によって方向性電磁鋼板を製造するに当たり、
最終仕上焼鈍前の鋼板の表面粗さを算術平均粗さRaで0.3μm以下にすると共に、焼鈍分離剤としてアルミナ系の分離剤を使用し、1100℃以下の温度で最終仕上焼鈍を施すことを特徴とする、フォルステライト被膜を有しない方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. Hot rolling a steel slab containing, by mass%, C: 0.10% or less, Si: 2.0-8.0%, Mn: 0.005-1.0% and S: 0.0005-0.0026% , the balance being Fe and inevitable impurities Then, after performing hot-rolled sheet annealing as necessary, it is cold-rolled at least once with one or two intermediate sandwiches to make the final cold-rolled sheet, and then applied with an annealing separator after primary recrystallization annealing Then, in producing a grain-oriented electrical steel sheet through a series of manufacturing processes for final finishing annealing,
The surface roughness of the steel sheet before the final finish annealing should be 0.3 μm or less in arithmetic mean roughness Ra, and the final finish annealing should be performed at a temperature of 1100 ° C. or lower using an alumina-based separator as the annealing separator. A method for producing a grain-oriented electrical steel sheet that does not have a forsterite coating.

2.前記鋼スラブが、さらに質量%で、Ni:0.010〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Nb:0.003〜0.050%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.10%、Al:0.0010〜0.0097およびN:0.0005〜0.0036%のうちから選んだ少なくとも一種または二種以上を含有する組成になることを特徴とする上記1に記載の方向性電磁鋼板の製造方法。 2. The steel slab is further mass%, Ni: 0.010-1.50%, Cr: 0.01-0.50%, Cu: 0.01-0.50%, P: 0.005-0.50%, Nb: 0.003-0.050%, Sn: 0.005-0.50. %, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50%, Mo: 0.005 to 0.10%, Al: 0.0010 to 0.0097 %, and N: 0.0005 to 0.0036%. 2. The method for producing a grain-oriented electrical steel sheet according to 1 above, wherein the composition is a composition.

本発明に従い、最終仕上焼鈍前の鋼板の表面を平滑化し、かつ最終仕上焼鈍温度を低温化することで、磁気特性に優れたフォルステライト被膜を有しない方向性電磁鋼板を得ることができる。 In accordance with the present invention, the final Finish sintered blunt surface before the steel sheet is smoothed, and the final annealing temperature by low temperature, can be obtained oriented electrical steel sheet having no excellent forsterite film on the magnetic properties .

以下、本発明を具体的に説明する。
まず、本発明の基礎となった実験について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
Hereinafter, the present invention will be specifically described.
First, an experiment that is the basis of the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.

<実験1>
C:600ppm、Si:3.28%、Mn:0.07%、S:0.0020%、Se:0.0035%、Cr:0.02%およびSb:0.050%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1250℃のスラブ加熱後、熱間圧延により2.5mm厚とし、ついで1000℃で60秒の熱延板焼鈍後、1回目の冷間圧延により0.60mmの中間厚さとした。ついで、1000℃で60秒の中間焼鈍後、2回目の冷間圧延(最終冷間圧延)により板厚:0.23mmの冷延板に仕上げた。その後、均熱条件が820℃で90秒の脱炭焼鈍を施した後、鋼板の表面に水に懸濁させたスラリー状のアルミナを塗布し、200℃で焼付けした。さらに、850℃で20時間保定した後に最終到達温度まで昇温して10時間保定する最終仕上焼鈍を行った。このとき、最終到達温度を種々に変更して実験を行った。
得られた方向性電磁鋼板からサンプルを採取し、かかるサンプルの鉄損W17/50をJIS C 2550に記載の方法で測定した結果を、図1に示す。
同図に示したとおり、最終仕上焼鈍の最終到達温度が1100℃を超えた場合に、鉄損が劣化することが判明した。
<Experiment 1>
Steel slab containing C: 600ppm, Si: 3.28%, Mn: 0.07%, S: 0.0020%, Se: 0.0035%, Cr: 0.02% and Sb: 0.050%, with the balance being Fe and inevitable impurities Is manufactured by continuous casting, heated to slab at 1250 ° C, hot rolled to 2.5 mm thickness, then annealed at 1000 ° C for 60 seconds and then rolled to a thickness of 0.60 mm by the first cold rolling. Say it. Then, after intermediate annealing at 1000 ° C. for 60 seconds, a cold rolled sheet having a thickness of 0.23 mm was finished by the second cold rolling (final cold rolling). Thereafter, after decarburization annealing was performed at 820 ° C. for 90 seconds, slurry-like alumina suspended in water was applied to the surface of the steel plate and baked at 200 ° C. Furthermore, after final holding at 850 ° C. for 20 hours, final finish annealing was performed by raising the temperature to the final temperature and holding for 10 hours. At this time, the experiment was performed with various changes in the final temperature.
A sample is taken from the obtained grain- oriented electrical steel sheet, and the result of measuring the iron loss W 17/50 of the sample by the method described in JIS C 2550 is shown in FIG.
As shown in the figure, it was found that the iron loss deteriorates when the final final annealing temperature reached 1100 ° C.

しかしながら、1100℃以下の温度であっても、得られた鉄損値は期待される鉄損値よりも幾分悪い結果であった。
そこで、地鉄中の微量元素の分析を行った。その結果、地鉄中のS量が鉄損に悪影響を及ぼしていることが判明した。
However, even at temperatures below 1100 ° C., the obtained iron loss values were somewhat worse than expected.
Therefore, analysis of trace elements in the railway was conducted. As a result, it was found that the amount of S in the ground iron had an adverse effect on iron loss.

すなわち、従来の方向性電磁鋼板は地鉄中のSは5ppm未満(分析限界)であるため、このSが鉄損に悪影響を及ぼすことはなかったのであるが、上記の実験では、最終仕上焼鈍の最終到達温度が1125℃以上のときには地鉄中に10〜17ppmのSが、また1125℃未満であっても地鉄中に6〜11ppmのSが残存していることが判明した。この地鉄中のSが磁性を劣化させているものと推測される。   That is, in the conventional grain-oriented electrical steel sheet, since S in the ground iron is less than 5 ppm (analysis limit), this S did not adversely affect the iron loss. It was found that 10 to 17 ppm of S remained in the ground iron when the final reached temperature of 1125 ° C. or higher, and 6 to 11 ppm of S remained in the ground iron even when it was less than 1125 ° C. It is presumed that S in the ground iron deteriorates magnetism.

そこで、さらに検討を重ねた結果、最終仕上焼鈍前の鋼板の表面粗度がSの純化に強く関与していることを突き止めた。
<実験2>
実験1と同じ成分組成になる鋼スラブを用い、1250℃のスラブ加熱後、熱間圧延により2.5mmの厚さとし、ついで1000℃で60秒の熱延板焼鈍後、1回目の冷間圧延により0.60mmの厚さとした。ついで、1000℃で60秒の中間焼鈍後、2回目の冷間圧延(最終冷間圧延)により板厚:0.23mmの冷延板に仕上げた。その後、均熱条件が820℃で90秒の脱炭焼鈍を施した後、5%フッ酸を過酸化水素水に加えた酸で処理し、鋼板の表面粗さを種々に変更した。その後、水に懸濁させたスラリー状のアルミナを鋼板表面に塗布し、200℃で焼付けした。さらに、850℃で20時間保定した後に1100℃まで昇温して10時間保定する最終仕上焼鈍を行った。
得られた方向性電磁鋼板からサンプルを採取し、かかるサンプルの鉄損W17/50をJIS C 2550に記載の方法で測定した結果を、図2に示す。
As a result of further studies, it was found that the surface roughness of the steel sheet before final finish annealing is strongly involved in the purification of S.
<Experiment 2>
Using a steel slab with the same composition as in Experiment 1, after heating the slab at 1250 ° C to a thickness of 2.5 mm by hot rolling, then annealing at 1000 ° C for 60 seconds, followed by the first cold rolling The thickness was 0.60 mm. Then, after intermediate annealing at 1000 ° C. for 60 seconds, a cold rolled sheet having a thickness of 0.23 mm was finished by the second cold rolling (final cold rolling). Thereafter, after decarburization annealing was performed at 820 ° C. for 90 seconds, the surface roughness of the steel sheet was variously changed by treatment with an acid obtained by adding 5% hydrofluoric acid to hydrogen peroxide. Thereafter, slurry-like alumina suspended in water was applied to the surface of the steel sheet and baked at 200 ° C. Further, after final holding at 850 ° C. for 20 hours, final finish annealing was performed in which the temperature was raised to 1100 ° C. and held for 10 hours.
A sample is taken from the obtained grain- oriented electrical steel sheet, and the result of measuring the iron loss W 17/50 of the sample by the method described in JIS C 2550 is shown in FIG.

同図に示したとおり、最終仕上焼鈍前の鋼板の表面粗さを算術平均粗さRaで0.3以下にすることにより、鉄損の改善が図られている。
また、地鉄中のS量を調査したところ、表面粗さRaが低く、鉄損が良好なサンプルではS量は5ppm未満(分析限界)まで低減されていることが判明した。
As shown in the figure, the iron loss is improved by setting the surface roughness of the steel sheet before final finish annealing to an arithmetic average roughness Ra of 0.3 or less.
Further, when the amount of S in the ground iron was investigated, it was found that the amount of S was reduced to less than 5 ppm (analysis limit) in a sample with low surface roughness Ra and good iron loss.

最終仕上焼鈍温度を1100℃以下とし、かつ表面粗さを小さくすることによって、磁気特性が改善する理由については必ずしも明らかとはなっていないが、発明者らは次のように考えている。
通常の方向性電磁鋼板のように、表面にフォルステライト被膜を形成する場合には、純化焼鈍によって鋼中のS等の不純物はフォルステライト被膜にトラップされると考えらる。しかしながら、焼鈍分離剤として表面被膜を形成しないような物質(例えばアルミナ)を使用した鏡面化材においては、不純物がトラップされる場所が存在しないため、気体となって地鉄から離脱すると考えられる。このとき、地鉄中のSは、水素と反応して硫化水素となって離脱すると考えられる。気体の標準生成自由エネルギーは一般的に高温ほど高くなることから、本実験の場合、最終到達温度が1100℃を超えたあたりから標準生成自由エネルギーが負の値から正の値になり、エネルギーが高くなって反応しなくなった、すなわち硫化水素が生成しなくなったと推測される。さらに、通常、最終仕上焼鈍は、コイル状に巻き取られた鋼板に対して適用されるため、鋼板表面同士が、焼鈍分離剤を介してはいるものの、接触しているような状況下にある。このとき、鋼板の表面粗さが大きく凹凸がある場合には、気体となった硫化水素の一部が凹部に止まり、何らかの状況下では再度地鉄中にSが戻ってしまい、磁気特性を劣化させているものと推定される。
The reason why the magnetic properties are improved by setting the final finish annealing temperature to 1100 ° C. or less and reducing the surface roughness is not necessarily clear, but the inventors consider as follows.
When a forsterite film is formed on the surface like a normal grain-oriented electrical steel sheet, impurities such as S in the steel are considered to be trapped in the forsterite film by purification annealing. However, in a mirror-finishing material using a substance that does not form a surface film as an annealing separator (for example, alumina), there is no place where impurities are trapped. At this time, it is considered that S in the ground iron reacts with hydrogen to be separated as hydrogen sulfide. Since the standard free energy of formation of gas is generally higher at higher temperatures, in this experiment, the standard free energy of formation changes from a negative value to a positive value when the final temperature exceeds 1100 ° C. It is presumed that the reaction became so high that it did not react, that is, hydrogen sulfide was no longer produced. Furthermore, since the final finish annealing is usually applied to the steel sheet wound in a coil shape, the steel sheet surfaces are in contact with each other through an annealing separator. . At this time, when the surface roughness of the steel sheet is large and uneven, a part of the hydrogen sulfide that has become a gas stops in the recess, and under some circumstances, S returns to the ground iron again, deteriorating the magnetic properties. It is estimated that

以下、本発明において、鋼スラブの成分組成を前記の範囲に限定した理由について述べる。
C:0.10%以下
Cは、γ変態の促進により熱延後の組織を均質化させ、磁気特性を改善させる有用元素であるが、含有量が0.10%を超えると、磁気時効の起こらない50ppm以下まで低減することが困難になるので、C量は0.10%以下に限定した。
Hereinafter, the reason why the component composition of the steel slab is limited to the above range in the present invention will be described.
C: 0.10% or less C is a useful element that homogenizes the structure after hot rolling by improving the γ transformation and improves the magnetic properties, but if the content exceeds 0.10%, 50 ppm or less where magnetic aging does not occur Therefore, the amount of C is limited to 0.10% or less.

Si:2.0〜8.0%
Siは、鋼の比抵抗を高め、鉄損を改善させるために必要な元素であるが、含有量が2.0%未満では十分な効果が得難く、一方8.0%を超えると鋼の加工性が劣化し、圧延が困難になるため、Si量は2.0〜8.0%の範囲に限定した。
Si: 2.0-8.0%
Si is an element necessary to increase the specific resistance of steel and improve iron loss, but if the content is less than 2.0%, it is difficult to obtain a sufficient effect, while if it exceeds 8.0%, the workability of steel deteriorates. However, since rolling becomes difficult, the Si content is limited to a range of 2.0 to 8.0%.

Mn:0.005〜1.0%
Mnは、熱間加工性を改善するために必要な元素であるが、含有量が0.005%に満たないとその添加効果に乏しく、一方1.0%を超えると製品板の磁束密度が低下するので、Mn量は0.005〜1.0%の範囲に限定した。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving the hot workability, but if the content is not less than 0.005%, the effect of addition is poor, while if it exceeds 1.0%, the magnetic flux density of the product plate decreases. The amount of Mn was limited to a range of 0.005 to 1.0%.

S:0.0005〜0.0026
Sは、磁気特性劣化の主因と考えられる。本発明に従えば、鏡面化材においても効果的にSの悪影響を排除することができるとはいえ、含有量が0.0026%を超えると本発明をもってしても磁気特性の劣化が避け難いので、上限を0.0026%に定めた。一方、素材段階でS量が0.0005%未満の場合には、とくに本発明を適用する必要はないので、S量の下限は0.0005%とした。
S: 0.0005 to 0.0026 %
S is considered to be the main cause of deterioration of magnetic characteristics. According to the present invention, the adverse effect of S can be effectively eliminated even in the mirror- finished material, but if the content exceeds 0.0026 %, it is difficult to avoid deterioration of the magnetic properties even with the present invention. The upper limit was set to 0.0026 %. On the other hand, when the S amount is less than 0.0005% at the material stage, it is not necessary to apply the present invention, so the lower limit of the S amount is set to 0.0005%.

以上、必須成分および抑制成分について説明したが、本発明ではその他にも、集合組織を改善して磁気特性を向上させる観点から、以下の元素を適宜含有させることができる。
Ni:0.010〜1.50%
Niは、熱延板組織を改善して磁気特性を向上させる上で有用な元素である。しかしながら、含有量が0.010%未満では磁気特性の向上量が小さく、一方1.50%を超えると二次再結晶が不安定になり磁気特性が劣化するので、Niは0.010〜1.50%の範囲で含有させることが好ましい。
As described above, the essential component and the suppressing component have been described. In addition, in the present invention, the following elements can be appropriately contained from the viewpoint of improving the texture by improving the texture.
Ni: 0.010 to 1.50%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.010%, the improvement in magnetic properties is small. On the other hand, if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so Ni is contained in the range of 0.010 to 1.50%. It is preferable.

Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%
Cr,CuおよびPはいずれも、鉄損の改善に有用な元素であるが、それぞれ含有量が下限に満たないとその添加効果に乏しく、一方上限を超えると二次再結晶粒の発達が抑制され、磁気特性が劣化するので、それぞれ上記の範囲で含有させるものとした。
Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%
Cr, Cu, and P are all useful elements for improving iron loss. However, if the content is less than the lower limit, the effect of addition is poor. On the other hand, the growth of secondary recrystallized grains is suppressed when the upper limit is exceeded. Since the magnetic properties are deteriorated, each of them is included in the above range.

Nb:0.003〜0.050%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.10%、Al:0.0010〜0.0097%、N:0.0005〜0.0036%
Nb,Sn,Sb,Bi,Mo,AlおよびNはいずれも、磁束密度を向上させる有用元素であるが、それぞれ含有量が下限に満たないとその添加効果に乏しく、一方上限を超えると二次再結晶粒の発達が抑制され、磁気特性が劣化するので、それぞれ上記の範囲で含有させるものとした。
Nb: 0.003-0.050%, Sn: 0.005-0.50%, Sb: 0.005-0.50%, Bi: 0.005-0.50%, Mo: 0.005-0.10%, Al: 0.0010-0.0097 %, N: 0.0005-0.0036%
Nb, Sn, Sb, Bi, Mo, Al, and N are all useful elements for improving the magnetic flux density. However, if the content is less than the lower limit, the addition effect is poor, while if the upper limit is exceeded, the secondary is secondary. Since the development of recrystallized grains is suppressed and the magnetic properties are deteriorated, each of them is included in the above range.

なお、上掲した選択成分は、いずれか一種を単独で添加しても、また複合して添加したもいずれでもよい。   In addition, the above-mentioned selective component may be added either alone or in combination.

次に、本発明の製造方法について説明する。
上記の好適成分組成範囲に調整したスラブを、通常の造塊法、連続鋳造法で製造する。また、100 mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。
次に、スラブは、通常は加熱して熱間圧延に供するが、鋳造後加熱せずに直ちに熱延に供してもよい。また、薄鋳片の場合には熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進めてもよい。熱間圧延前のスラブ加熱温度は、Al,N,S,Seを低減したインヒビター成分を含まない成分系の場合は、従来必須であったインヒビターを固溶させるための高温焼鈍を必要としないことから、1250℃以下の低温とすることがコストの面で望ましい
Next, the manufacturing method of this invention is demonstrated.
The slab adjusted to the above suitable component composition range is produced by a normal ingot-making method and a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method.
Next, the slab is usually heated and subjected to hot rolling, but may be immediately subjected to hot rolling without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the subsequent process may be performed as it is. The slab heating temperature prior to hot rolling does not require high-temperature annealing to dissolve the inhibitor, which was essential in the past, in the case of a component system that does not contain an inhibitor component with reduced Al, N, S, and Se. Therefore, a low temperature of 1250 ° C. or lower is desirable in terms of cost .

ついで、必要に応じて熱延板焼鈍を施す。良好な磁性を得るためには、熱延板焼鈍温度は800℃以上1150℃以下が好適である。熱延板焼鈍温度が800℃未満であると熱延でのバンド組織が残留し、整粒の一次再結晶組織を実現することが困難になり二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎることため、整粒の一次再結晶組織を実現する上で極めて不利となる。   Next, hot-rolled sheet annealing is performed as necessary. In order to obtain good magnetism, the hot-rolled sheet annealing temperature is preferably 800 ° C or higher and 1150 ° C or lower. When the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to realize a primary recrystallized structure of sized particles, thereby inhibiting the development of secondary recrystallization. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, which is extremely disadvantageous in realizing the primary recrystallized structure of sized particles.

熱延板焼鈍後、1回または中間焼鈍を含む2回以上の冷間圧延により最終板厚に仕上げたのち、一次再結晶焼鈍を施す。冷間圧延工程において、温度を100〜300℃に上昇させて行うことや、冷間圧延途中で100〜300℃の範囲での時効処理を1回または複数回行うことは、磁気特性を向上させル上で有効である。一次再結晶焼鈍は、脱炭を必要とする場合には雰囲気を湿潤雰囲気とするが、脱炭を必要としない場合は乾燥雰囲気で行っても良い。一次再結晶焼鈍後に、浸珪法によってSi量を増加させる技術を併用してもよい。   After hot-rolled sheet annealing, after finishing to the final sheet thickness by one or more cold rolling processes including intermediate annealing, primary recrystallization annealing is performed. In the cold rolling process, increasing the temperature to 100 to 300 ° C, or performing aging treatment in the range of 100 to 300 ° C one or more times during the cold rolling improves the magnetic properties. It is effective on The primary recrystallization annealing is performed in a wet atmosphere when decarburization is required, but may be performed in a dry atmosphere when decarburization is not required. After the primary recrystallization annealing, a technique for increasing the Si amount by a siliconization method may be used in combination.

その後、焼鈍分離剤としてアルミナ系の分離剤をスラリー状にして塗布する。ここに、アルミナ系の分離剤とは、アルミナが質量%で焼鈍分離剤成分の少なくとも50%を超えた量含まれていることを意味する。アルミナの他には、CaOやSiO2等の従来公知の成分を含有させても問題はないが、磁気特性の観点からはアルミナを90%以上含有させることが望ましい。 Thereafter, an alumina-based separating agent is applied in the form of a slurry as an annealing separator. Here, the alumina-based separating agent means that alumina is contained in an amount of mass% exceeding at least 50% of the annealing separating agent component. In addition to alumina, there is no problem if a conventionally known component such as CaO or SiO 2 is contained, but from the viewpoint of magnetic properties, it is desirable to contain 90% or more of alumina.

焼鈍分離剤を塗布した後、最終仕上焼鈍を施す。前述したとおり、最終仕上焼鈍前の鋼板の表面粗さは算術平均粗さRaで0.3μm以下とすることが肝要である。
ここに、最終仕上焼鈍前の鋼板の表面粗さを低減する手段としては、酸洗する方法や表面を機械的に研磨する方法等が考えられるが、脱炭焼鈍後の酸洗工程において過酸化水素水とフッ酸との混合液に5秒以上浸漬し、そのフッ酸の濃度と浸漬時間を変化させることによって、表面粗さを調整する方法がとりわけ好適である。
After applying the annealing separator, a final finish annealing is performed. As described above, it is important that the surface roughness of the steel sheet before the final finish annealing is 0.3 μm or less in terms of arithmetic average roughness Ra.
Here, as a means for reducing the surface roughness of the steel sheet before final finish annealing, a pickling method, a method of mechanically polishing the surface, and the like can be considered. Particularly preferred is a method of adjusting the surface roughness by immersing in a mixed solution of hydrogen water and hydrofluoric acid for 5 seconds or more and changing the concentration of hydrofluoric acid and the immersion time.

最終仕上焼鈍は、二次再結晶発現のために750℃以上で行う必要があるが、二次再結晶を完了させるために800℃以上の温度で5時間以上保持させることが望ましい。また、鋼中の不純物を純化するために1000℃以上で1時間以上保定することが望ましい。ただし、1100℃を超えた場合には、前述した理由により磁気特性が劣化するため、最高到達温度は1100℃以下に制限する。二次再結晶に最適な温度と純化に最適な温度は異なることが多いから、初めに二次再結晶に最適な温度で保定し、その後昇温して純化に最適な温度とすることが望ましい。   The final finish annealing needs to be performed at 750 ° C. or higher for secondary recrystallization, but it is desirable to hold at a temperature of 800 ° C. or higher for 5 hours or longer in order to complete the secondary recrystallization. Moreover, in order to purify impurities in the steel, it is desirable to hold at 1000 ° C. or higher for 1 hour or longer. However, if the temperature exceeds 1100 ° C, the magnetic properties deteriorate due to the reasons described above, so the maximum temperature reached is limited to 1100 ° C or less. Since the optimal temperature for secondary recrystallization and the optimal temperature for purification are often different, it is desirable to first hold at the optimal temperature for secondary recrystallization and then raise the temperature to the optimal temperature for purification. .

最終仕上焼鈍後には、付着したアルミナを除去するため、水洗やブラッシング、酸洗を行うことが有用である。その後、平坦化焼鈍により形状を矯正することが鉄損低減のために有効である。
また、鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前またはその後に、鋼板表面に絶縁コーティングを施すことが有効である。鉄損低減のためには、張力コーティングを付与することが望ましい。鋼板表面は平滑化されているため、バインダーを介した張力コーティング塗布方法やCVDおよびPVDにより無機物を鋼板表層に蒸着させてコーティングとする方法は、密着性に優れるコーティングが得られ、かつ鉄損低減効果も著しいので、とくに好適である。
After final finish annealing, it is useful to perform water washing, brushing, and pickling to remove the adhered alumina. After that, correcting the shape by flattening annealing is effective for reducing iron loss.
Moreover, when using it, laminating | stacking a steel plate, in order to improve an iron loss, it is effective to give an insulating coating to the steel plate surface before or after planarization annealing. In order to reduce iron loss, it is desirable to provide a tension coating. Since the steel plate surface is smoothed, the coating method with excellent adhesion can be obtained and the iron loss can be reduced by applying the coating method by tension coating via binder or by depositing inorganic material on the steel plate surface by CVD and PVD. Since the effect is also remarkable, it is particularly suitable.

実施例1
C:220ppm、Si:3.20%、Mn:0.068%、S:0.0026%、Sn:0.059%、Al:0.0085%およびN:0.0035%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1200℃でスラブ加熱後、熱間圧延により2.5mm厚とし、ついで1000℃で45秒の熱延板焼鈍後、冷間圧延により板厚:0.23mmの冷延板に仕上げた。その後、均熱条件が850℃,90秒の脱炭焼鈍を施した後、酸洗により、鋼板表面のRaを表1に示すように種々に変更した。このとき、表面粗さRaの調整は、600番のエメリー紙を用いて表面を研磨しRaを増加させる、または5%フッ酸−過酸化水素水溶液に浸してRaを減少させる、ことにより行った。
Example 1
Steel slab containing C: 220ppm, Si: 3.20%, Mn: 0.068%, S: 0.0026%, Sn: 0.059%, Al: 0.0085% and N: 0.0035%, with the balance being Fe and inevitable impurities Is manufactured by continuous casting, heated to 1200 ° C, slab heated to 2.5 mm thick by hot rolling, and then annealed at 1000 ° C for 45 seconds by hot rolling and then cold rolled to a thickness of 0.23 mm Finished on a board. Thereafter, after decarburization annealing was performed at 850 ° C. for 90 seconds under a soaking condition, Ra on the steel sheet surface was variously changed as shown in Table 1 by pickling. At this time, the surface roughness Ra was adjusted by polishing the surface using No. 600 emery paper to increase Ra, or by immersing in 5% hydrofluoric acid-hydrogen peroxide solution to decrease Ra. .

ついで、アルミナ:100質量%の焼鈍分離剤をスラリー状にして鋼板表面に塗布し、200℃で焼付けした。その後、850℃で20時間保定したのち、表1に示したように最高到達温度を種々に変更して10時間保定する最終仕上焼鈍を行った。その後、付着しているアルミナを水洗ブラッシングにより除去したのち、CVD法によりTiNを鋼板表層に蒸着させてコーティングとした。
かくして得られた方向性電磁鋼板から磁気測定用のサンプルを採取し、JIS C 2550に記載の方法に準拠して磁気特性(鉄損W17/50)を測定を行った。
得られた結果を、表1に併記する。
Then, an alumina: 100 mass% annealing separator was applied in the form of a slurry to the surface of the steel sheet and baked at 200.degree. Thereafter, after holding at 850 ° C. for 20 hours, as shown in Table 1, final finishing annealing was performed in which the maximum temperature reached was variously changed and held for 10 hours. Thereafter, the adhering alumina was removed by washing with water, and TiN was deposited on the surface layer of the steel sheet by a CVD method to form a coating.
A sample for magnetic measurement was taken from the grain- oriented electrical steel sheet thus obtained, and the magnetic properties (iron loss W 17/50 ) were measured according to the method described in JIS C 2550.
The obtained results are also shown in Table 1.

Figure 0005228563
Figure 0005228563

同表から明らかなように、本発明に従い、最終仕上焼鈍焼鈍前の鋼板の表面粗さをRaで0.3μm以下にした上で、最高到達温度が1100℃以下の条件で最終仕上焼鈍温度を施した場合には、良好な磁気特性を得ることができた。   As is clear from the table, according to the present invention, the surface roughness of the steel sheet before final finish annealing is 0.3 μm or less in Ra, and the final finish annealing temperature is applied under the condition that the maximum temperature is 1100 ° C. or less. In this case, good magnetic properties could be obtained.

実施例2
表2に示す成分組成になる鋼スラブを、連続鋳造にて製造し、1400℃でスラブ加熱後、熱間圧延により2.2mm厚とし、ついで1100℃で20秒の熱延板焼鈍後、1回目の冷間圧延により板厚:0.60mmの中間厚さとした。ついで、950℃で60秒の中間焼鈍後、2回目の冷間圧延により板厚:0.20mmの冷延板に仕上げた。その後、均熱条件が820℃で90秒の脱炭焼鈍を施した後、酸洗により、鋼板の表面粗さをRaで0.22〜0.29μmとした。ここに、表面粗さの調整は、5%フッ酸−過酸化水素水溶液に浸すことにより行った。
Example 2
Steel slabs with the composition shown in Table 2 were manufactured by continuous casting, heated to 1400 ° C, slab heated to 2.2 mm thick, then annealed at 1100 ° C for 20 seconds for 20 seconds, first time The sheet thickness was set to an intermediate thickness of 0.60 mm by cold rolling. Then, after intermediate annealing at 950 ° C. for 60 seconds, a cold rolled sheet having a thickness of 0.20 mm was finished by the second cold rolling. Thereafter, after decarburization annealing was performed at 820 ° C. for 90 seconds, the surface roughness of the steel sheet was adjusted to 0.22 to 0.29 μm in Ra by pickling. Here, the surface roughness was adjusted by dipping in a 5% hydrofluoric acid-hydrogen peroxide aqueous solution.

ついで、アルミナ:98質量%、シリカ:2質量%の組成になるアルミナ系の焼鈍分離剤をスラリー状にして鋼板表面に塗布し、200℃で焼付けした。その後、900℃で30時間保定したのち、1100℃で5時間保定する最終仕上焼鈍を行った。その後、付着しているアルミナを水洗ブラッシングにより除去したのち、CVD法によりTiNを鋼板表層に蒸着させてコーティングとした。
かくして得られた方向性電磁鋼板から磁気測定用のサンプルを採取し、JIS C 2550に記載の方法に準拠して磁気特性(鉄損W17/50)を測定を行った。
得られた結果を、表2に併記する。
Next, an alumina annealing separator having a composition of alumina: 98% by mass and silica: 2% by mass was applied in the form of a slurry to the surface of the steel sheet and baked at 200 ° C. Then, after hold | maintaining at 900 degreeC for 30 hours, the final finishing annealing which hold | maintains at 1100 degreeC for 5 hours was performed. Thereafter, the adhering alumina was removed by washing with water, and TiN was deposited on the surface layer of the steel sheet by a CVD method to form a coating.
A sample for magnetic measurement was taken from the grain- oriented electrical steel sheet thus obtained, and the magnetic properties (iron loss W 17/50 ) were measured according to the method described in JIS C 2550.
The obtained results are also shown in Table 2.

Figure 0005228563
Figure 0005228563

同表から明らかなように、本発明に従い、適正な成分とし、最終仕上焼鈍焼鈍前の鋼板の表面粗さをRaで0.3μm以下にした上で、最高到達温度が1100℃以下の条件で最終仕上焼鈍温度を施した場合には、良好な磁気特性が得られることが分かる。なお、No.2〜4の比較例はいずれも二次再結晶粒が発現しなかった。   As is clear from the table, according to the present invention, it is set as an appropriate component, the surface roughness of the steel plate before final finish annealing is set to 0.3 μm or less with Ra, and the final achieved temperature is 1100 ° C. or less. It can be seen that good magnetic properties are obtained when the finish annealing temperature is applied. In all of the comparative examples of Nos. 2 to 4, secondary recrystallized grains did not appear.

最終仕上焼鈍時の最終到達温度と鉄損の関係を示した図である。It is the figure which showed the relationship between the final ultimate temperature at the time of final finishing annealing, and an iron loss. 最終仕上焼鈍前の鋼板表面粗さRaと鉄損の関係を示した図である。It is the figure which showed the relationship between the steel sheet surface roughness Ra before final finishing annealing, and an iron loss.

Claims (2)

質量%で、C:0.10%以下、Si:2.0〜8.0%、Mn:0.005〜1.0%およびS:0.0005〜0.0026%を含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終冷延板とし、ついで一次再結晶焼鈍後、焼鈍分離剤を塗布してから、最終仕上焼鈍を施す一連の製造工程によって方向性電磁鋼板を製造するに当たり、
最終仕上焼鈍前の鋼板の表面粗さを算術平均粗さRaで0.3μm以下にすると共に、焼鈍分離剤としてアルミナ系の分離剤を使用し、1100℃以下の温度で最終仕上焼鈍を施すことを特徴とする、フォルステライト被膜を有しない方向性電磁鋼板の製造方法。
Hot rolling a steel slab containing, by mass%, C: 0.10% or less, Si: 2.0-8.0%, Mn: 0.005-1.0% and S: 0.0005-0.0026% , the balance being Fe and inevitable impurities Then, after performing hot-rolled sheet annealing as necessary, it is cold-rolled at least once with one or two intermediate sandwiches to make the final cold-rolled sheet, and then applied with an annealing separator after primary recrystallization annealing Then, in producing a grain-oriented electrical steel sheet through a series of manufacturing processes for final finishing annealing,
The surface roughness of the steel sheet before the final finish annealing should be 0.3 μm or less in arithmetic mean roughness Ra, and the final finish annealing should be performed at a temperature of 1100 ° C. or lower using an alumina-based separator as the annealing separator. A method for producing a grain-oriented electrical steel sheet that does not have a forsterite coating.
前記鋼スラブが、さらに質量%で、Ni:0.010〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Nb:0.003〜0.050%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.10%、Al:0.0010〜0.0097およびN:0.0005〜0.0036%のうちから選んだ少なくとも一種または二種以上を含有する組成になることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The steel slab is further mass%, Ni: 0.010-1.50%, Cr: 0.01-0.50%, Cu: 0.01-0.50%, P: 0.005-0.50%, Nb: 0.003-0.050%, Sn: 0.005-0.50. %, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50%, Mo: 0.005 to 0.10%, Al: 0.0010 to 0.0097 %, and N: 0.0005 to 0.0036%. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the composition has a composition.
JP2008078618A 2008-03-25 2008-03-25 Method for producing grain-oriented electrical steel sheet Active JP5228563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078618A JP5228563B2 (en) 2008-03-25 2008-03-25 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078618A JP5228563B2 (en) 2008-03-25 2008-03-25 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2009228117A JP2009228117A (en) 2009-10-08
JP5228563B2 true JP5228563B2 (en) 2013-07-03

Family

ID=41243836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078618A Active JP5228563B2 (en) 2008-03-25 2008-03-25 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5228563B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075603A (en) * 2014-10-30 2017-08-18 杰富意钢铁株式会社 The manufacture method of orientation electromagnetic steel plate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975076B2 (en) * 2014-08-27 2016-08-23 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN107002162B (en) * 2014-11-27 2019-06-07 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate
JP6123960B1 (en) 2015-09-17 2017-05-10 Jfeスチール株式会社 High silicon steel sheet and manufacturing method thereof
JP6624180B2 (en) * 2016-10-18 2019-12-25 Jfeスチール株式会社 Grain-oriented electrical steel sheet and its manufacturing method
KR102360459B1 (en) * 2017-07-13 2022-02-14 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
KR102359168B1 (en) * 2017-07-13 2022-02-08 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
KR102436986B1 (en) * 2017-07-13 2022-08-29 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680532B2 (en) * 1993-10-26 1997-11-19 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with low iron loss

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075603A (en) * 2014-10-30 2017-08-18 杰富意钢铁株式会社 The manufacture method of orientation electromagnetic steel plate
CN107075603B (en) * 2014-10-30 2019-06-18 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate

Also Published As

Publication number Publication date
JP2009228117A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5228563B2 (en) Method for producing grain-oriented electrical steel sheet
KR101921401B1 (en) Method for producing grain-oriented electrical steel sheet
WO2013058239A1 (en) Oriented electromagnetic steel sheet and method for manufacturing same
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
CN111411294A (en) Grain-oriented electromagnetic steel sheet
WO2014132354A1 (en) Production method for grain-oriented electrical steel sheets
JP7299511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR20160138253A (en) Method for producing oriented electromagnetic steel sheet
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JP4784347B2 (en) Method for producing grain-oriented electrical steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP4811390B2 (en) Bi-directional electrical steel sheet
JP7299512B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2003034820A (en) Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
JP5194927B2 (en) Method for producing grain-oriented electrical steel sheet
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JPH1161261A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JP4075258B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP7255761B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7226677B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5999040B2 (en) Method for producing grain-oriented electrical steel sheet
WO2022250161A1 (en) Method for producing grain-oriented electrical steel sheet
JP2007262436A (en) Method for producing grain oriented silicon steel sheet
WO2022250160A1 (en) Method for producing grain-oriented electrical steel sheet
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250