JP2664323B2 - Unidirectional silicon steel sheet with low iron loss - Google Patents

Unidirectional silicon steel sheet with low iron loss

Info

Publication number
JP2664323B2
JP2664323B2 JP3229893A JP3229893A JP2664323B2 JP 2664323 B2 JP2664323 B2 JP 2664323B2 JP 3229893 A JP3229893 A JP 3229893A JP 3229893 A JP3229893 A JP 3229893A JP 2664323 B2 JP2664323 B2 JP 2664323B2
Authority
JP
Japan
Prior art keywords
steel sheet
film
thickness
iron loss
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3229893A
Other languages
Japanese (ja)
Other versions
JPH06248465A (en
Inventor
修一 山崎
武雄 長島
啓 種本
隆雄 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3229893A priority Critical patent/JP2664323B2/en
Publication of JPH06248465A publication Critical patent/JPH06248465A/en
Application granted granted Critical
Publication of JP2664323B2 publication Critical patent/JP2664323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鋼板に与える張力の大
なる皮膜を形成させたことにより、鉄損が低減されかつ
占積率の高い一方向性珪素鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a directionally oriented silicon steel sheet having a high space factor with reduced iron loss by forming a film having a large tension applied to the steel sheet.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は(110)〔00
1〕を主方位とする結晶組織を有し、磁気鉄芯材料とし
て多用されており、特にエネルギーロスを少なくするた
めに鉄損の少ない材料が求められている。ところで、鉄
および5%以下の珪素を含有する鉄合金は結晶磁気異方
性が大きいゆえ、外部張力を付与すると磁区の細分化が
起こり、鉄損の主要素である渦電流損失を低下させるこ
とができる。従って、5%以下の珪素を含有する一方向
性珪素鋼板の鉄損の低減には鋼板に張力を付与すること
が有効である。
2. Description of the Related Art A grain-oriented electrical steel sheet is (110) [00
1) has a crystal structure with a main orientation of 1), and is widely used as a magnetic iron core material. In particular, a material with small iron loss is required to reduce energy loss. Incidentally, an iron alloy containing iron and 5% or less of silicon has a large magnetocrystalline anisotropy. Therefore, when an external tension is applied, the magnetic domain is subdivided, and eddy current loss, which is a main element of iron loss, is reduced. Can be. Therefore, it is effective to apply tension to the steel sheet to reduce the iron loss of the unidirectional silicon steel sheet containing 5% or less of silicon.

【0003】皮膜形成による鋼板への付与張力は、一定
の鋼板厚さに対し、皮膜厚さが大きくなるに従って増大
するが、厚膜化は占積率の低下をもたらす。従って、な
るべく薄い膜厚で鋼板への付与張力の大きい皮膜が求め
られている。
[0003] The tension applied to a steel sheet due to the formation of a film increases as the film thickness increases for a given steel sheet thickness, but increasing the film thickness causes a decrease in the space factor. Therefore, there is a demand for a film having as small a thickness as possible and having a large applied tension to a steel sheet.

【0004】仕上げ焼鈍工程で鋼板表面の酸化物と焼鈍
分離剤とが反応して生成するフォルステライトを主体と
する皮膜は、鋼板に与える張力が大きく、鉄損低減に効
果がある。
[0004] A coating mainly composed of forsterite produced by the reaction between the oxide on the steel sheet surface and the annealing separator in the finish annealing step has a large tension applied to the steel sheet, and is effective in reducing iron loss.

【0005】さらに、特開昭48−39338号公報で
開示されたコロイド状シリカと燐酸塩を主体とするコー
ティング液を焼き付けることによって、絶縁皮膜を形成
する方法は、鋼板に対して張力付与の効果が大きく、鉄
損低減に有効である。従って、仕上げ焼鈍工程で生じた
皮膜を残したうえで張力性の絶縁コーティングを施すこ
とが一般的な方向性電磁鋼板の製造方法となっている。
Further, the method of forming an insulating film by baking a coating solution mainly composed of colloidal silica and phosphate disclosed in Japanese Patent Application Laid-Open No. 48-39338 discloses an effect of imparting tension to a steel sheet. And is effective in reducing iron loss. Therefore, it is a general method of manufacturing a grain-oriented electrical steel sheet to apply a tensile insulating coating while leaving a film generated in the finish annealing step.

【0006】実際に工業的に製造されている一方向性珪
素鋼板においては、約1μm強の仕上げ焼鈍皮膜と約2
μmの絶縁皮膜が施されている。板厚0.23mmの場
合、占積率は約97%であり、これらの皮膜によって鋼
板に付与される張力は、1kg/mm-2程度である。発明者
らの検討によれば、一方向性珪素鋼板の鉄損値に対する
張力効果が飽和するのは1.5kg・mm-2程度である。絶
縁皮膜量を増やせばより張力を増大させることができる
が、占積率が悪化し設計磁束密度が上がることにより、
特に高磁場での鉄損はさほど下がらない。
[0006] In the case of a grain-oriented silicon steel sheet which is actually manufactured industrially, a finish annealing film having a strength of about 1 μm or more and a
A μm insulating film is provided. When the thickness is 0.23 mm, the space factor is about 97%, and the tension applied to the steel sheet by these films is about 1 kg / mm -2 . According to the study by the inventors, the tension effect on the iron loss value of the unidirectional silicon steel sheet is saturated at about 1.5 kg · mm −2 . The tension can be increased by increasing the amount of insulating film, but the space factor deteriorates and the design magnetic flux density increases,
In particular, iron loss in a high magnetic field does not decrease so much.

【0007】占積率を低下させずに鉄損を下げるために
は、少ない皮膜量で鋼板に高い張力を付与できる皮膜材
質を開発しなければならない。例えば、特開平2−24
3770号公報においては、ゾルゲル法による皮膜が鉄
損低減に有効であることが示されている。しかしながら
同公報においてはゾルゲル皮膜を形成するにあたって線
膨張係数の小さい材質を推奨しているが、SiO2 、ユ
ークリプタイト、スポジューメン以外についての具体的
皮膜材質についての記載がない。また、膜厚についての
記載もない。
[0007] In order to reduce iron loss without lowering the space factor, it is necessary to develop a coating material capable of imparting a high tension to a steel sheet with a small coating amount. For example, Japanese Patent Application Laid-Open No. 2-24
Japanese Patent No. 3770 discloses that a film formed by a sol-gel method is effective in reducing iron loss. However, this publication recommends a material having a small coefficient of linear expansion in forming a sol-gel film, but does not describe specific film materials other than SiO 2 , eucryptite, and spodumene. There is no description about the film thickness.

【0008】一方、特開平3−130376号公報にお
いては、ゲル成分としてSiO2 ,アンチモン酸化物,
ジルコン酸化物,SiZrO4 ,Al2 3 ,Fe2
3 ,TiO2 があげられているが、これらは鋼板への張
力を付与する皮膜成分としてではなく、その上に焼き付
けるべき絶縁皮膜と鋼板との密着性を確保するための皮
膜材質としてあげられている。また、特開昭61−24
6321号公報その他にドライコーティングにより炭化
物、硼化物、酸化物、珪化物皮膜を施す技術が開示され
ているが、膜厚と特性についての記載はない。
On the other hand, in JP-A-3-130376, SiO 2 , antimony oxide,
Zircon oxide, SiZrO 4, Al 2 O 3 , Fe 2 O
3 , TiO 2 is mentioned, but not as a coating component for imparting tension to the steel sheet, but as a coating material for ensuring the adhesion between the insulating film to be baked and the steel sheet. I have. Also, JP-A-61-24
No. 6321 and others disclose a technique of applying a carbide, boride, oxide, or silicide film by dry coating, but there is no description about film thickness and characteristics.

【0009】[0009]

【発明が解決しようとする課題】本発明は、少ない皮膜
量で鋼板への付与張力の大きい皮膜を有する、従って鉄
損が低くかつ占積率の高い一方向性珪素鋼板を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a unidirectional silicon steel sheet having a coating with a small coating amount and a large tension applied to the steel sheet, and therefore having a low iron loss and a high space factor. And

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、膜厚が
鋼板厚みの1.5%以下であり、かつヤング率と線膨張
係数が一定の条件を満たす皮膜が施された、鉄損が低く
かつ占積率の高い一方向性珪素鋼板を要旨とする。ここ
で言う一定の条件とは、仕上げ焼鈍皮膜のない鋼板に対
してE(αFe−α)>0.024kg・mm-2・K-1、1μ
m程度の仕上げ焼鈍皮膜を有する鋼板に対してE(αFe
−α)>0.018kg・mm-2・K-1(Eは皮膜のヤング
率(kg・mm-2)、αFeおよびαはそれぞれ鋼板および皮
膜の線膨張率(K-1))にある。
SUMMARY OF THE INVENTION The gist of the present invention is to provide an iron loss coating having a thickness of 1.5% or less of the thickness of a steel sheet and having a Young's modulus and a linear expansion coefficient that satisfy certain conditions. The present invention is directed to a unidirectional silicon steel sheet having a low space factor and a high space factor. The certain conditions referred to herein are as follows: E (α Fe −α)> 0.024 kg · mm -2 · K −1 , 1 μ for a steel sheet without a finish annealing film
E (α Fe
−α)> 0.018 kg · mm -2 · K -1 (E is the Young's modulus of the film (kg · mm -2 ), α Fe and α are the linear expansion coefficients (K -1 ) of the steel sheet and the film, respectively) is there.

【0011】[0011]

【作用】一般に、室温における皮膜形成による下地金属
への付与張力の大きさは、皮膜と下地金属の線膨張係数
差と皮膜形成温度とで決まるとされている。従って、皮
膜材質は線膨張係数の小さいものが良いとされている。
しかし、この考え方は厳密には正しくない。
In general, it is said that the magnitude of the applied tension to the underlying metal due to the formation of the film at room temperature is determined by the difference between the coefficient of linear expansion between the film and the underlying metal and the temperature at which the film is formed. Therefore, it is considered that the coating material should have a small linear expansion coefficient.
However, this idea is not strictly correct.

【0012】例えば、フォルステライト皮膜と、コロイ
ダルシリカと燐酸アルミニウムから作製した皮膜を比較
してみる。3%珪素鋼の線膨張係数の実測値は、約12
×10-6-1、フォルステライトのそれは約11×10
-6-1と報告されている(窯業協会誌,第70巻,p8
6,1962年)。コロイダルシリカと燐酸アルミニウ
ムから作製された皮膜の線膨張係数についての値は測定
例がないが、これをSiO2 −Al2 3 −P2 3
のガラスと仮定し、多成分系ガラスの熱膨張係数を計算
する方法(A.A.アッペン著,「ガラスの化学」,第
X章,日ソ通信社,1974年)を用いて推算すると約
6×10-6-1となる。
For example, a comparison is made between a forsterite coating and a coating made of colloidal silica and aluminum phosphate. The measured value of the linear expansion coefficient of 3% silicon steel is about 12
× 10 -6 K -1 , that of forsterite is about 11 × 10
-6 K -1 (Journal of the Ceramic Society of Japan, Vol. 70, p. 8)
6, 1962). The value has no measurement example of the linear expansion coefficient of the produced film from colloidal silica and aluminum phosphate, which assumes that the glass of SiO 2 -Al 2 O 3 -P 2 O 3 system, a multi-component glass Estimation using a method of calculating the coefficient of thermal expansion (AA Appen, “Chemistry of Glass”, Chapter X, Nisso Tsushinsha, 1974) gives about 6 × 10 −6 K −1 .

【0013】フォルステライト皮膜の形成温度を120
0℃、コロイダルシリカと燐酸アルミニウムから作製さ
れた皮膜のそれを、推定軟化点の500℃にとると、後
者皮膜による張力は前者皮膜に対して3倍程度になるは
ずであるが、実測の皮膜張力は同程度である。従って皮
膜が下地に与える張力の大きさは、線膨張係数差、温度
差、皮膜厚だけで決定されるものではないと言える。
[0013] The formation temperature of the forsterite film is 120
When the temperature of the film made of colloidal silica and aluminum phosphate is set to 500 ° C. at 0 ° C. and the estimated softening point, the tension of the latter film should be about three times that of the former film. The tension is comparable. Therefore, it can be said that the magnitude of the tension applied to the substrate by the film is not determined only by the difference in linear expansion coefficient, the temperature difference, and the film thickness.

【0014】発明者らは、種々の検討により、皮膜によ
る下地への張力の決定因子は上記の他に皮膜のヤング率
があること、さらに、同張力σ(kg・mm-2)は近似的に
次式で表現されることを実験的に見い出した。 σ=E(αFe−α)ΔT(2d/D) …………………(1) ここで、ΔTは皮膜形成時と室温との温度差(K)、d
は皮膜厚、Dは下地鋼板厚さである。
According to various studies, the inventors have found that the determinant of the tension applied to the substrate by the film is the Young's modulus of the film in addition to the above, and that the tension σ (kg · mm −2 ) is approximately It was experimentally found that the following expression was used. σ = E (α Fe −α) ΔT (2d / D) (1) where ΔT is the temperature difference (K) between the time of film formation and room temperature, d
Is the film thickness and D is the thickness of the base steel sheet.

【0015】以下に上記結論の導出経緯を示す。市販の
3%珪素鋼板(板厚約0.18mm)を酸洗し、表面皮膜
を除去した。この鋼板にゾルゲル法により、Al
2 3 ,TiO2 ,Y2 3 ,ZrO2 ,SiO2 皮膜
を形成させた。表1に成膜条件を示す。
The process of deriving the above conclusion will be described below. A commercially available 3% silicon steel sheet (sheet thickness about 0.18 mm) was pickled to remove the surface film. This steel sheet is coated with Al by the sol-gel method.
2 O 3 , TiO 2 , Y 2 O 3 , ZrO 2 , and SiO 2 films were formed. Table 1 shows the film forming conditions.

【0016】[0016]

【表1】 [Table 1]

【0017】皮膜形成後、片面を樹脂で保護したうえで
硝酸中に浸漬することにより皮膜を片面のみ除去し、有
機溶剤で保護樹脂膜を除去した後、鋼板の湾曲より皮膜
による張力を測定した。片面の皮膜を除去した後の試料
厚さは0.16mmであった。図1に張力の実測値を、
(1)式による計算値と比較して示す。計算に用いた皮
膜材料の線膨張係数およびヤング率(室温)は表2の値
を用いた。計算値の実測値への対応は良好であり、皮膜
によって鋼板に付与される張力が(1)式によって与え
られることがわかる。
After forming the film, one surface was protected with resin and then immersed in nitric acid to remove only the film on one surface. After removing the protective resin film with an organic solvent, the tension due to the film was measured from the curvature of the steel sheet. . The sample thickness after removing the coating on one side was 0.16 mm. Figure 1 shows the measured values of tension.
The values are shown in comparison with the values calculated by equation (1). The values shown in Table 2 were used for the coefficient of linear expansion and the Young's modulus (room temperature) of the coating material used in the calculation. The calculated values correspond well to the actually measured values, and it can be seen that the tension applied to the steel sheet by the coating is given by equation (1).

【0018】(1)式より、占積率を低下させずにすな
わち皮膜厚を増大させずに大きな張力を得るためには、
E(αFe−α)の大きい材質からなる皮膜をなるべく高
い皮膜形成温度で形成させれば良いことになる。成膜可
能な温度の上限は珪素鋼の融点(約1400℃)である
から、占積率97%以上(d/D=0.015以下)を
満たし、かつ張力1.0kg・mm-2以上を確保するために
は、皮膜のヤング率と線膨張係数がE(αFe−α)>
0.024を満足する材質であれば良い。
From the equation (1), in order to obtain a large tension without lowering the space factor, that is, without increasing the film thickness,
A film made of a material having a large E (α Fe −α) may be formed at a film forming temperature as high as possible. Since the upper limit of the film forming temperature is the melting point of silicon steel (about 1400 ° C.), the space factor is 97% or more (d / D = 0.015 or less) and the tension is 1.0 kg · mm −2 or more. In order to ensure that the film has a Young's modulus and a linear expansion coefficient of E (α Fe −α)>
Any material that satisfies 0.024 may be used.

【0019】さらに望ましくは、E(αFe−α)>0.
036を満足する材質から皮膜を形成すれば、占積率9
8%以上(d/D≦0.010)かつ張力1.0kg・mm
-2以上を確保できる。
More preferably, E (α Fe −α)> 0.
If a film is formed from a material satisfying 036, the space factor is 9
8% or more (d / D ≦ 0.010) and tension 1.0kg ・ mm
-2 or more can be secured.

【0020】また、鋼板厚みの0.5%程度の膜厚の仕
上げ焼鈍皮膜を有する場合には、仕上げ焼鈍皮膜によっ
て付与される張力が0.5kg・mm-2程度である。従っ
て、さらに0.5kg・mm-2の張力を加えるためにはE
(αFe−α)>0.018を満足する材質の絶縁皮膜を
施せば良い。この場合にも、さらに望ましくは、E(α
Fe−α)>0.036を満足する材質から皮膜を形成す
れば、占積率98%以上かつ合計の張力1.0kg・mm-2
以上を確保することができる。
In the case where a finish annealing film having a thickness of about 0.5% of the thickness of the steel sheet is provided, the tension applied by the finish annealing film is about 0.5 kg · mm −2 . Therefore, to apply a further 0.5 kg · mm -2 tension, E
An insulating film of a material satisfying (α Fe −α)> 0.018 may be applied. Also in this case, more desirably, E (α
If a film is formed from a material satisfying Fe- α)> 0.036, a space factor of 98% or more and a total tension of 1.0 kg · mm −2
The above can be secured.

【0021】このような材質としては表2に示したよう
に、Al2 3 ,BeO,SiO2,SnO2 ,TiO
2 ,Y2 3 ,MgO・Al2 3 (スピネル),3A
23 ・2SiO2 (ムライト),2MgO・2Al
2 3 ・5SiO2 (コーディエライト),CaO・A
2 3 ・2SiO2 (アノーサイト),2CaO・A
2 3 ・SiO2 (ゲーレナイト),CaO・MgO
・2SiO2 (ディオプサイト)の酸化物および複合酸
化物があげられる。
As shown in Table 2, such materials include Al 2 O 3 , BeO, SiO 2 , SnO 2 , and TiO 2 .
2 , Y 2 O 3 , MgO.Al 2 O 3 (spinel), 3A
l 2 O 3 · 2SiO 2 (mullite), 2MgO · 2Al
2 O 3 .5SiO 2 (cordierite), CaO.A
l 2 O 3 · 2SiO 2 (anorthite), 2CaO · A
l 2 O 3 · SiO 2 (Gehlenite), CaO · MgO
And 2SiO 2 (diopsite) oxides and composite oxides.

【0022】[0022]

【表2】 [Table 2]

【0023】ここにあげた酸化物以外の材質でも、E
(αFe−α)>0.024もしくは0.018を満足す
る材質であれば良い。これらの酸化物皮膜はゾルゲル法
により形成することができる。また、金属の炭化物、硼
化物、窒化物、珪化物等の非酸化物系セラミックスも、
表3に示したように一般にヤング率が高くかつ線膨張係
数もさほど大きくないため、一方向性珪素鋼板用の皮膜
材質としてふさわしい。
Materials other than the above-mentioned oxides may also be used.
Any material that satisfies (α Fe −α)> 0.024 or 0.018 may be used. These oxide films can be formed by a sol-gel method. In addition, non-oxide ceramics such as metal carbides, borides, nitrides, and silicides,
As shown in Table 3, since the Young's modulus is generally high and the linear expansion coefficient is not so large, it is suitable as a coating material for a unidirectional silicon steel sheet.

【表3】 [Table 3]

【0024】本発明における条件を満たした皮膜を有す
る一方向性珪素鋼板が、占積率を97%以上に保ったま
ま従来よりも低い鉄損値を示すことは、以下の実施例に
おいて示される。
The following examples show that a grain-oriented silicon steel sheet having a coating satisfying the conditions in the present invention exhibits a lower iron loss value than the conventional steel sheet while keeping the space factor at 97% or more. .

【0025】[0025]

【実施例】以下の実施例においては、皮膜形成手段とし
て主にゾルゲル法を用いた例を述べるが、本発明は皮膜
形成手段については限定するものではない。
EXAMPLES In the following examples, examples using mainly a sol-gel method as a film forming means will be described, but the present invention is not limited to the film forming means.

【0026】実施例1 3%Siを含有する最終板厚0.23mmに圧延された珪
素鋼に対し、脱炭焼鈍を兼ねて珪素鋼表面にSiO2
含む酸化層を形成させた後、MgOを主とする焼鈍分離
剤を塗布し、最終仕上げ焼鈍を行った。このようにして
焼鈍した一方向性珪素鋼板表面にはフォルステライトを
主体とする1μm強の皮膜が存在する。この鋼板の表面
に、ゾルゲル法によりAl2 3 ,SiO2 ,MgAl
2 4 (スピネル),3Al2 3 ・2SiO2 (ムラ
イト)の皮膜を900℃において形成させた。
Example 1 A silicon steel containing 3% Si and rolled to a final thickness of 0.23 mm was subjected to decarburizing annealing to form an oxide layer containing SiO 2 on the surface of the silicon steel. And a final finish annealing was performed. On the surface of the grain-oriented silicon steel sheet annealed in this way, a film of slightly more than 1 μm mainly composed of forsterite exists. Al 2 O 3 , SiO 2 , MgAl is applied to the surface of this steel sheet by the sol-gel method.
A film of 2 O 4 (spinel) and 3Al 2 O 3 .2SiO 2 (mullite) was formed at 900 ° C.

【0027】一部の試料にはコロイダルシリカ、燐酸ア
ルミニウム、無水クロム酸からなるコーティング液を8
50℃で焼き付けて2μmの絶縁皮膜を施し比較材とし
た。得られた鋼板の特性を表4に示す。本発明材は従来
材よりも高い占積率でしかも低い鉄損値を示している。
Some samples were coated with a coating solution composed of colloidal silica, aluminum phosphate and chromic anhydride.
It was baked at 50 ° C. to give a 2 μm insulating film, which was used as a comparative material. Table 4 shows the properties of the obtained steel sheet. The material of the present invention has a higher space factor and a lower iron loss value than the conventional material.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例2 3%Siを含有する最終板厚0.23mmに圧延された珪
素鋼に対し、脱炭焼鈍を兼ねて珪素鋼表面にSiO2
含む酸化層を形成させた後、MgOを主とする焼鈍分離
剤を塗布し、最終仕上げ焼鈍を行った。酸洗により仕上
げ焼鈍皮膜を除去した後、特開平4−131326号公
報に開示されている方法、すなわち、乾燥水素雰囲気中
での高温焼鈍により表面を鏡面化した(板厚0.22m
m)。
Example 2 An oxide layer containing SiO 2 was formed on the surface of a silicon steel containing 3% Si and rolled to a final thickness of 0.23 mm to serve as decarburizing annealing. And a final finish annealing was performed. After the finish annealing film was removed by pickling, the surface was mirror-finished by a method disclosed in Japanese Patent Application Laid-Open No. 4-131326, ie, high-temperature annealing in a dry hydrogen atmosphere (sheet thickness 0.22 m).
m).

【0030】この鋼板表面にゾルゲル法によりAl2
3 ,SiO2 ,MgAl2 4 (スピネル),3Al2
3 ・2SiO2 (ムライト)の皮膜を900℃におい
て形成させた。得られた鋼板の特性を表5に示す。本発
明による一方向性珪素鋼板が高い占積率で極めて低い鉄
損値を示すことがわかる。
The surface of the steel sheet is made of Al 2 O by a sol-gel method.
3 , SiO 2 , MgAl 2 O 4 (spinel), 3Al 2
A film of O 3 · 2SiO 2 (mullite) was formed at 900 ° C. Table 5 shows the properties of the obtained steel sheet. It can be seen that the grain-oriented silicon steel sheet according to the present invention exhibits an extremely low iron loss value at a high space factor.

【0031】[0031]

【表5】 [Table 5]

【0032】実施例3 3%Siを含有する最終板厚0.23mmに圧延された珪
素鋼に対し、脱炭焼鈍を兼ねて珪素鋼表面にSiO2
含む酸化層を形成させた後、MgOを主とする焼鈍分離
剤を塗布し、最終仕上げ焼鈍を行った。酸洗により仕上
げ焼鈍皮膜を除去した後、化学研磨により表面を鏡面化
した(板厚0.20mm)。
Example 3 A silicon steel containing 3% Si and rolled to a final thickness of 0.23 mm was subjected to decarburizing annealing to form an oxide layer containing SiO 2 on the silicon steel surface. And a final finish annealing was performed. After the finish annealing film was removed by pickling, the surface was mirror-finished by chemical polishing (plate thickness: 0.20 mm).

【0033】この鋼板にCVD法もしくはPVD法によ
りWC,TiC,SiC,ZrC,TaC,AlN,A
2 3 ,ZrB2 ,TiB2 ,MoSi2 の皮膜を基
板温度500℃で1μm形成させた。得られた鋼板の特
性を表6に示す。本発明による一方向性珪素鋼板が高い
占積率で極めて低い鉄損値を示すことがわかる。
The steel sheet is subjected to CVD or PVD to form WC, TiC, SiC, ZrC, TaC, AlN, A
Films of l 2 O 3 , ZrB 2 , TiB 2 , and MoSi 2 were formed to a thickness of 1 μm at a substrate temperature of 500 ° C. Table 6 shows the properties of the obtained steel sheet. It can be seen that the grain-oriented silicon steel sheet according to the present invention exhibits an extremely low iron loss value at a high space factor.

【0034】[0034]

【表6】 [Table 6]

【0035】[0035]

【発明の効果】本発明により占積率を低下させることな
く鉄損値の低い方向性珪素鋼板を得ることができる。
According to the present invention, a grain-oriented silicon steel sheet having a low iron loss value can be obtained without lowering the space factor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】皮膜が鋼板に与える張力の実測値と(1)式に
よる計算値を比較した図表である。
FIG. 1 is a table showing a comparison between a measured value of a tension applied to a steel sheet by a coating film and a calculated value according to equation (1).

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼板表面に、E(αFe−α)>0.02
4kg・mm-2・K-1なる皮膜を、鋼板厚さの1.5%以下
の膜厚で形成させ、Si5%以下を含有した鉄損の低い
一方向性珪素鋼板。ここで、Eは皮膜のヤング率(kg・
mm-2)、αFeおよびαはそれぞれ鋼板および皮膜の線膨
張係数(K-1)である。
1. The steel sheet surface has E (α Fe −α)> 0.02.
A unidirectional silicon steel sheet having a coating of 4 kg · mm -2 · K -1 with a thickness of 1.5% or less of the steel sheet thickness and containing 5% or less of Si and having a low iron loss. Here, E is the Young's modulus of the film (kg ·
mm -2 ), α Fe and α are the linear expansion coefficients (K -1 ) of the steel sheet and the coating, respectively.
【請求項2】 鋼板表面に、E(αFe−α)>0.03
6kg・mm-2・K-1なる皮膜を、鋼板厚さの1.0%以下
の膜厚で形成させた請求項1記載の鉄損の低い一方向性
珪素鋼板。
2. The steel sheet surface has E (α Fe −α)> 0.03.
The unidirectional silicon steel sheet having a low iron loss according to claim 1, wherein the coating of 6 kg · mm -2 · K -1 is formed in a thickness of 1.0% or less of the thickness of the steel sheet.
【請求項3】 仕上げ焼鈍によって形成された皮膜の上
に、E(αFe−α)>0.018kg・mm-2・K-1なる皮
膜を、鋼板厚さの1%以下の膜厚で形成させ、Si5%
以下を含有した鉄損の低い一方向性珪素鋼板。ここで、
Eは皮膜のヤング率(kg・mm-2)、αFeおよびαはそれ
ぞれ鋼板および皮膜の線膨張係数(K-1)である。
3. A film of E (α Fe −α)> 0.018 kg · mm −2 · K −1 is formed on the film formed by the finish annealing at a thickness of 1% or less of the thickness of the steel sheet. 5% of Si
A unidirectional silicon steel sheet with low iron loss containing: here,
E is the Young's modulus (kg · mm −2 ) of the film, and α Fe and α are the linear expansion coefficients (K −1 ) of the steel sheet and the film, respectively.
【請求項4】 鋼板表面にE(αFe−α)>0.036
kg・mm-2・K-1なる皮膜を、鋼板厚さの0.5%以下の
膜厚で形成させた請求項3記載の鉄損の低い一方向性珪
素鋼板。
4. The steel sheet surface has E (α Fe −α)> 0.036.
The unidirectional silicon steel sheet having a low iron loss according to claim 3, wherein the coating of kg · mm -2 · K -1 is formed in a thickness of 0.5% or less of the thickness of the steel sheet.
【請求項5】 皮膜材質がLi,Be,B,Mg,A
l,Si,Ca,Ti,Cr,Mn,Fe,Co,N
i,Cu,Zn,Sr,Sn,Y,Zr,Nb,Mo,
Hf,Ta,Wの酸化物、炭化物、硼化物、窒化物、珪
化物のうち1種あるいは2種以上からなる請求項1ない
し4のいずれかに記載の鉄損の低い一方向性珪素鋼板。
5. The film material is Li, Be, B, Mg, A
1, Si, Ca, Ti, Cr, Mn, Fe, Co, N
i, Cu, Zn, Sr, Sn, Y, Zr, Nb, Mo,
The unidirectional silicon steel sheet having a low iron loss according to any one of claims 1 to 4, comprising one or more of oxides, carbides, borides, nitrides, and silicides of Hf, Ta, and W.
【請求項6】 皮膜がゾルゲル法によって形成された請
求項1ないし5のいずれかに記載の鉄損の低い一方向性
珪素鋼板。
6. The grain-oriented unidirectional silicon steel sheet according to claim 1, wherein the coating is formed by a sol-gel method.
JP3229893A 1993-02-22 1993-02-22 Unidirectional silicon steel sheet with low iron loss Expired - Lifetime JP2664323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3229893A JP2664323B2 (en) 1993-02-22 1993-02-22 Unidirectional silicon steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3229893A JP2664323B2 (en) 1993-02-22 1993-02-22 Unidirectional silicon steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH06248465A JPH06248465A (en) 1994-09-06
JP2664323B2 true JP2664323B2 (en) 1997-10-15

Family

ID=12355051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3229893A Expired - Lifetime JP2664323B2 (en) 1993-02-22 1993-02-22 Unidirectional silicon steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP2664323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180073261A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Composition for forminginsulating film and method for forming insulation film using that, oriented ecectrical steel sheet and manufacturing method for oriented ecectrical steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787613B2 (en) * 2005-12-15 2011-10-05 独立行政法人産業技術総合研究所 Oriented electrical steel sheet with ferrite coating
JP6146098B2 (en) * 2013-04-08 2017-06-14 新日鐵住金株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP6624180B2 (en) * 2016-10-18 2019-12-25 Jfeスチール株式会社 Grain-oriented electrical steel sheet and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180073261A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Composition for forminginsulating film and method for forming insulation film using that, oriented ecectrical steel sheet and manufacturing method for oriented ecectrical steel sheet

Also Published As

Publication number Publication date
JPH06248465A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
KR910006011B1 (en) Extra-low iron loss grain oriented silicon steel sheets
JP2664337B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP2009018573A (en) Grain-oriented electromagnetic steel sheet including electrically insulating coating
US6287703B1 (en) Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same
CN111684106B (en) Electromagnetic steel sheet with insulating coating and method for producing same
JPS60131976A (en) Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic
JP2664323B2 (en) Unidirectional silicon steel sheet with low iron loss
JP2962715B2 (en) Method of forming insulation film on electrical steel sheet
JPH0665755A (en) Low-iron loss grain-oriented electrical steel sheet
JP2664323C (en)
JP4041289B2 (en) Method for forming insulating coating on electrical steel sheet
JP2004027345A (en) Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JP4015875B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JPH1161261A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
KR940002683B1 (en) Method of producing grain oriented silicon steel sheeets each having a low wattloss and a mirror surface
JP3279450B2 (en) Grain-oriented electrical steel sheet with insulating coating formed on the surface
JP3065908B2 (en) Low iron loss unidirectional silicon steel sheet
JP2006265685A (en) Grain-oriented magnetic steel sheet and producing method therefor
JP3280844B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP4206942B2 (en) Oriented electrical steel sheet with extremely low iron loss and excellent film adhesion and method for producing the same
JP7269504B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2000282249A (en) Insulated coating film of grain oriented silicon electric steel sheet and its formation
JP3300117B2 (en) Method of forming insulating coating on grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 16

EXPY Cancellation because of completion of term