JP2004027345A - Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same - Google Patents

Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2004027345A
JP2004027345A JP2002189754A JP2002189754A JP2004027345A JP 2004027345 A JP2004027345 A JP 2004027345A JP 2002189754 A JP2002189754 A JP 2002189754A JP 2002189754 A JP2002189754 A JP 2002189754A JP 2004027345 A JP2004027345 A JP 2004027345A
Authority
JP
Japan
Prior art keywords
steel sheet
oxide
coating
film
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002189754A
Other languages
Japanese (ja)
Inventor
Seiji Okabe
岡部 誠司
Hiroshi Yamaguchi
山口 広
Mineo Muraki
村木 峰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002189754A priority Critical patent/JP2004027345A/en
Publication of JP2004027345A publication Critical patent/JP2004027345A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain oriented silicon steel sheet which has a good adhesion property of insulating films and has extremely low iron loss and a method for manufacturing the same. <P>SOLUTION: A silicon steel sheet is subjected to finish annealing, and an oxide film mainly composed of a Si-based oxide is formed on the surface of its base iron by 0.15 to 0.15 g per 1 m<SP>2</SP>on both sides in terms of an oxygen basis weight. A ceramic film of 0.1 to 3 μm thickness mainly composed of nitrides and/or carbides of one or ≥2 kinds selected from the group of Si, Ti, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo, W, Co, Ni, and Al or B are formed thereon by CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), etc., and further the insulating films composed mainly of the oxides are formed by applying coating and further baking. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主に電力用トランスの鉄心として用いられる、極めて低鉄損の方向性電磁鋼板およびその製造方法に関する。
【0002】
【従来技術】
方向性電磁鋼板の鉄損を低減するために開発が進められている技術として、通常の方向性電磁鋼板の表面に形成されているフォルステライト被膜を除去し、地鉄表面を平滑にする方法が知られている。これは地鉄表面の凹凸を減少させ、磁壁の移動を妨げないようにして鉄損の要素の一つであるヒステリシス損を低減するものである。しかし、地鉄にコーティング液の塗布・焼付けで形成される絶縁被膜を強固に密着させる働きをしていたフォルステライト被膜がないため、絶縁被膜が剥離しやすいという問題がある。特に、従来使われてきたリン酸塩とコロイド状シリカを主体とした、地鉄に張力を付与できる被膜(張力被膜)は被膜と地鉄との間に働く応力のため剥落しやすく、常法では地鉄上に健全に形成することはほとんど困難である。
【0003】
その対策として、例えばリン酸塩とコロイド状シリカとを主体とするコーテイィング液の成分や焼付け方法を変更する方法(特開昭63− 111604号、特開平9−78253号公報など)、ホウ酸とアルミナゾルを主体とした絶縁被膜を形成する方法(特開平6−65754号公報など)、地鉄上に金属めっきをしてから絶縁コーティングを形成する方法(特開平11−181557号公報など)、PVDなどでセラミックス被膜を形成する方法(特開昭53− 144419号など)が提案されている。これらのうち、リン酸塩とコロイド状シリカまたはホウ酸アルミナを主体とする絶縁コーティングのみを形成する方法は、被膜の密着性が改善されているとはいえ、なお密着性が不十分な場合がある。さらに地鉄表面が酸化によって平滑度が低下し、鉄損が増加する恐れがある。また鋼板に付与できる張力は従来の方向性電磁鋼板と同程度でしかない。
【0004】
加えて、地鉄表面を平滑にした場合、従来地鉄表面の凹凸によってある程度生じていた磁区細分化の効果がなくなる。これを補うには従来以上に強い被膜の張力が必要であるが、これらのコーティングのみでは、従来以上の強い被膜張力は得られない。地鉄上に金属めっきを施してから張力被膜を形成する技術では、ヤング率の大きい金属めっきを利用すれば、従来よりも強い被膜張力が得られるという利点があるが、地鉄中にめっき金属が拡散するために歪み取り焼鈍が行えないという問題がある。
PVDなどのセラミックス被膜を形成する技術では、歪み取り焼鈍が可能である。また従来のリン酸塩―シリカ系被膜のような酸化物よりもヤング率が大きいセラミックス被膜が形成されるため、より強い被膜張力が得られることが期待される。しかし、強い被膜張力を持たせると、やはりセラミックス層と地鉄との間で剥離する場合があった。その場合、セラミックスの被膜を薄くして従来の被膜程度の張力にしなければならず、高張力で得られるはずの低鉄損が得られなかった。
【0005】
【発明が解決しようとする課題】
本発明は、これらの問題を解決し、絶縁被膜の密着性がよく、しかも極めて低鉄損の方向性電磁鋼板を得ることを課題とする。
【0006】
【課題を解決するための手段】
本発明者は、従来の技術のうち、高張力が得られるセラミックス被膜を利用する方法について、さらに研究を進め、セラミックス被膜と鋼板との界面にさらに中間層として酸化物層を形成することで、セラミックス被膜の鋼板表面への被膜密着性が大いに改善されることを発見した。さらに中間層の構成・条件を見極め、本発明を完成した。すなわち、その要旨は以下の通りである。
【0007】
本発明は、電磁鋼板の地鉄表面に酸素目付量にして両面で1m2 当たり0.01〜0.15gのSi系酸化物を主体とした酸化物、その上にSi、Ti、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、W、Co、Ni、AlまたはBの1種または2種以上の窒化物および/または炭化物を主体とした厚み0.1〜3μmのセラミックス被膜、さらにその上に酸化物を主体とする絶縁被膜を有することを特徴とする低鉄損方向性電磁鋼板である。
【0008】
低鉄損方向性電磁鋼板は、Si系酸化物を主体とした酸化物が、仕上げ焼鈍中に地鉄表面に形成されたものであるのが好ましい。
【0009】
低鉄損方向性電磁鋼板は、鋼板の長手方向から60〜90°の方向に、板厚の5〜25%の深さの溝が0.5〜10mmの間隔で繰返し地鉄表面に形成されているのが好ましい。
【0010】
また、本発明は、電磁鋼板を仕上げ焼鈍し、地鉄表面の酸素目付量が両面で1m2 当たり0.01〜0.15gのSi系酸化物を主体とした酸化物を付け、これにCVD、PVDまたはイオンプレーティングでSi、Ti、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、W、Co、Ni、AlまたはBの1種または2種以上の窒化物および/または炭化物を主体とした厚み0.1〜3μmのセラミックス被膜を形成し、さらにその上に酸化物を主体とする絶縁被膜を、塗布・焼付けにより形成することを特徴とする低鉄損方向性電磁鋼板の製造方法である。
【0011】
電磁鋼板の製造工程における最終冷間圧延より後で、セラミックス被膜を形成するより前の工程において、鋼板の長手方向から60〜90°の方向に、板厚の5〜25%の深さの溝を0.5〜10mmの間隔で繰返し地鉄表面に形成するのが好ましい。
【0012】
【発明の実施の形態】
以下、本発明を具体的に説明する。
本発明の方向性電磁鋼板は、仕上げ焼鈍により地鉄表面に形成された、極薄いSi系酸化物を主体とした酸化物を被膜として有する。好ましい方向性電磁鋼板は、特に優れた磁気特性が得られる結晶粒の(110)[001]方位への集積度が高い、いわゆる高配向性の方向性電磁鋼板である。酸化物被膜はその上に形成されるセラミックス被膜を地鉄に強固に密着させるために、酸素目付量が両面で0.01g/m2 以上でなければならない。一方、酸化物被膜が酸素目付量にして両面で0.15g/m2 を超えるとセラミックス被膜が剥離しやすくなる。これは厚さが大きくなりすぎて被膜内部で破壊が生じやすくなったり、被膜の地鉄との整合性が板厚の増加とともに失われるためと考えられる。したがって、酸化物被膜の酸素目付量は両面で0.01〜0.15g/m2 が好適であり、0.02〜0.10g/m2 がより好適である。
【0013】
本発明の方向性電磁鋼板は、まず仕上げ焼鈍により、地鉄表面に極薄いシリカを主体とした酸化物被膜を形成するように製造されるが、該方向性電磁鋼板を製造する際のスラブの圧延から一次再結晶焼鈍までの諸工程は、従来公知の高配向性の方向性電磁鋼板の製造方法における諸工程が適用される。すなわち、有効(強化)成分を調整した鋼スラブを素材として使用し、スラブ加熱、熱間圧延、熱延板焼鈍(必要に応じて)、1回または中間焼鈍を挟んだ2回以上の冷間圧延、一次再結晶焼鈍、仕上げ焼鈍による公知の方法で製造される。
【0014】
鋼スラブは、例えば質量%で、Si:2〜7%およびMn:0.01〜2.5%の他に、さらにS、Se、Al、B、Bi、Sb、Mo、Te、Sn、P、Ge、As、Nb、Cr、Ti、Cu、Pb、Zn、Inなどを1種または2種以上添加して有効成分を調整したものが好ましい。
【0015】
仕上げ焼鈍の際に、鋼板間に適用する焼鈍分離剤として、アルミナ、シリカなどの水和しない酸化物粉末を使用するとフォルステライト被膜が形成されなくなる。また、焼鈍分離剤のマグネシアにハロゲン化物を少量添加すると、仕上げ焼鈍後にフォルステライト被膜を地鉄上に形成することを回避できる。これは地鉄とフォルステライト被膜の界面が平滑化され、仕上げ焼鈍の冷却過程で地鉄表面からフォルステライト被膜が剥離されるためと推測される。
【0016】
また、仕上げ焼鈍条件の変更により、酸化物被膜の膜厚を調整することができる。例えば、仕上げ焼鈍中の雰囲気中の酸化性ガス(酸素、水蒸気など)の濃度や雰囲気温度、焼鈍時間を変化させて酸化性を変えることにより、地鉄上にわずかに形成される酸化物被膜の膜厚を調整することができる。なお、酸化性ガスの過度の使用により、地鉄表面の平滑度が劣化することがあるので、注意を要する。
酸化物被膜の膜厚は仕上げ焼鈍後の酸洗や研磨などにより調整することもできるが、仕上げ焼鈍時の焼鈍分離剤や雰囲気の条件変更による方が、工程が少なく単純で効率的である。また、酸洗などを経ずに、高温の仕上げ焼鈍で形成されたままの酸化物被膜の方が被膜強度が優れ、鋼板表面への酸化物被膜の密着性に優れるので好ましい。
【0017】
仕上げ焼鈍後には、残留した焼鈍分離剤を水洗や軽酸洗で洗浄除去する。例えば、従来からマグネシアを除去するために適用されているリン酸洗浄などが好適である。過度の酸洗は酸化物被膜を劣化させたり、地鉄表面に凹凸を形成したりするので好ましくない。酸洗による重量減少量を両面で2g/m2 以下、好ましくは1g/m2 以下とする。
【0018】
また、仕上げ焼鈍後の電磁鋼板を化学的または機械的に研磨して表面を平滑にしてから、さらに熱処理によって、極薄の酸化物被膜を形成することも可能である。例えば、通常の方向性電磁鋼板を化学研磨し、フォルステライト被膜を除去して表面を平滑化した後、さらに弱い酸化性ガス雰囲気中で、例えば、800〜900℃のPH2O /PO2=0.01〜0.2程度の雰囲気で1〜300秒間熱処理を行ってSi系酸化物を主体とする酸化物被膜を形成してもよい。
【0019】
このようにして、仕上げ焼鈍後に形成された酸化物はSi系酸化物(シリカなど)を主体とするものであるが、仕上げ焼鈍の条件により、Fe、Mg、Alなどを含有することもある。例えば、SiO2 、Fe2 SiO4 、Mg2 SiO4 などのSiを含有する酸化物であり、これらの酸化物は単独でも複数が混在していてもよく、構成元素比も一定である必要はない。
【0020】
熱処理によって形成された極薄の酸化物被膜は、例えばゾルゲル法などで作られた酸化物被膜に比べて、遥かに電磁鋼板への密着性が強い。この理由は明確ではないが、次のように推定される。すなわち、酸化物被膜は地鉄表面での地鉄もしくは合金元素の酸化反応によって形成されるが、酸化物被膜と地鉄との界面に他の物質が介在しないこと、ならびに地鉄表面の二次再結晶粒方位に整合した結晶構造を持つ酸化物が形成されて、酸化物被膜と地鉄との界面が安定化されることが関係しているものと考えられる。
【0021】
次に、電磁鋼板に張力を付与する被膜として、Si、Ti、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、W、Co、Ni、AlまたはBの1種または2種以上の窒化物および/または炭化物を主体としたセラミックス被膜層を形成する。セラミックス被膜層は、CVD、PVDまたはイオンプレーティングによって、一般的な条件によって形成される。その際、雰囲気などから、酸素が層内に取り込まれ、該元素の酸化物が少量含有されていても構わない。
【0022】
セラミックス被膜層は酸化物被膜表面から少量ずつ積み重なって形成されるため、塗布・焼付けで形成される従来の絶縁被膜とは異なり、該被膜層は酸化物の結晶に整合した構造を持つ。これはセラミックス被膜の酸化物被膜への密着性を高めるのに極めて有効である。
先に述べたように、地鉄表面の極薄の酸化物被膜も地鉄の結晶方位と整合した構造を持つため、このセラミックス被膜もまた地鉄および酸化物被膜の結晶方位と整合した構造を持つことになり、より一層セラミックス被膜の酸化物被膜への優れた被膜密着性が得られるものと考えられる。
【0023】
酸化物被膜なしにセラミックス被膜を形成した場合に比べて、該被膜密着性が改善されている理由は、地鉄とセラミックスの間の結合力より、地鉄と、地鉄の反応によって形成された酸化物との間の結合力、およびともに非金属である酸化物とセラミックスとの間の結合力の方が優れるためと考えられる。また、地鉄表面の極薄の酸化物被膜はセラミックス被膜中に含まれる炭素や窒素が歪み取り焼鈍などの熱処理中に地鉄中に拡散するのを抑制する作用もあり、鉄損劣化を防止するという効果もある。
【0024】
特定の窒化物および/または炭化物は、従来の張力被膜を構成するリン酸塩とシリカを主体とした酸化物よりもヤング率が極めて大きいため、薄い被膜で強い張力を電磁鋼板に懸けることが可能になる。特にセラミックス被膜を形成する際に、鋼板の長手方向に2MPa 以上の張力を懸けておくと、被膜から地鉄に付与する張力が増大するので好ましい。またセラミックス被膜形成時の鋼板の温度を変圧器の鉄心の常用温度よりも高い200℃以上にしておくと鋼板に付与される張力が増大するので好ましい。特に歪み取り焼鈍として常用される750〜900℃以上にすると、歪み取り焼鈍後のセラミックス被膜の張力被膜に対する被膜密着性が改善されるという効果があり、より一層好適である。
【0025】
セラミックス被膜の厚さが0.1〜5μmの範囲であると、セラミックス被膜の張力とセラミックス被膜の張力被膜に対する被膜密着性に優れる。0.1μmよりも小さいと鉄損の低減効果が小さく、5μmよりも大きいと張力が強すぎてセラミックス被膜の張力被膜に対する被膜密着性が劣化する上に、鉄心に加工する際の占積率も低下する。0.2〜2μmの範囲であるのがより好ましい。
【0026】
さらに、該セラミックス被膜の上に絶縁被膜を形成する。該絶縁被膜は、リン酸塩とシリカを主体として、必要に応じてクロム酸などを添加した従来のコーティング液の塗布・焼付けで形成された酸化物を主体とするものであり、該絶縁被膜は、下層の窒化物・炭化物のセラミックス被膜の張力をさらに強める効果を有する。
絶縁被膜の形成には、さらに、熱膨張係数の小さいガラスのフリットを懸濁した液を塗布して焼付ける方法、ホウ酸とアルミナゾルを主成分とするコーティング液を塗布して焼付ける方法などの公知の張力被膜の形成方法を適用することもできる。
絶縁被膜の量は、鉄心とした際の層間抵抗の確保と占積率を考慮すると、目付量にして両面で2〜20g/m2 の範囲が好ましく、6〜14g/m2 の範囲がより好ましい。
【0027】
また、地鉄表面に溝を形成して磁区を細分化すると、本発明の電磁鋼板の鉄損の低減化を顕著に発現させることができるので、極めて有効である。本発明のように、従来以上に高い被膜張力を電磁鋼板に付与する場合の好ましい溝の形態は、深さが板厚の5〜25%で、溝の方向が電磁鋼板の長手方向から60〜90°傾き、溝の繰返し間隔が0.5〜10mmのものである。溝の深さが板厚の5%未満の場合、方向が長手方向から60°を超える場合、または間隔が10mmを超える場合は、磁区細分化による鉄損の低減の効果が小さく、溝の深さが板厚の25%を超える場合や、間隔が0.5mm未満の場合は透磁率が低下して、かえって鉄損の増大を招くことになる。
【0028】
溝の形成は、溝形状を一定に保つために、電磁鋼板の最終冷間圧延の後に実施する必要がある。溝の形成は、機械加工や化学的なエッチングによるのが好ましい。セラミックス被膜形成後は機械加工や化学的なエッチングによる溝の形成が困難になる上、セラミックス被膜の剥離や破壊が生じて張力効果が低下するため、セラミックス被膜形成よりも前の工程で溝を形成するのが好ましい。例えば、最終冷間圧延後に、レジストでマスクしてから電解エッチングを行ったり、仕上げ焼鈍後にプレスを行ったりする方法が用いられる。
【0029】
【実施例】
(実施例1)
AlN、MnSe、Sbをインヒビターとした方向性電磁鋼板の最終冷間圧延後の試料(厚さ0.23mm)を用意した。これに電解エッチングによって深さ21μmの溝を圧延方向と80°の方向に2.5mm間隔で形成した。続いて、湿潤水素雰囲気で脱炭焼鈍を兼ねた一次再結晶焼鈍を行った。次に、マグネシアに質量比にして2%の塩化アンチモンを添加した焼鈍分離剤をスラリーにして塗布して乾燥し、乾燥水素中で最高1200℃まで昇温して10時間保持する仕上げ焼鈍を行った。仕上げ焼鈍後に、鋼板上に残留した焼鈍分離剤を水洗とリン酸酸洗で除去したところ、酸素目付量にして両面で0.08g/m2 のシリカを主体とした酸化物被膜が形成された(番号3および4)。
【0030】
さらに、一部の試料を過酸化水素とフッ酸により化学研磨して、表面の酸化物被膜を完全に除去し、酸素目付量にして0.01g/m2 未満にした(番号1および2)。
比較のために、ハロゲン化物を添加しない通常の条件のマグネシアを焼鈍分離剤として仕上げ焼鈍した電磁鋼板も作成した(番号5および6)。この電磁鋼板には、酸素目付量にして両面で3.2g/m2 のフォルステライトを主体とした酸化物被膜が形成された。
【0031】
これらの電磁鋼板の一部に、厚み1μmのTiN被膜をPVDによって形成しセラミックス被膜を形成した。さらに850℃で3時間の歪み取り焼鈍を行った後、リン酸アルミニウム、コロイド状シリカ、および重クロム酸マグネシウムを含むコーティング液を、ロールコーターで塗布し、840℃で焼付けして両面で12g/m2 の酸化物の絶縁被膜を形成し、方向性電磁鋼板を製造した。表1に該電磁鋼板の鉄損W17/50 と、被膜密着性を評価した結果を示した。
【0032】
鉄損W17/50 はエプスタイン法によって、1.7T、50Hzで測定した。
被膜密着性は直径30mmおよび60mmの丸棒に沿わせて電磁鋼板を曲げたときの被膜の剥離耐性で評価した。直径30mm曲げに耐えたものを○、直径60mm曲げに耐えたが、直径30mm曲げに耐えないものを△、直径60mm曲げに耐えないものを×と評価した。表1に評価結果を併記する。
本発明が規定する、酸化物被膜、セラミックス被膜、および塗布型絶縁被膜の条件の全てを満たした場合(番号3)のみが著しく低い鉄損と良好な密着性を同時に発現する。
【0033】
【表1】

Figure 2004027345
【0034】
(実施例2)
実施例1の仕上げ焼鈍を行った後の、酸素目付量にして両面で0.08g/m2 のシリカを主体とした酸化物被膜を有する電磁鋼板上に、CVDにより表2に示す各種の窒化物被膜または炭化物被膜からなるセラミックス被膜を表2に示す膜厚で形成した。番号14および15では、2種類のセラミックス被膜を形成した。その後、ホウ酸とアルミナゾルを主成分とするコーティング液を、ロールコーターで塗布し、880℃で焼付けして10g/m2 の酸化物(両面)の絶縁被膜を形成した。さらに、850℃で3時間の歪み取り焼鈍を行った後、鉄損W17/50 と被膜密着性を評価した。表2に評価結果を併記する。
本発明が規定する極薄酸化物被膜、セラミックス被膜、および塗布型絶縁被膜の条件の全てを揃えた場合、低い鉄損と良好な密着性を同時に発現する。
【0035】
【表2】
Figure 2004027345
【0036】
(実施例3)
実施例1において、焼鈍分離剤のマグネシアに対する塩化アンチモンの添加量を、質量比で表3に示す0.1〜1%の間で変化させる以外は、実施例1と同様に仕上げ焼鈍を行った。仕上げ焼鈍後の地鉄表面には表3に示すように酸素目付量にして両面で0.06〜0.80g/m2 の酸化物被膜が形成された。電磁鋼板の一部(番号1〜3)については化学研磨によってさらに酸化物量を低減させた。
これらの電磁鋼板上にスパッタリングにより厚さ1.2μmのSi3 4 被膜を形成し、続いて、リン酸アルミニウム、コロイド状シリカおよびクロム酸を含むコーティング液をロールコーターで塗布し、850℃で焼付けして両面で7g/m2 の酸化物張力被膜を形成した。表3に仕上げ焼鈍後の酸化物被膜量と鉄損、被膜密着性との関係を示す。本発明が規定する、酸化物被膜を有する電磁鋼板が、低い鉄損と良好な密着性を同時に発現する。
【0037】
【表3】
Figure 2004027345
【0038】
(実施例4)
実施例1において、表4に示す冷間圧延後から仕上げ焼鈍後までの各工程において電磁鋼板の溝形成を行う工程を追加する以外は、実施例1( 番号3〜4)と同様に酸化物被膜を形成した。溝は深さ19μm、間隔3.4mmで長手方向から75°傾けた方向に形成した。これらの電磁鋼板の上に、イオンプレーティングにより厚さ0.8μmのSiC被膜を形成し、続いて、リン酸マグネシウム、コロイド状シリカおよびクロム酸を含むコーティング液を、ロールコーターで塗布し、810℃で焼付けして酸化物張力被膜を両面あたりの目付量にして10.2g/m2 で形成した。表4にこれらの電磁鋼板の鉄損を示す。
【0039】
一方、冷間圧延後に、電解エッチングでこれらと同じ溝を形成し、従来法と同じマグネシアを焼鈍分離剤として仕上げ焼鈍を行い、フォルステライト被膜を形成した試料に、さらにイオンプレーティングによるSiC被膜とリン酸塩系酸化物被膜を前記と同じように形成した試料の鉄損W17/50は0.79W/kgであった。溝を形成しない場合でも従来を遥かに超える低鉄損が得られるが、溝を形成したものはさらに低鉄損となり好適である。
【0040】
Figure 2004027345
【0041】
【発明の効果】
本発明の方向性電磁鋼板は、フォルステライト被膜がないので、極めて低い鉄損と良好な被膜密着性とを有する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a grain-oriented electrical steel sheet having extremely low iron loss, which is mainly used as an iron core of a power transformer, and a method for manufacturing the same.
[0002]
[Prior art]
As a technology being developed to reduce iron loss in grain-oriented electrical steel sheets, there is a method to remove the forsterite film formed on the surface of ordinary grain-oriented electrical steel sheets and smooth the ground iron surface. Are known. This is to reduce the unevenness of the surface of the ground iron and to prevent the movement of the domain wall so as to reduce the hysteresis loss which is one of the elements of the iron loss. However, since there is no forsterite film that has functioned to firmly adhere the insulating film formed by applying and baking the coating liquid to the base iron, there is a problem that the insulating film is easily peeled. In particular, the conventional coatings (tensile coatings) mainly composed of phosphate and colloidal silica that can impart tension to the base iron are easily peeled off due to the stress acting between the coating and the base iron. Then, it is almost difficult to form a sound on geological steel.
[0003]
As a countermeasure, for example, a method of changing the components of the coating liquid mainly composed of phosphate and colloidal silica and a method of baking (Japanese Patent Application Laid-Open No. 63-111604, Japanese Patent Application Laid-Open No. 9-78253, etc.), A method of forming an insulating coating mainly composed of alumina sol (Japanese Patent Application Laid-Open No. 6-65554, etc.), a method of forming an insulating coating after metal plating on a base iron (Japanese Patent Application Laid-Open No. 11-181557, etc.), PVD For example, a method of forming a ceramic film (Japanese Patent Application Laid-Open No. 53-144419) has been proposed. Of these, the method of forming only an insulating coating mainly composed of phosphate and colloidal silica or alumina borate, although the adhesion of the film is improved, may still be insufficient adhesion. is there. Further, the surface of the base iron may be oxidized to lower the smoothness and increase iron loss. Also, the tension that can be applied to a steel sheet is only about the same as that of a conventional grain-oriented electrical steel sheet.
[0004]
In addition, when the surface of the base iron is smoothed, the effect of magnetic domain segmentation, which has been caused to some extent by the unevenness of the surface of the base iron, is lost. To compensate for this, a stronger film tension than before is required, but these coatings alone cannot provide a higher film tension than before. The technology of forming a tension coating after applying metal plating on the base iron has the advantage that a higher coating tension can be obtained by using metal plating with a large Young's modulus. However, there is a problem that the strain relief annealing cannot be performed because of the diffusion of.
In the technology of forming a ceramic film such as PVD, strain relief annealing is possible. Further, since a ceramic film having a higher Young's modulus than an oxide such as a conventional phosphate-silica-based film is formed, it is expected that a stronger film tension can be obtained. However, when a strong coating tension is applied, there is also a case where peeling occurs between the ceramic layer and the ground iron. In that case, the ceramic coating must be thinned to a tension of the conventional coating, and the low iron loss that could be obtained with high tension could not be obtained.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to solve these problems and to obtain a grain-oriented electrical steel sheet having good adhesion of an insulating film and extremely low iron loss.
[0006]
[Means for Solving the Problems]
The present inventor has further researched a method of using a ceramic film capable of obtaining a high tension among conventional techniques, and further forming an oxide layer as an intermediate layer at an interface between the ceramic film and the steel sheet, It has been discovered that the adhesion of the ceramic coating to the steel sheet surface is greatly improved. Further, the present inventors have determined the configuration and conditions of the intermediate layer and completed the present invention. That is, the gist is as follows.
[0007]
The present invention provides an oxide mainly composed of 0.01 to 0.15 g of Si-based oxide per m 2 on both sides in terms of oxygen basis weight on the surface of the ground iron of the magnetic steel sheet, and further comprises Si, Ti, Zr, and Hf. , V, Nb, Ta, Mn, Cr, Mo, W, Co, Ni, Al or B, a ceramic coating having a thickness of 0.1 to 3 μm mainly composed of one or more nitrides and / or carbides; Further, there is provided a low iron loss grain-oriented electrical steel sheet having an insulating coating mainly composed of an oxide thereon.
[0008]
In the low iron loss grain-oriented electrical steel sheet, it is preferable that an oxide mainly composed of a Si-based oxide is formed on the surface of the base iron during the finish annealing.
[0009]
The low iron loss grain-oriented electrical steel sheet is formed on the surface of the ground iron sheet in a direction of 60 to 90 ° from the longitudinal direction of the steel sheet at intervals of 0.5 to 10 mm with grooves having a depth of 5 to 25% of the sheet thickness. Is preferred.
[0010]
In addition, the present invention finish-anneals an electrical steel sheet and attaches an oxide mainly composed of a Si-based oxide having an oxygen basis weight of 0.01 to 0.15 g per m 2 on both surfaces to the surface of the ground iron, , PVD or ion plating, one or more nitrides and / or carbides of Si, Ti, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo, W, Co, Ni, Al or B A low iron loss grain-oriented electrical steel sheet, characterized in that a ceramic coating having a thickness of 0.1 to 3 μm mainly composed of a ceramic is formed, and an insulating coating mainly composed of an oxide is further formed thereon by coating and baking. It is a manufacturing method.
[0011]
After the final cold rolling in the manufacturing process of the electrical steel sheet and before forming the ceramic film, in the direction of 60 to 90 ° from the longitudinal direction of the steel sheet, a groove having a depth of 5 to 25% of the thickness of the steel sheet. Is preferably repeatedly formed on the surface of the ground iron at intervals of 0.5 to 10 mm.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
The grain-oriented electrical steel sheet of the present invention has, as a coating, an oxide mainly composed of an ultra-thin Si-based oxide formed on the surface of the base iron by finish annealing. A preferred grain-oriented electrical steel sheet is a so-called highly oriented grain-oriented electrical steel sheet that has a high degree of integration of crystal grains in the (110) [001] orientation that can provide particularly excellent magnetic properties. The oxide coating must have an oxygen basis weight of 0.01 g / m 2 or more on both sides in order to firmly adhere the ceramic coating formed thereon to the base iron. On the other hand, when the oxide film exceeds 0.15 g / m 2 on both sides in terms of the oxygen basis weight, the ceramic film tends to peel off. It is considered that this is because the thickness becomes too large and breakage easily occurs inside the coating, or the consistency of the coating with the ground iron is lost as the plate thickness increases. Therefore, the oxygen mass per unit area of the oxide coating is preferably 0.01~0.15g / m 2 on both sides, 0.02~0.10g / m 2 is more preferable.
[0013]
The grain-oriented electrical steel sheet of the present invention is first manufactured by finish annealing so as to form an oxide film mainly composed of ultra-thin silica on the surface of the ground iron. The various steps from the rolling to the primary recrystallization annealing are the same as those in the conventionally known method for producing a highly oriented grain-oriented electrical steel sheet. That is, a steel slab having an effective (strengthening) component adjusted is used as a raw material, and slab heating, hot rolling, hot-rolled sheet annealing (if necessary), one time or two or more times of intermediate annealing It is manufactured by a known method such as rolling, primary recrystallization annealing, and finish annealing.
[0014]
The steel slab is, for example, in mass%, Si: 2 to 7% and Mn: 0.01 to 2.5%, as well as S, Se, Al, B, Bi, Sb, Mo, Te, Sn, P , Ge, As, Nb, Cr, Ti, Cu, Pb, Zn, In and the like are preferably added to one or more of them to adjust the effective components.
[0015]
When a non-hydrated oxide powder such as alumina or silica is used as an annealing separator applied between the steel sheets during the finish annealing, a forsterite film is not formed. Further, when a small amount of a halide is added to magnesia as an annealing separating agent, formation of a forsterite film on ground iron after finish annealing can be avoided. This is presumably because the interface between the base steel and the forsterite coating was smoothed, and the forsterite coating was separated from the base steel surface in the cooling process of the finish annealing.
[0016]
Further, the thickness of the oxide film can be adjusted by changing the conditions of the finish annealing. For example, by changing the oxidizing property by changing the concentration of oxidizing gas (oxygen, water vapor, etc.) in the atmosphere during the finish annealing, the ambient temperature, and the annealing time, the oxide film slightly formed on the base iron is changed. The film thickness can be adjusted. It should be noted that excessive use of the oxidizing gas may deteriorate the smoothness of the ground iron surface.
The thickness of the oxide film can be adjusted by pickling or polishing after the finish annealing, but it is simpler and more efficient to reduce the number of steps by changing the conditions of the annealing separator and the atmosphere during the finish annealing. In addition, an oxide film that has been formed by high-temperature finish annealing without being subjected to pickling or the like is preferable because it has excellent film strength and excellent adhesion of the oxide film to the steel sheet surface.
[0017]
After the finish annealing, the remaining annealing separator is washed and removed by washing with water or light acid. For example, phosphoric acid cleaning, which has been conventionally applied for removing magnesia, is suitable. Excessive pickling is not preferable because it deteriorates the oxide film and forms irregularities on the surface of the base iron. The weight loss by pickling is set to 2 g / m 2 or less on both sides, preferably 1 g / m 2 or less.
[0018]
Further, it is also possible to chemically or mechanically grind the electromagnetic steel sheet after the finish annealing to smooth the surface, and then form an extremely thin oxide film by heat treatment. For example, a normal grain-oriented electrical steel sheet is chemically polished, the forsterite film is removed and the surface is smoothed, and then, in a weaker oxidizing gas atmosphere, for example, at a temperature of 800 to 900 ° C., P H2O / P O2 = 0. A heat treatment may be performed in an atmosphere of about 0.01 to 0.2 for 1 to 300 seconds to form an oxide film mainly composed of a Si-based oxide.
[0019]
The oxide formed after the final annealing is mainly composed of a Si-based oxide (silica or the like), but may contain Fe, Mg, Al or the like depending on the conditions of the final annealing. For example, it is an oxide containing Si such as SiO 2 , Fe 2 SiO 4 , and Mg 2 SiO 4 , and these oxides may be used alone or in combination of two or more. Absent.
[0020]
The ultra-thin oxide film formed by the heat treatment has much stronger adhesion to the electromagnetic steel sheet than an oxide film formed by, for example, a sol-gel method. The reason for this is not clear, but is presumed as follows. That is, the oxide film is formed by the oxidation reaction of the base iron or alloy element on the surface of the base iron, but no other substance is present at the interface between the oxide film and the base iron, and the secondary surface of the base iron surface This is considered to be related to the fact that an oxide having a crystal structure matched to the recrystallized grain orientation is formed, and the interface between the oxide film and the ground iron is stabilized.
[0021]
Next, one or more of Si, Ti, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo, W, Co, Ni, Al or B as a film for imparting tension to the electromagnetic steel sheet. A ceramic coating layer mainly composed of nitride and / or carbide is formed. The ceramic coating layer is formed under general conditions by CVD, PVD or ion plating. At that time, oxygen may be taken into the layer from the atmosphere or the like, and a small amount of an oxide of the element may be contained.
[0022]
Since the ceramic coating layer is formed by being stacked little by little from the oxide coating surface, unlike a conventional insulating coating formed by coating and baking, the coating layer has a structure that matches the oxide crystal. This is extremely effective for improving the adhesion of the ceramic film to the oxide film.
As mentioned earlier, the ultra-thin oxide film on the surface of the base iron also has a structure that matches the crystal orientation of the base iron, so this ceramic coating also has a structure that matches the crystal orientation of the base iron and the oxide film. Thus, it is considered that more excellent coating adhesion of the ceramic coating to the oxide coating can be obtained.
[0023]
Compared to the case where the ceramic film was formed without the oxide film, the reason why the film adhesion was improved was that, due to the bonding force between the steel and the ceramic, the steel was formed by the reaction between the steel and the steel. It is considered that the bonding force between the oxide and the oxide and the ceramic, both of which are nonmetals, are superior. In addition, the ultra-thin oxide film on the surface of the base iron has the effect of preventing carbon and nitrogen contained in the ceramic coating from diffusing into the base iron during heat treatment such as strain relief annealing, thereby preventing iron loss deterioration. There is also the effect of doing.
[0024]
Certain nitrides and / or carbides have a much higher Young's modulus than oxides based on phosphate and silica that make up conventional tensile coatings, so a thin coating can apply a high tension to electrical steel. become. In particular, when forming a ceramic coating, it is preferable to apply a tension of 2 MPa or more in the longitudinal direction of the steel sheet, since the tension applied from the coating to the base iron increases. Further, it is preferable to set the temperature of the steel sheet at the time of forming the ceramic film to 200 ° C. or higher, which is higher than the normal temperature of the iron core of the transformer, because the tension applied to the steel sheet increases. In particular, when the temperature is set to 750 to 900 ° C. or higher, which is commonly used as strain relief annealing, there is an effect of improving the adhesion of the ceramic film to the tension coating after the strain relief annealing, which is more preferable.
[0025]
When the thickness of the ceramic coating is in the range of 0.1 to 5 μm, the tension of the ceramic coating and the adhesion of the ceramic coating to the tension coating are excellent. If it is less than 0.1 μm, the effect of reducing iron loss is small, and if it is more than 5 μm, the tension is too strong and the adhesion of the ceramic film to the tension film is deteriorated. descend. More preferably, it is in the range of 0.2 to 2 μm.
[0026]
Further, an insulating film is formed on the ceramic film. The insulating film is mainly composed of an oxide formed by applying and baking a conventional coating solution containing chromic acid or the like as necessary, mainly containing phosphate and silica, and the insulating film is This has the effect of further increasing the tension of the underlying nitride / carbide ceramic coating.
In order to form an insulating film, a method of applying and baking a liquid in which a glass frit having a small coefficient of thermal expansion is suspended, and a method of applying and baking a coating solution containing boric acid and alumina sol as main components, etc. A known method for forming a tension coating can be applied.
The amount of the insulating coating, considering security and space factor of the interlaminar insulation resistance when used as a core, is preferably in the range of 2 to 20 g / m 2 on both sides in the basis weight, and more in the range of 6~14g / m 2 preferable.
[0027]
Further, when the magnetic domains are subdivided by forming grooves on the surface of the base iron, the reduction in iron loss of the magnetic steel sheet of the present invention can be remarkably exhibited, which is extremely effective. As in the present invention, the preferred form of the groove when imparting a higher coating tension to the magnetic steel sheet than before is that the groove has a depth of 5 to 25% of the plate thickness, and the groove direction is 60 to 60 mm from the longitudinal direction of the magnetic steel sheet. It has a 90 ° inclination and a groove repetition interval of 0.5 to 10 mm. When the depth of the groove is less than 5% of the plate thickness, when the direction exceeds 60 ° from the longitudinal direction, or when the interval exceeds 10 mm, the effect of reducing the core loss by magnetic domain segmentation is small, and the depth of the groove is small. When the thickness exceeds 25% of the plate thickness or when the interval is less than 0.5 mm, the magnetic permeability decreases, and instead, the iron loss increases.
[0028]
The grooves need to be formed after the final cold rolling of the magnetic steel sheet in order to keep the groove shape constant. Preferably, the grooves are formed by machining or chemical etching. After the ceramic film is formed, it is difficult to form the groove by machining or chemical etching, and the peeling or destruction of the ceramic film occurs and the tension effect decreases, so the groove is formed before the ceramic film formation Is preferred. For example, a method of performing electrolytic etching after masking with a resist after final cold rolling, or pressing after finish annealing is used.
[0029]
【Example】
(Example 1)
A sample (0.23 mm thick) after the final cold rolling of a grain-oriented electrical steel sheet using AlN, MnSe, and Sb as inhibitors was prepared. Grooves having a depth of 21 μm were formed at intervals of 2.5 mm in the direction of 80 ° with respect to the rolling direction by electrolytic etching. Subsequently, primary recrystallization annealing that also serves as decarburization annealing was performed in a wet hydrogen atmosphere. Next, an annealing separator prepared by adding 2% by weight of antimony chloride to magnesia was applied as a slurry, dried, heated, and heated to a maximum of 1200 ° C. in dry hydrogen for 10 hours. Was. After the finish annealing, the annealing separating agent remaining on the steel sheet was removed by washing with water and phosphoric acid. As a result, an oxide film mainly composed of silica having a basis weight of 0.08 g / m 2 was formed on both sides. (Numbers 3 and 4).
[0030]
Further, a portion of the sample was chemically polished with hydrogen peroxide and hydrofluoric acid to completely remove the oxide film on the surface, and the oxygen basis weight was reduced to less than 0.01 g / m 2 (numbers 1 and 2). .
For comparison, magnetic steel sheets which were finish-annealed using magnesia under ordinary conditions without addition of a halide as an annealing separator were also prepared (Nos. 5 and 6). An oxide coating mainly composed of 3.2 g / m 2 of forsterite was formed on both sides of the magnetic steel sheet in terms of oxygen basis weight.
[0031]
A TiN film having a thickness of 1 μm was formed on a part of these electromagnetic steel sheets by PVD to form a ceramic film. After further performing strain relief annealing at 850 ° C. for 3 hours, a coating solution containing aluminum phosphate, colloidal silica, and magnesium dichromate was applied using a roll coater, baked at 840 ° C., and 12 g / forming an insulating film of oxides of m 2, and to produce a grain-oriented electrical steel sheet. Table 1 shows the results of evaluating the iron loss W17 / 50 of the magnetic steel sheet and the coating adhesion.
[0032]
The iron loss W17 / 50 was measured by the Epstein method at 1.7 T and 50 Hz.
The coating adhesion was evaluated by the peeling resistance of the coating when the electromagnetic steel sheet was bent along a round bar having a diameter of 30 mm and 60 mm. Those that withstand the bending of 30 mm in diameter were rated as ○, those that withstood the bending of 60 mm in diameter but did not withstand the bending of 30 mm in diameter were rated as Δ, and those that did not withstand the bending of 60 mm in diameter were rated as x. Table 1 also shows the evaluation results.
Only when all of the conditions of the oxide film, the ceramic film, and the coating type insulating film defined by the present invention (No. 3) are satisfied, extremely low iron loss and good adhesion are simultaneously exhibited.
[0033]
[Table 1]
Figure 2004027345
[0034]
(Example 2)
After the finish annealing of Example 1, various types of nitriding shown in Table 2 were performed by CVD on an electromagnetic steel sheet having an oxide coating mainly composed of silica with a surface area of 0.08 g / m 2 in terms of oxygen basis weight. A ceramic film composed of a material film or a carbide film was formed with a film thickness shown in Table 2. In Nos. 14 and 15, two types of ceramic films were formed. Thereafter, a coating liquid containing boric acid and alumina sol as main components was applied by a roll coater and baked at 880 ° C. to form an insulating film of 10 g / m 2 of oxide (both sides). Furthermore, after performing strain relief annealing at 850 ° C. for 3 hours, the core loss W17 / 50 and the coating adhesion were evaluated. Table 2 also shows the evaluation results.
When all the conditions of the ultra-thin oxide film, ceramic film, and coating type insulating film specified by the present invention are adjusted, low iron loss and good adhesion are simultaneously exhibited.
[0035]
[Table 2]
Figure 2004027345
[0036]
(Example 3)
In Example 1, the finish annealing was performed in the same manner as in Example 1 except that the amount of antimony chloride to magnesia as the annealing separating agent was changed in a mass ratio between 0.1 and 1% shown in Table 3. . As shown in Table 3, an oxide film having an oxygen basis weight of 0.06 to 0.80 g / m 2 was formed on both surfaces of the base steel after the finish annealing. For a part (numbers 1 to 3) of the magnetic steel sheet, the amount of oxide was further reduced by chemical polishing.
A 1.2 μm-thick Si 3 N 4 film is formed on these magnetic steel sheets by sputtering. Subsequently, a coating solution containing aluminum phosphate, colloidal silica and chromic acid is applied by a roll coater, and the coating solution is heated at 850 ° C. It was baked to form an oxide tension film of 7 g / m 2 on both sides. Table 3 shows the relationship between the amount of oxide film after finish annealing, iron loss, and film adhesion. The magnetic steel sheet having an oxide film defined by the present invention simultaneously exhibits low iron loss and good adhesion.
[0037]
[Table 3]
Figure 2004027345
[0038]
(Example 4)
In Example 1, oxides were formed in the same manner as in Example 1 (Nos. 3 to 4) except that a step of forming grooves in the magnetic steel sheet was added in each step from after cold rolling to after finishing annealing shown in Table 4. A coating was formed. The grooves were formed at a depth of 19 μm and a gap of 3.4 mm in a direction inclined by 75 ° from the longitudinal direction. A 0.8 μm-thick SiC film was formed on these magnetic steel sheets by ion plating. Subsequently, a coating solution containing magnesium phosphate, colloidal silica and chromic acid was applied by a roll coater, and 810 It was formed with 10.2 g / m 2 and was baked oxide tension film in the basis weight per duplex at ° C.. Table 4 shows the iron loss of these magnetic steel sheets.
[0039]
On the other hand, after cold rolling, the same grooves were formed by electrolytic etching, finish annealing was performed using magnesia as the annealing separator as in the conventional method, and a forsterite coating was formed on the sample, and then a SiC coating by ion plating was formed. The iron loss W17 / 50 of the sample in which the phosphate-based oxide film was formed in the same manner as described above was 0.79 W / kg. Even when the groove is not formed, a low iron loss far exceeding the conventional one can be obtained, but the one with the groove is further preferable because the iron loss is further reduced.
[0040]
Figure 2004027345
[0041]
【The invention's effect】
The grain-oriented electrical steel sheet of the present invention has an extremely low iron loss and good film adhesion since there is no forsterite film.

Claims (5)

電磁鋼板の地鉄表面に酸素目付量にして両面で1m2 当たり0.01〜0.15gのSi系酸化物を主体とした酸化物、その上にSi、Ti、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、W、Co、Ni、AlまたはBの1種または2種以上の窒化物および/または炭化物を主体とした厚み0.1〜3μmのセラミックス被膜、さらにその上に酸化物を主体とする絶縁被膜を有することを特徴とする低鉄損方向性電磁鋼板。Oxide based on the basis weight of oxygen on the surface of the magnetic steel sheet of the magnetic steel sheet on both sides, 0.01 to 0.15 g of Si-based oxide per 1 m 2 , and Si, Ti, Zr, Hf, V, Nb , Ta, Mn, Cr, Mo, W, Co, Ni, Al or B, one or more nitrides and / or carbides of 0.1 to 3 μm thick ceramic coating, and further thereon A low-loss iron-oriented electrical steel sheet having an insulating coating mainly composed of an oxide. Si系酸化物が、仕上げ焼鈍中に地鉄表面に形成されたものであることを特徴とする請求項1に記載の低鉄損方向性電磁鋼板。2. The low iron loss grain-oriented electrical steel sheet according to claim 1, wherein the Si-based oxide is formed on the surface of the base iron during the finish annealing. 3. 鋼板の長手方向から60〜90°の方向に、平均で板厚の5〜25%の深さの溝が0.5〜10mmの間隔で繰返し地鉄表面に形成されていることを特徴とする請求項1または2に記載の低鉄損方向性電磁鋼板。Grooves having a depth of 5 to 25% on average in the direction of 60 to 90 ° from the longitudinal direction of the steel sheet are repeatedly formed on the surface of the base iron at intervals of 0.5 to 10 mm. The grain-oriented electrical steel sheet according to claim 1. 電磁鋼板を仕上げ焼鈍し、地鉄表面の酸素目付量が両面で1m2 当たり0.01〜0.15gのSi系酸化物を主体とした酸化物を得、これにCVD、PVDまたはイオンプレーティングでSi、Ti、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、W、Co、Ni、AlまたはBの1種または2種以上の窒化物および/または炭化物を主体とした厚み0.1〜3μmのセラミックス被膜を形成し、さらにその上に酸化物を主体とする絶縁被膜を、塗布・焼付けにより形成することを特徴とする低鉄損方向性電磁鋼板の製造方法。The electrical steel sheet is finish-annealed to obtain an oxide mainly composed of a Si-based oxide having a basis weight of 0.01 to 0.15 g / m 2 on both sides of the surface of the base iron, which is subjected to CVD, PVD or ion plating. And a thickness 0 mainly composed of one or more nitrides and / or carbides of Si, Ti, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo, W, Co, Ni, Al or B. A method for producing a low iron loss grain-oriented electrical steel sheet, comprising forming a ceramic coating of 1 to 3 μm, and further forming an insulating coating mainly composed of an oxide thereon by coating and baking. 電磁鋼板の製造工程における最終冷間圧延より後で、セラミックス被膜を形成するより前の工程において、鋼板の長手方向から60〜90°の方向に、板厚の5〜25%の深さの溝を0.5〜10mmの間隔で繰返し地鉄表面に形成することを特徴とする請求項4に記載の低鉄損方向性電磁鋼板の製造方法。After the final cold rolling in the manufacturing process of the electrical steel sheet and before forming the ceramic film, a groove having a depth of 5 to 25% of the thickness in a direction of 60 to 90 ° from the longitudinal direction of the steel sheet. 5 is repeatedly formed on the surface of the ground iron at intervals of 0.5 to 10 mm.
JP2002189754A 2002-06-28 2002-06-28 Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same Withdrawn JP2004027345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189754A JP2004027345A (en) 2002-06-28 2002-06-28 Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189754A JP2004027345A (en) 2002-06-28 2002-06-28 Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004027345A true JP2004027345A (en) 2004-01-29

Family

ID=31184080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189754A Withdrawn JP2004027345A (en) 2002-06-28 2002-06-28 Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004027345A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158328A (en) * 2010-01-29 2011-08-18 Nippon Steel Corp Oxide coating film adhesion strength evaluation method and its evaluation device of directional electromagnetic steel plate
JP2013506029A (en) * 2009-09-29 2013-02-21 ザ・ボーイング・カンパニー Adhesive compositions and methods of use and preparation of these adhesive compositions
JP2019019358A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same
JP2019019360A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Original sheet for grain-oriented electromagnetic steel sheet having no glass coating film, method for manufacturing the same, and method for manufacturing grain-oriented electromagnetic steel sheet excellent in adhesion of insulating film
JP2019019359A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same
KR20190049819A (en) * 2016-10-18 2019-05-09 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRIC STEEL SHEET
WO2020149319A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
RU2776382C1 (en) * 2019-01-16 2022-07-19 Ниппон Стил Корпорейшн Anisotropic electrical steel sheet and its production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506029A (en) * 2009-09-29 2013-02-21 ザ・ボーイング・カンパニー Adhesive compositions and methods of use and preparation of these adhesive compositions
JP2011158328A (en) * 2010-01-29 2011-08-18 Nippon Steel Corp Oxide coating film adhesion strength evaluation method and its evaluation device of directional electromagnetic steel plate
KR20190049819A (en) * 2016-10-18 2019-05-09 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRIC STEEL SHEET
KR102243871B1 (en) * 2016-10-18 2021-04-22 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
US11326219B2 (en) 2016-10-18 2022-05-10 Jfe Steel Corporation Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
JP2019019358A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same
JP2019019360A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Original sheet for grain-oriented electromagnetic steel sheet having no glass coating film, method for manufacturing the same, and method for manufacturing grain-oriented electromagnetic steel sheet excellent in adhesion of insulating film
JP2019019359A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same
WO2020149319A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
JPWO2020149319A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Directional electromagnetic steel plate and its manufacturing method
RU2776382C1 (en) * 2019-01-16 2022-07-19 Ниппон Стил Корпорейшн Anisotropic electrical steel sheet and its production method
JP7188458B2 (en) 2019-01-16 2022-12-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100884352B1 (en) Grain oriented electric sheet of metal with an electrically insulating coating
KR100479353B1 (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
JP2002322566A (en) Grain oriented silicon steel sheet having excellent adhesion to tension impartable insulation film and production method therefor
JPS60131976A (en) Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic
JP2962715B2 (en) Method of forming insulation film on electrical steel sheet
JP2004027345A (en) Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
KR101353697B1 (en) Method for preparing grain-oriented electrical steel sheet having improved adhesion and grain-oriented electrical steel sheet prepared by the same
JP4041289B2 (en) Method for forming insulating coating on electrical steel sheet
JP2003171773A (en) Grain oriented silicon steel sheet having tensile film
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
JPH0699824B2 (en) Thermally stable ultra-low iron loss unidirectional silicon steel sheet and method for producing the same
JPS6332849B2 (en)
JP2005240157A (en) Grain-oriented electromagnetic steel sheet with phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium, and method for forming phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JP4025514B2 (en) Insulating film forming method for unidirectional silicon steel sheet with excellent magnetic properties and film adhesion
JP3280844B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP4725711B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP2003034880A (en) Method for forming insulation film superior in adhesiveness on surface of grain-oriented electrical steel sheet, and method for manufacturing grain- oriented electrical steel sheet
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JP7355989B2 (en) grain-oriented electrical steel sheet
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
JP3426958B2 (en) Unidirectional electrical steel sheet and method for increasing tension of coating of unidirectional electrical steel sheet
JPS6269501A (en) Manufacture of low iron loss grain oriented silicon steel plate
JP2005264234A (en) Superlow iron loss grain oriented magnetic steel sheet having excellent thermal stability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906