JPS6269501A - Manufacture of low iron loss grain oriented silicon steel plate - Google Patents
Manufacture of low iron loss grain oriented silicon steel plateInfo
- Publication number
- JPS6269501A JPS6269501A JP20774285A JP20774285A JPS6269501A JP S6269501 A JPS6269501 A JP S6269501A JP 20774285 A JP20774285 A JP 20774285A JP 20774285 A JP20774285 A JP 20774285A JP S6269501 A JPS6269501 A JP S6269501A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- silicon steel
- iron loss
- polishing
- grain oriented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は鉄)員の極めて低い一方向性けい素鋼板の製
造方法に関し、とくに歪取り焼鈍の如き高温処理後にお
いても特性の劣化を生しることがない低鉄…一方向性け
い素鋼板を、安定して製造しようとするものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing unidirectional silicon steel sheets with extremely low iron tensile strength, and particularly relates to a method for manufacturing unidirectional silicon steel sheets that have extremely low iron tensile strength, and in particular does not cause deterioration of properties even after high-temperature treatment such as strain relief annealing. We aim to stably manufacture unidirectional silicon steel sheets that have low iron and do not cause any damage.
一方向性けい素鋼板は製品の2次再結晶粒を(110)
(001) 、すなわちゴス方位に集積させたもので
あり、主として変圧器その他の電気機器の鉄心として使
用される。この種一方向性けい素鋼板の特性は、磁束密
度(Boo)と鉄f! (W+?1511)によって評
価されており、磁束密度が高く鉄を員が低いことが求め
られる。The unidirectional silicon steel sheet has secondary recrystallized grains of the product (110).
(001), that is, it is integrated in the Goss direction, and is mainly used as the iron core of transformers and other electrical equipment. The characteristics of this kind of unidirectional silicon steel sheet are magnetic flux density (Boo) and iron f! (W+?1511), and requires high magnetic flux density and low iron content.
かかる一方向性けい素鋼板については、これまでに数々
の発明・改善が施され、現在では板厚0.301の製品
で磁束密度B+o:1.90Tesla以上、鉄l11
w、7,5゜:l、05W/kg以下、また板厚0.2
3mmの製品ででは、磁束密度B+o:1.89Tes
la以上、鉄tM W l 715゜:0.90 W/
kg以下の低鉄損一方向性けい素鋼板が製造されるよう
になっている。Numerous inventions and improvements have been made to such unidirectional silicon steel sheets, and currently products with a thickness of 0.301 have a magnetic flux density B+o of 1.90 Tesla or more, and iron l11.
w, 7.5°: l, 05W/kg or less, and plate thickness 0.2
For 3mm products, magnetic flux density B+o: 1.89Tes
la or more, iron tM W l 715°: 0.90 W/
Low iron loss unidirectional silicon steel sheets weighing less than 1 kg are now being manufactured.
特に最近では省エネルギーの見地から、変圧器等の電力
損失を少なくするためよりいっそうの鉄損の低減がのぞ
まれている。Particularly recently, from the standpoint of energy conservation, further reduction of iron loss has been desired in order to reduce power loss in transformers and the like.
また一方向性けい素鋼板の使用に当って加工、組立てを
経たのち、いわゆる歪取り焼鈍が施された場合にも、特
性の劣化が生じないことが要望されている。Further, when using a unidirectional silicon steel sheet, it is desired that the characteristics do not deteriorate even when so-called strain relief annealing is performed after processing and assembly.
(従来の技術)
一方向性けい素鋼板の鉄損特性改善については、仕上げ
焼鈍時に鋼板面に形成されるガラス質被膜を化学的に除
去し、次いで化学研磨あるいは電解研磨を施すことによ
って地鉄とガラス質被膜の界面(=1近にある窒化物や
酸化物等の不純物を含む層を除去し、表面を平滑に仕上
げると著しい鉄損の低下が認められ、また−1−記の処
理を施したものにさらに張力を付与、すると鉄損は一層
低下することが知られている。(Prior art) In order to improve the iron loss characteristics of unidirectional silicon steel sheets, the glassy film formed on the surface of the steel sheet during final annealing is chemically removed, and then chemical polishing or electrolytic polishing is performed to improve the iron loss characteristics of the steel sheet. By removing the layer containing impurities such as nitrides and oxides near the interface (=1) of the glassy film and smoothing the surface, a significant decrease in iron loss was observed. It is known that if additional tension is applied to the applied material, the iron loss will further decrease.
一方、一方向性けい素鋼板は積層して用いられるため、
鋼板面一にに絶縁処理を施して表面に絶縁被膜を被成さ
せることが不可欠であり、従来は一般にかかる絶縁被膜
としてフォルステライト被膜とりん酸塩コーティング被
膜との2層絶縁膜を形成させていた。On the other hand, since unidirectional silicon steel sheets are used in a laminated manner,
It is essential to apply insulation treatment to the same surface of the steel plate to form an insulating film on the surface. Conventionally, such an insulating film was generally formed by forming a two-layer insulating film of a forsterite film and a phosphate coating film. Ta.
しかしながら化学研磨を施した鋼板については、その表
面に絶縁被膜として従来公知のりん酸塩系コーティング
を施した場合には、りん酸の腐食作用のために焼付は時
に鋼板表面は荒れて化学研磨により実現された平滑な面
が損われ鉄tRの低下が見られなくなるばかりでなく、
地鉄と絶縁被膜の熱膨張率の差異に起因して、被膜がは
く離し易いという欠点もあった。However, when a chemically polished steel plate is coated with a conventionally known phosphate coating as an insulating film, the surface of the steel plate may become rough due to the corrosive action of phosphoric acid, and the surface of the steel plate may become rough due to chemical polishing. Not only is the achieved smooth surface damaged and the decrease in iron tR no longer observed,
Another drawback was that the coating was easily peeled off due to the difference in thermal expansion coefficient between the base steel and the insulating coating.
上記の問題を回避するものとして特公昭52−2449
9号公報においては、一方向性けい素鋼板の仕上げ焼鈍
後の鋼板表面を、化学研磨によって鏡面状態に仕−Lげ
、かかる鏡面仕上げ面上に金属薄めっきを施すことによ
る超イ[(鉄を員一方向Mけい素鋼板の製造方法が提案
されている。As a way to avoid the above problem,
In Publication No. 9, the surface of a unidirectional silicon steel sheet after finish annealing is polished to a mirror-like state by chemical polishing, and a thin metal plating is applied to the mirror-finished surface. A method for manufacturing a unidirectional M silicon steel sheet has been proposed.
しかしながら上記の如き化学研磨で鏡面仕上げを行う鉄
1質向上手法を]−程的に採用してストリップを処理す
るためには、化学研磨法用の薬品が大量に必要となり著
しい:1ストアツブを招く不利があった。However, in order to process the strip by applying the method of improving the quality of iron to a mirror finish using chemical polishing as described above, a large amount of chemicals for the chemical polishing method is required, resulting in a significant increase in store stubs. There was a disadvantage.
また特公昭56−4150号公報においても、鋼板表面
を電解研磨あるいは化学研磨により鏡面状態に仕上げた
後、酸化物系セラミック薄膜を蒸着する方法が提案され
ている。Japanese Patent Publication No. 56-4150 also proposes a method in which the surface of a steel plate is finished to a mirror-like state by electrolytic polishing or chemical polishing, and then an oxide-based ceramic thin film is deposited.
しかしながらこの方法においても化学研磨あるいは電解
研磨法を使用することからストリップ処理が著しいコス
トアップとなることは−に述したところと同様であり、
しかも600℃以上の高温焼鈍を施した場合には、鋼板
とセラミック層とがはく離し易くなるのでやはり実際の
製造工程では採用できない。However, this method also uses chemical polishing or electrolytic polishing, so the cost of stripping increases significantly, as mentioned above.
Moreover, when high-temperature annealing at 600° C. or higher is performed, the steel plate and the ceramic layer tend to peel off, so this cannot be used in actual manufacturing processes.
ところでコストアップを招くことなく、しかも連続的、
効率的なストリップ処理が実現できる表面平滑化方法と
しては、機械的研磨が考えられる。By the way, without increasing costs, and continuously,
Mechanical polishing can be considered as a surface smoothing method that can realize efficient stripping.
(発明が解決しようとする問題点)
しかしながらこの手法は、鋼板に歪みを導入するためそ
のままでは良好な磁気特性は得られない。(Problems to be Solved by the Invention) However, since this method introduces strain into the steel plate, good magnetic properties cannot be obtained as is.
そこで機械的研磨により導入された歪みを解放するため
歪取り焼鈍を施すことが必要となるが、かかる歪取り焼
鈍を施すと表面に酸化物が形成されるため、折角仕上げ
た鏡面が損われてしまいやはり磁気特性の劣化が免れ得
ない。Therefore, it is necessary to perform strain relief annealing to release the strain introduced by mechanical polishing, but when such strain relief annealing is performed, oxides are formed on the surface, damaging the mirror finish that has been painstakingly finished. After all, deterioration of magnetic properties cannot be avoided.
この点機械的研磨による平滑化の後、歪取り焼鈍を施し
たとしても鏡面が損われない方法として、1掲2公報と
同様に金属めっきあるいは酸化物セラミンク薄膜を蒸着
する方法が考えられる。しかし、金属めっきは、歪取り
焼鈍の際、鋼板表面のめっき金属が鋼中に拡散して磁性
の劣化を招き、一方酸化物セラミック薄膜蒸着の場合は
、歪取り焼鈍時に鋼板とセラミック層がはく離してしま
うため、やはり両者とも採用できない。In this regard, as a method that does not damage the mirror surface even if strain relief annealing is performed after smoothing by mechanical polishing, it is possible to use metal plating or vapor deposition of an oxide ceramic thin film as in Publication No. 1/2. However, with metal plating, during strain relief annealing, the plated metal on the surface of the steel sheet diffuses into the steel, causing deterioration of magnetism.On the other hand, in the case of oxide ceramic thin film deposition, the steel sheet and the ceramic layer peel off during strain relief annealing. Therefore, both cannot be adopted.
この発明は、上記の問題を有利に解決するもので、コス
トアップを招くことなしに連続的かつ効率的な表面平滑
化処理ならびに表面被膜被成処理が実現でき、しかも歪
取り焼鈍の如き高温処理を施した場合でも磁気特性や被
膜密着性の劣化を招くことのない、方向性けい素鋼板の
有利な製造方法を提案することを目的とする。The present invention advantageously solves the above-mentioned problems, and can realize continuous and efficient surface smoothing treatment and surface coating treatment without increasing costs, and can also perform high-temperature treatment such as strain relief annealing. The purpose of the present invention is to propose an advantageous manufacturing method for grain-oriented silicon steel sheets that does not cause deterioration of magnetic properties or film adhesion even when subjected to the following steps.
(問題点を解決するための手段)
この発明は、表面研磨法として機械的研磨を施した場合
であっても、ドライプレーティング法を採用すれば、鏡
面状態を損うことなく、しかも歪取り焼鈍を施した場合
と同等の歪除去効果が得られることの新規知見に立脚す
る。(Means for Solving the Problems) This invention provides that even if mechanical polishing is performed as a surface polishing method, if a dry plating method is adopted, the mirror surface state will not be damaged, and strain relief annealing can be performed. This is based on the new knowledge that distortion removal effects equivalent to those obtained by applying this method can be obtained.
すなわちこの発明は、仕上げ焼鈍を経た一方向性けい素
鋼板につき、その表面酸化物を除去してから、さらに機
械的研磨によって0.5μmDl上研磨すると共に平均
あらさRa・0.4 μm以下の平滑面に仕上げ、しか
るのち該平滑面仕上げ表面上に金属またはセラミックス
のドライプレーティング処理を施すことを特徴とする低
鉄損一方向性けい素鋼板の製造方法である。That is, this invention removes surface oxides from a unidirectional silicon steel sheet that has undergone finish annealing, and then mechanically polishes it by 0.5 μm Dl and smooths it to an average roughness Ra of 0.4 μm or less. This is a method for manufacturing a unidirectional silicon steel sheet with low core loss, characterized in that the smooth surface is finished, and then a metal or ceramic dry plating treatment is performed on the smooth finished surface.
この発明においてドライプレーティング処理とは、真空
蒸着法、イオンブレーティング法、スパッタリング法お
よびCVD法を意味する。In this invention, the dry plating process means a vacuum evaporation method, an ion blating method, a sputtering method, and a CVD method.
以下この発明を具体的に説明する。This invention will be specifically explained below.
この発明では常法に従って一方向性けい素鋼板用スラブ
に熱間圧延を施し、次に中間焼鈍をはさむ冷間圧延を施
して最終板厚としてのち、脱炭焼鈍を施し、次いで最終
仕−Lげ焼鈍を施す。In this invention, a unidirectional silicon steel plate slab is hot rolled according to a conventional method, then cold rolled with intermediate annealing to obtain the final plate thickness, decarburized annealed, and then final processed into L. Apply annealing.
この最終仕−Fげ焼鈍の際、焼鈍分離剤として従来から
フォルステライト被膜を形成させるために用いられてき
たMgOを主成分とする焼鈍分離剤を用いてもよいが、
かかるフォルステライト被膜を生成させない様に配合さ
れたたとえばA1.O,を主成分とする焼鈍分離剤を用
いることがより好ましい。During this final F annealing, an annealing separator containing MgO as a main component, which has been conventionally used to form a forsterite film, may be used as an annealing separator.
For example, A1. It is more preferable to use an annealing separator containing O as a main component.
次に最終仕上げ焼鈍板の表面酸化物を除去する必要があ
る。除去方法は酸洗等の化学的手法、あるいはエメリー
研磨等の機械的手法のどちらを用いても良い。Next, it is necessary to remove surface oxides from the final annealed plate. The removal method may be either a chemical method such as pickling or a mechanical method such as emery polishing.
上記したような表面酸化物の除去後に鋼板の鉄損値W、
、、50は幾分劣化する。この理由は、化学的手法では
酸洗により鋼板の表面が荒れるためであり、一方機械的
手法によってもやはり鋼板の表面が荒れ、また内部に歪
みが導入されるためである。After removing the surface oxides as described above, the iron loss value W of the steel plate,
,,50 deteriorates somewhat. The reason for this is that the chemical method roughens the surface of the steel plate due to pickling, while the mechanical method also roughens the surface of the steel plate and introduces strain into the interior.
しかしながらかような表面酸化物を除去した表面を、パ
フ研磨あるいは電解研磨と組み合わせた電解複合研磨等
の機械的研磨により0.511m以上研磨し、かつRa
:0.4μm以下の平滑面とすることによって鉄…は著
しく改善される。However, the surface from which such surface oxides have been removed is polished by mechanical polishing of 0.511 m or more by puff polishing or electrolytic composite polishing combined with electrolytic polishing, and the Ra
: By making the surface smooth with a diameter of 0.4 μm or less, iron quality is significantly improved.
第1図に鋼板表面を機械的研磨によってRa:0.3μ
mの平滑面に仕上げたときの、研磨深さと鉄損変化量Δ
w 、 ?/S。との関係について示す。なお同図にお
いて鉄損変化量は機械的研磨前の場合を基準とした。Figure 1 shows that the surface of the steel plate was mechanically polished to an Ra of 0.3μ.
Polishing depth and iron loss change Δ when finishing a smooth surface of m
lol? /S. The relationship between In addition, in the same figure, the amount of change in iron loss is based on the case before mechanical polishing.
同図より明らかなように、Ra:0.3μmの平滑面に
仕上げたとしても、研磨深さが0.5 μmに満だない
場合には鉄損の改善は望み得ない。As is clear from the figure, even if a smooth surface with an Ra of 0.3 μm is achieved, no improvement in iron loss can be expected if the polishing depth is less than 0.5 μm.
それ故表面酸化物除去後、機械的研磨によって0.5μ
m以上の研磨を施すものとした。Therefore, after surface oxide removal, 0.5μ was obtained by mechanical polishing.
Polishing was performed to a depth of m or more.
また平均あらさRaは0.4 μmで十分な鉄損の改善
が得られるので0.4 μm以下とした。Further, the average roughness Ra was set to 0.4 μm or less since sufficient iron loss improvement can be obtained with 0.4 μm.
ところで機械的研磨後の平滑面鋼板は酸化物除去後より
鉄損が改善されたとはいえ、機械的研磨による歪みが残
存しているため、鉄損の改善は十分とはいい難い。By the way, although the smooth surface steel plate after mechanical polishing has improved iron loss compared to after oxide removal, it is difficult to say that the improvement in iron loss is sufficient because the distortion caused by mechanical polishing remains.
この点、この発明に従い鋼板表面に金属あるいはセラミ
ックスの「ライプレーティング処理を施すことによって
鋼板表面に金属あるいはセラミックスの極薄張力被膜が
形成されるわけであるが、かかるドライプレーティング
を施された鋼板は、ドライプレーティング中の加熱によ
って機械的研磨による残存歪みが解放されるばかりでな
く、極薄被膜による張力の付加によって鉄損が大きく改
善されるのである。In this regard, according to the present invention, an ultra-thin tensile coating of metal or ceramics is formed on the surface of the steel sheet by applying dry plating treatment of metal or ceramics to the surface of the steel sheet. Not only does the heating during dry plating release the residual strain caused by mechanical polishing, but the addition of tension by the ultra-thin coating significantly improves iron loss.
ここに上記の如きドライプレーティング処理に用いて好
適な金属としてはIll、Cr、Cu、TiおよびNi
等が、一方セラミックスとしてはTiN、TiC,AI
N、CrN。Here, metals suitable for use in the dry plating process as described above include Ill, Cr, Cu, Ti, and Ni.
etc., while ceramics such as TiN, TiC, AI
N, CrN.
5iJ4.BN、ZrN、Si(:およびZrCなどが
挙げられる。5iJ4. Examples include BN, ZrN, Si(: and ZrC).
(作用)
この発明では、表面平滑化法として機械的研磨法を採用
するのでコストアンプを招くことがない。(Function) In this invention, since a mechanical polishing method is adopted as a surface smoothing method, there is no increase in cost.
またドライプレーティング処理を活用することにより、
機械的研磨によって導入された内部歪の効果的な除去を
図り得る。In addition, by utilizing dry plating processing,
Internal strain introduced by mechanical polishing can be effectively removed.
(実施例)
去旅■上
C: 0.045%、Si : 3.30%、Mn :
0.060%、Se+ O,024%、Sb : Q
、020%およびMo : 0.081 %を含有する
組成になる熱延板を、中間焼鈍をはさんで2回の冷間圧
延を行って0.23■■厚の最終冷延板とした。(Example) Past trip ■Upper C: 0.045%, Si: 3.30%, Mn:
0.060%, Se+O, 024%, Sb: Q
, 020% and Mo: 0.081% were cold-rolled twice with intermediate annealing in between to obtain a final cold-rolled sheet having a thickness of 0.23mm.
その後820℃の湿水素中で脱炭焼鈍を施した後、鋼板
表面にMgO: 30%、Al2O3ニア0%の配合割
合になる焼鈍分離剤を塗布した後、1200℃110h
の仕トげ焼鈍を行った。After that, decarburization annealing was performed in wet hydrogen at 820°C, and an annealing separator with a mixing ratio of 30% MgO and 0% Al2O3 was applied to the surface of the steel sheet, and then annealing was performed at 1200°C for 110 hours.
Final annealing was performed.
その後酸洗により表面酸化物を除去した後、パフ研磨に
よって研磨深さ2μmでかつ平均表面あらさRa=0.
2μmの平滑表面に仕−にげた。Thereafter, surface oxides were removed by pickling, and then by puff polishing to a polishing depth of 2 μm and an average surface roughness Ra of 0.
Finished with a smooth surface of 2 μm.
その後、ドライプレーティング処理によって0.65μ
…厚のTiN Fi薄張力被膜を形成させた。After that, 0.65μ was obtained by dry plating treatment.
...A thick TiN Fi thin tension coating was formed.
得られた製品の磁気特性は次のとおりであった。The magnetic properties of the obtained product were as follows.
Boo : 1.92T5、WI、y、o:0.681
A7kgまた曲げ密着性(180’曲げたときにはく離
しない最小の曲げ径)も20φ璽1と良好な結果が得ら
れた。Boo: 1.92T5, WI, y, o: 0.681
A good result was obtained for the bending adhesion (minimum bending diameter that does not cause peeling when bent by 180') of 20φ1.
夫施−4!A2−
C: 0.052%、St : 3.42%、Mn :
0.072%、Al: 0.024 %、S : 0
.025%、N : 0.0065%、Cu:0.1%
およびSn : 0.05%を含有する組成になる熱延
板を、1100℃で3分間の均一化焼鈍後、急冷処理を
行い、その後300℃の温間圧延を施して0.20龍厚
の最終冷延板とした。Fuse-4! A2-C: 0.052%, St: 3.42%, Mn:
0.072%, Al: 0.024%, S: 0
.. 025%, N: 0.0065%, Cu: 0.1%
and Sn: A hot rolled sheet having a composition containing 0.05% was uniformly annealed at 1100°C for 3 minutes, then rapidly cooled, and then warm rolled at 300°C to a thickness of 0.20 mm. A final cold-rolled sheet was obtained.
その後850℃の湿水素中で脱炭焼鈍を施した後、鋼板
表面にMgOを主成分とする焼鈍分M1剤をす布し、つ
いで850℃から1150℃まで8°〔:/hで胃渇し
て2次再結晶させた後、軟水素中で1200℃、8時間
の純化焼鈍を施した。After decarburization annealing in wet hydrogen at 850°C, an annealing agent M1 containing MgO as a main component was applied to the surface of the steel plate, and then the temperature was increased from 850°C to 1150°C by 8° [:/h]. After secondary recrystallization, purification annealing was performed at 1200° C. for 8 hours in soft hydrogen.
その後、エメリー研磨によりフォルステライト膜を除去
し、ついでパフ研磨によって2μm深さ研磨すると共に
平均表面あらさRa=0.3μmの鏡面状態に仕上げた
。Thereafter, the forsterite film was removed by emery polishing, and then the forsterite film was polished to a depth of 2 μm by puff polishing, and the surface was finished into a mirror-like state with an average surface roughness Ra of 0.3 μm.
次にドライプレーティング処理を行なって1.0μm厚
のTiCの極薄張力被膜を被成した。Next, a dry plating process was performed to form an ultra-thin tension coating of TiC with a thickness of 1.0 μm.
得られた製品の磁気特性は次のとおりであった。The magnetic properties of the obtained product were as follows.
Boo:1.92T、、W+t/so:0.65W/k
gまた1806曲げによってもはく離しない最小曲げ径
は15φ−曹であり、極めて良好な曲げ密着性が得られ
た。Boo: 1.92T, W+t/so: 0.65W/k
Furthermore, the minimum bending diameter that did not peel off even when bent by 1806 was 15φ-ca, and extremely good bending adhesion was obtained.
(発明の効果)
かくしてこの発明によれば、ドライプレーティング処理
を活用することでドライプレーティング中に鋼板の平滑
面研磨の際のR波面研磨により導入された歪みを解放す
ることができ、さらには極薄張力被膜の張力特性も加え
られるために一方向性けい素鋼板の鉄損を大幅に改善す
ることができる。(Effects of the Invention) Thus, according to the present invention, by utilizing the dry plating process, it is possible to release the distortion introduced by R wave surface polishing during dry plating when polishing the smooth surface of a steel plate, and furthermore, Since the tensile properties of the thin tension coating are also added, the iron loss of the unidirectional silicon steel sheet can be significantly improved.
またこの発明では、表面酸化物の除去に当って機械的研
磨を用いるために、連続的で効率的な表面平滑化処理が
実現でき、従ってコストの低減にも大きく寄与する。Further, in this invention, since mechanical polishing is used to remove surface oxides, continuous and efficient surface smoothing treatment can be realized, which greatly contributes to cost reduction.
第1図は、仕上げ焼鈍を経た一方向性けい素鋼板表面の
機械的研磨による研磨深さと鉄損変化量との関係を示し
たグラフである。
第1図
研庸理亡シm)FIG. 1 is a graph showing the relationship between the polishing depth by mechanical polishing of the surface of a unidirectional silicon steel sheet that has undergone finish annealing and the amount of change in iron loss. Figure 1: Kenjiri Shim)
Claims (1)
表面酸化物を除去してから、さらに機械的研磨によって
0.5μm以上研磨すると共に平均あらさRa=0.4
μm以下の平滑面に仕上げ、しかるのち該平滑面仕上げ
表面上に金属またはセラミックスのドライプレーティン
グ処理を施すことを特徴とする低鉄損一方向性けい素鋼
板の製造方法。1. For a unidirectional silicon steel plate that has undergone finish annealing, after removing surface oxides, it is further mechanically polished to a depth of 0.5 μm or more, and the average roughness Ra is 0.4.
1. A method for producing a unidirectional silicon steel sheet with low core loss, which comprises finishing a smooth surface with a diameter of μm or less, and then dry-plating a metal or ceramic on the smooth finished surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20774285A JPS6269501A (en) | 1985-09-21 | 1985-09-21 | Manufacture of low iron loss grain oriented silicon steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20774285A JPS6269501A (en) | 1985-09-21 | 1985-09-21 | Manufacture of low iron loss grain oriented silicon steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6269501A true JPS6269501A (en) | 1987-03-30 |
Family
ID=16544781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20774285A Pending JPS6269501A (en) | 1985-09-21 | 1985-09-21 | Manufacture of low iron loss grain oriented silicon steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6269501A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6437003A (en) * | 1987-08-01 | 1989-02-07 | Kawasaki Steel Co | Grain-oriented silicon steel plate very low in iron loss |
JPH0364417A (en) * | 1989-08-03 | 1991-03-19 | Kawasaki Steel Corp | Production of grain-oriented silicon steel sheet having superior blankability |
EP3351649A4 (en) * | 2015-09-17 | 2018-07-25 | JFE Steel Corporation | High silicon steel sheet and manufacturing method therefor |
JP2020164918A (en) * | 2019-03-29 | 2020-10-08 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electromagnetic steel sheet, and grain-oriented electromagnetic steel sheet |
-
1985
- 1985-09-21 JP JP20774285A patent/JPS6269501A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6437003A (en) * | 1987-08-01 | 1989-02-07 | Kawasaki Steel Co | Grain-oriented silicon steel plate very low in iron loss |
JPH0364417A (en) * | 1989-08-03 | 1991-03-19 | Kawasaki Steel Corp | Production of grain-oriented silicon steel sheet having superior blankability |
EP3351649A4 (en) * | 2015-09-17 | 2018-07-25 | JFE Steel Corporation | High silicon steel sheet and manufacturing method therefor |
US10760143B2 (en) | 2015-09-17 | 2020-09-01 | Jfe Steel Corporation | High-silicon steel sheet and method of manufacturing the same |
JP2020164918A (en) * | 2019-03-29 | 2020-10-08 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electromagnetic steel sheet, and grain-oriented electromagnetic steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63186826A (en) | Production of grain-orientated silicon steel plate having super low iron loss | |
JPS60131976A (en) | Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic | |
JPS6269501A (en) | Manufacture of low iron loss grain oriented silicon steel plate | |
JPS61235514A (en) | Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability | |
JPS6332849B2 (en) | ||
JPH0699824B2 (en) | Thermally stable ultra-low iron loss unidirectional silicon steel sheet and method for producing the same | |
JPS62103374A (en) | Grain-oriented silicon steel sheet having superior magnetic characteristic | |
JPS621820A (en) | Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss | |
JPS621822A (en) | Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss | |
JPH0375354A (en) | Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing | |
JPS6269503A (en) | Very low iron loss grain oriented silicon steel plate and manufacture thereof | |
JPS6230302A (en) | Manufacture of super-low iron loss unidirectional silicon steel plate | |
JPH0577749B2 (en) | ||
JPH11243005A (en) | Ultra-low iron loss unidirectional silicon steel sheet and manufacture thereof | |
JPS62192581A (en) | Production of extra-low iron loss grain oriented silicon steel sheet | |
JPS62290844A (en) | Grain-oriented silicon steel sheet having very small iron loss | |
JPS6318605A (en) | Unidirectional silicon steel plate of extremely low iron loss | |
JPS63293112A (en) | Manufacture of grain-oriented silicon steel sheet with superlow iron loss | |
JPS6396218A (en) | Production of extremely low iron loss grain oriented silicon steel sheet | |
JPH0699823B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JPS6318049A (en) | Production of grain-oriented silicon steel sheet having extremely small iron loss | |
JPS63278209A (en) | Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties | |
JPH01159322A (en) | Production of ultra-low iron loss grain oriented silicon steel sheet | |
JPH0699822B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JPS61246321A (en) | Manufacture of grain-oriented silicon steel sheet with extremely small iron loss |