【発明の詳細な説明】[Detailed description of the invention]
(産業上の利用分野)
一方向性けい素鋼板の電気・磁気的特性の改善
のうち、鉄損の低減に係わる極限的な要請を満た
そうとする近年来の目覚ましい開発努力について
は、逐次その実を挙げつつある。
この明細書では、上記特性のうち、とくに一方
向性けい素鋼板における磁歪の圧縮応力特性につ
いて、上記要請を有利に充足し得る新たな方途を
招くことについての開発研究の成果に関連して以
下に述べる。
さて一方向性珪素鋼板は、よく知られていると
おり製品の2次再結晶粒を(100)〔001〕、すなわ
ちゴス方位に、高度に集積させたもので、主とし
て変圧器その他の電気機器の鉄心として使用さ
れ、電気・磁気的特性として製品の磁束密度
(B10で代表される)が高く、しかも鉄損(W17/50
値で代表される)の低いことに加えて、とくに磁
歪特性が優れていることも要求される。
この一方向性珪素鋼板は複雑多岐にわたる工程
を経て製造され、それにつきこれまでにもおよび
ただしい改善が加えられ、今日では板厚0.30mmの
製品の磁気特性がB101.90T以上、W17/501.05W/
Kg以下、また板厚0.23mmの製品の磁気特性が
B101.89T以上、W17/500.90W/Kg以下の超低鉄損
一方向性珪素鋼板が製造されるようになつて来て
いるが、このようにすぐれだB10およびW17/50の
レベルにおいて、一方向性けい素鋼板の磁歪の圧
縮特性をもあわせ向上するに有用な極薄張力被膜
が順をおつて説明するように、この発明により新
たに究明されたのである。
一般にけい素鋼板の磁歪は鋼板を磁化した際に
鋼板が伸縮振動する現象であり、変圧器騒音の最
も大きな原因となつている。
この磁歪挙動は鋼板の磁化過程が90゜磁壁移動
および回転磁化を含むことに起因し、鋼板にかか
る圧縮応力に応じて磁歪は増大する。
変圧器の組立時には不可避的に鋼板に圧縮応力
が加えるところ、あらかじめ、鋼板に張力を与え
ておけば、磁歪の圧縮応力特性の面で有利であ
る。もちろん鋼板に張力が与えられることは、方
向性けい素鋼板の鉄損の改善にも有効でその効果
も顕著である。
一般に方向性けい素鋼板は、通常2次再結晶前
の脱炭・1次再結晶焼鈍時に鋼板表面に形成され
るフアイヤライト(Fe2SiO4)と呼ばれる鉄酸化
物と、MgOを主体とする焼鈍分離剤との仕上げ
焼鈍の際における高温反応によつて生成されたフ
オルステライト質下地被膜とさらにその上のりん
酸塩とコロイダルシリカを主成分とする焼付け被
膜とによつて張力が加えられ、磁歪特性の改善が
行われてはいるが、このような在来法による磁歪
の圧縮応力特性の改善は必ずしも充分とはいえな
い。
(従来の技術)
磁歪特性を改善するため鋼板表面に弾性張力を
かけることのできる絶縁被膜の開発例えば特公昭
56−521117号あるいは特公昭53−28375号公報参
照)はもちろん行われたが、依然として、実効に
乏しい。
(発明が解決しようとする問題点)
一方向性けい素鋼板における磁歪の圧縮特性の
一層有利な向上を、鉄損の有効な低減にあわせ実
現することができる張力被膜を与えて、該鋼板の
電気、磁気特性の充実を実際的に可能にすること
がこの発明の目的であり、ここにTiN、TiCない
しはTi(CN)の薄層が、一方向性けい素鋼板の
板面上における強固な密着の下での被覆によつ
て、磁歪の圧縮特性の改善を鉄損の低減にあわせ
達成し得ることの新規知見に由来している。
(問題点を解決するための手段)
この発明はTiN、TiC及びTi(CN)のうち少
なくとも1種の極薄層よりなり、仕上焼鈍済み一
方向性けい素鋼板面をその中心線平均粗さ0.4μm
以下に仕上げた鏡面と強固に密着して被覆するこ
とを特徴とする、一方向性けい素鋼板における磁
歪の圧縮応力特性を改善する極薄張力被膜であ
る。
この極薄張力被膜は、それに重ねて施すりん酸
塩とコロイダルシリカを主成分とした焼付け被膜
により電気絶縁性を助成するのが実際的には必要
である。
この発明の成功を由来した実験結果から説明を
進める。
C:0.045重量%(以下単に%で示す)、Si3.38
%、Mn:0.063%、Se:0.021%、Sb:0.025%、
Mo:0.025%を含有するけい素鋼鋳スラブを、
1340℃で4時間加熱後熱間圧延して2.0mm厚の熱
延板とした。
その後900℃で3分間の均一化焼鈍後、950℃で
3分間の中間焼鈍をはさむ2回の冷間圧延を施し
て0.23mm圧の最終冷延板とした。
その後820℃湿水素鋳で脱炭・1次再結晶焼鈍
を施した後、鋼板表面にAl2O3(70%)とMgO(30
%)を主成分とする焼鈍分離剤を塗布し、ついで
850℃で50時間の2次再結晶焼鈍と1200℃で乾水
素中で5時間の鈍化焼鈍を施した。
その後はまず50℃のHCl液中で酸洗して鋼板表
面の酸化物を除去した後、3%HFとH2O2の溶液
中で化学研磨し鋼板表面を中心線平均粗さ0.05μ
mの鏡面状態に仕上げた。
その後CVD装置を用いてTiCl4とH2とN2の混
合ガス雰囲気中で750℃で20時間の、鋼板表面上
でのCVD反応により0.7μm厚のTiN張力薄膜を
形成させた。
この後鋼板表面上にりん酸塩とコロイダルシリ
カを主成分とする絶縁被膜を焼付けにより形成さ
せた後、800℃で2時間のひずみ取り焼鈍を行つ
て製品とした。
この製品の磁歪の圧縮応力特性ならびに磁気特
性を第1図にて、通常工程材(比較材)と比較し
て示す。
なおこのときの比較材は、上記の0.23mm厚の最
終冷延板の一部に、820℃の湿水素中で脱炭・1
次再結晶焼鈍を施した後、鋼板表面でとくに
MgOを主成分とする焼鈍分離剤を塗布したほか
は、その後850℃で50時間の2次再結晶焼鈍と
1200℃での乾燥水素中での5時間の鈍化焼鈍につ
いても、またこのとき鋼板表面上に形成されるフ
オルステライト下地被膜に重ねる、りん酸塩とコ
ロイダルシリカを主成分とする絶縁被膜の焼付け
についても上掲供試材と同様な手順とした。
第1図から明らかなようにこの発明のTiN極
薄張力被膜を被成した製品の磁気特性はまずB10
が1.92T、W17/50が0.69W/Kgときわめて良好で、
しかも圧縮応力を0.6Kg/mm2に至るまで増加して
も磁気ひずみλppの増加がきわめて少ない。
これに対して通常工程材(比較材)による製品
の磁気特性はB10が1.90T、W17/50が0.87W/Kg
で、しかも圧縮圧力を加えるほど磁気ひずみλpp
が増加し、例えば圧縮応力σが0.4Kg/mm2で磁気
ひずみλppが3.2×10-6にも達する大きな値を示
す。
引続き発明者らは、製品板厚の異なる場合にも
上記の磁歪の圧縮応力特性の優れた超低鉄損一方
向性けい粗鋼板が得られるかどうかについて広範
囲な実験を行つた。
すなわちC0.042%、Si3.38%、Mn0.062%、
Se0.021%、Sb0.025%、Mo0.025%を含有するけ
い素鋼連鋳スラブを1360℃で5時間加熱後、熱間
圧延して1.8〜3.0mm厚の熱延板とした。
その後厚さの異なる熱延板を通し900℃で3分
間の均一化焼鈍後、950℃で3分間の中間焼鈍を
挟む2回の冷間圧延を施して、0.17、0.20、0.23、
0.27、0.30及び0.35mm厚にグループ分けした最終
冷延板を得た。
その後820℃の湿水素中で脱炭・1次再結晶焼
鈍を施した後、鋼板表面上にAl2O3(70%)と
MgO(30%)を主成分とする焼鈍分離材を塗布
し、ついで850℃で50時間の2次再結晶焼鈍と
1200℃で乾水素中で5時間の鈍化焼鈍を施した。
その後はまず70℃のHCl液中で酸洗して鋼板表
面の酸化物を除去した後、3%HFとH2O2の溶液
中で化学研磨し鋼板表面を中心線平均粗さ0.05μ
mの鏡面状態に仕上げた。
その後PVD(イオンプレーテイング)装置を用
いてこえらの鋼板表面上に、0.005〜3μmの範囲
で種々の厚みの異なる極薄張力被膜を形成させ
た。
その後鋼板表面上にりん酸塩とコロイダルシリ
カを主成分とする絶縁被膜を焼付けにより形成さ
せた後、800℃で2時間のひずみ取り焼鈍を行つ
て製品とし、そのとき磁歪の圧縮応力特性ならび
に磁気特性の測定を行なつた結果を第2図にまと
めて示した。
第2図には圧縮応力が0.4Kg/mm2での製品の磁
歪が0.5×10-6λpp以下となる、製品板厚−張力被
膜厚の対応を各製品板厚における鉄損値とともに
示した。
第2図から明らかなように磁歪特性が鉄損値と
共に優れた一方向性けい素鋼板を得るためには、
製品板厚とTiNの膜厚とは相関があり、製品板
厚の薄い製品ではTiNの膜厚を薄く、製品板厚
の厚い製品ではTiNの膜を厚くする必要のある
ことがわかる。
(作用)
上記のように仕上焼鈍済一方向性けい素鋼板の
鏡面化後におけるTiNの極薄張力被膜形成によ
る磁歪の圧縮応力特性及び磁気特性の改善が達成
される理由は鏡面化により磁壁の移動を容易にし
た状態で、鋼板との密着性の優れたTiN張力被
膜を形成することによつて鋼板に強力な弾性張力
が与えられたためであると考えられる。この
TiN張力被膜は製品板厚によつて最適膜厚が存
在し、板厚の厚い製品ではTiNの膜厚を厚くし
て張力を大きくする必要がある。
このようにけい素鋼板に与えられた引張応力は
磁歪だけでなく、鉄損の改善にも有効であり、特
にガス方位に強く集積した高磁束密度一方向性け
い素鋼板の場合には効果が顕著である。
次にこの発明による、一方向性けい素鋼板及び
その製造工程について説明する。
出発素材は従来公知の一方向性けい素鋼素材成
分、例えば
C:0.03〜0.05%、Si:2.50〜4.5%
Mn:0.01〜0.2%、Mo:0.003〜0.1%
Sb:0.005〜0.2%、S又はSeの1種あるいは2
種合計で、0.005〜0.05%を含有する組成
C:0.03〜0.08%、Si:2.0〜4.0%
S:0.005〜0.05%、N:0.001〜0.01%
Al:0.01〜0.06%、Sn:0.01〜0.5%、
cu:0.01〜0.3%、Mn:0.01〜0.2%
を含有する組成
C:0.03〜0.06%、Si:2.0〜4.0%
S:0.005〜0.05%、B:0.0003〜0.004%、
N:0.01〜0.05%、Mn:0.01〜0.2%、
を含有する組成
C:0.03〜0.05%、Si:2.0〜4.0%
Se:0.005〜0.05%、Sb:0.005〜0.2%
を含有する組成
C:0.03〜0.05%、Si:2.0〜4.0%、
S:0.005〜0.05%、Mn:0.01〜0.2%
を含有する組成
の如きにおいて適用可能である
次に熱延板は800〜1100℃の均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又
は、通常850℃から1050℃の中間焼鈍をはさんで
さらに冷却する2回冷延法にて、後者の場合最初
の圧下率は50%から80%程度、最終の圧下率は50
%から85%程度で0.15mmから0.35mm厚の最終冷延
板厚とする。
最終冷延を終り製品板厚に仕上げた鋼板は、表
面脱脂後750℃から850℃の湿水素中で脱炭・1次
再結晶焼鈍処理を施す。
その後鋼板表面にAl2O3、ZrO2あるいはTiO2、
MgO等を主成分とする焼鈍分離剤を塗布する。
この発明の場合は、フオルステライトが形成され
る場合であつても形成されない場合であつても適
用可能である。従来仕上げ焼鈍後の形成を不可欠
としていたフオルステライトはとくに形成させな
い方が、その後の鋼板の鏡面処理を簡便にするの
に有効であるので、焼鈍分離剤としてAl2O3、
ZrO2、TiO2等を50%以上MgOに混入して使用す
るのが好ましい。
その後2次再結晶鈍を行うが、その工程は
{110}<001>方位の2次再結晶粒を充分発達させ
るために施されるもので、通常箱焼鈍によつて直
ちに1000℃以上に昇温し、その温度に保持するこ
とによつて行われる。
この場合{110}<001>方位に、高度に揃つた
2次再結晶粒組成を発達させるためには820℃か
ら900℃の低温で保定焼鈍する方が有利であり、
その他例えば0.5〜15℃/hの昇温速度の徐熱焼
鈍でもよい。
2次再結晶後の焼鈍は、乾水素中で1100℃以上
で1〜20時間焼鈍を行つて、鋼板の鈍化を達成す
ることが必要である。
この鈍化焼鈍後に鋼板表面の酸化物被膜を公知
の酸洗などの化学的除去法や切削、研磨などの機
械的除去法又はそれらの組合わせにより除去す
る。
この酸化物除去処理の後、化学研磨、電解研磨
などの化学的研磨や、バフ研磨などの機械的研磨
あるいはそれらの組合せなど従来の手法により鋼
板表面を鏡面状態つまり中心線平均粗さ0.4μm以
下に仕上げる。
このような鏡面研磨後、CVD、イオンプレー
テイングあるいはイオンインプランテーシヨン等
によりTiN、TiCあるいはTi(CN)のうちの1
種以上からなる極薄張力被膜を形成させる。この
ときの被膜の最適膜厚は第2図から明らかなよう
に製品板厚によつて異なり、板厚の厚い製品では
膜厚を厚く、板厚の薄い製品では膜厚を薄くする
必要がある。
さらにこのように生成した張力被膜上にりん酸
塩とコロイダルシリカを主成分とする絶縁被膜を
焼付し、さらに600〜900℃の温度範囲でひずみ取
り焼鈍を施して製品とする。
(実施例)
実施例 1
(a) C:0.042%、Si:3.36%、Mn:0.062%、
Mo:0.024%、Se:0.021%、Sb:0.025%、
(b) C:0.056%、Si:3.36%、Mn:0.068%、
Al:0.026%、S:0.029%、N:0.0069%、
C:0.1%、Sn:0.05%、
をそれぞれ含有する熱延板を用意した。
まず(a)の熱延板は900℃で3分間の均一化焼鈍
後950℃の中間焼鈍をはさんで2回の冷間圧延を
行つて0.20mm厚の最終冷延板とした。
一方(b)の熱延板は1080℃で3分間の均一化焼鈍
後急冷処理を行い、その後300℃の温間圧延を施
して0.20mm厚の最終冷延板とした。
その後何れの冷延板についても830℃の湿水素
中で脱炭焼鈍後、鋼板表面にAl2O3(75%)、MgO
(20%)、ZrO2(5%)を主成分とする焼鈍分離剤
を塗布した後、(a)の素材による試料は850℃で50
時間の2次再結晶焼鈍後、1200℃で5時間の乾水
素中で鈍化焼鈍(b)の素材による試料は850℃から
5℃/hrで1050℃まで昇温して2次再結晶させた
後、1200℃で8時間乾水素中で鈍化焼鈍をそれぞ
れ行つた。
その後酸洗により酸化物被膜を除去し、次いで
3%HFとH2O2液中で化学研磨して鏡面仕上げし
た。
その後CVD装置を用いて(i)TiCl4とH2とN2の
混合ガスよりTiNの薄膜、(ii)TiCl4とH2とN2と
CH4の混合ガスより、Ti(CN)の薄膜および(iii)
TiCl4とH2とN2とCH4の混合ガスによりTiCの薄
膜を、いずれも0.7μm厚で形成させた。またイオ
ンプレーテイングおよびイオンインプランテーシ
ヨン装置を用いて(iv)Ti(CN)および(v)TiCの0.7
〜0.9μm厚の薄膜を形成させた。
その後これらの処理をした試料は表面にりん酸
塩とコロイダルシリカを主成分とする絶縁被膜の
焼付処理をした後、800℃で2時間のひずみ取り
焼鈍を行つた。
そのときの製品の磁気特性および磁歪の圧縮応
力特性(圧縮応力σが0.4および0.6Kg/mm2下での
磁気ひずみλppの値)を表1に示す。
(Field of industrial application) Among the improvements in the electrical and magnetic properties of grain-oriented silicon steel sheets, remarkable development efforts have been made in recent years to meet the extreme requirements of reducing iron loss. are being listed. In this specification, the following is related to the results of development research that will lead to a new method that can advantageously satisfy the above requirements, particularly regarding the magnetostrictive compressive stress properties of unidirectional silicon steel sheets among the above properties. I will explain. As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (100) [001], or Goss, orientation, and are mainly used in transformers and other electrical equipment. Used as an iron core, the product has a high magnetic flux density (represented by B 10 ) as an electric/magnetic property, and has a low iron loss (W 17/50) .
In addition to having a low value (represented by the value of This unidirectional silicon steel plate is manufactured through a complex and diverse process, and numerous improvements have been made over the years, and today products with a thickness of 0.30mm have magnetic properties of B 10 1.90T or higher, W 17/ 50 1.05W/
Kg or less, and the magnetic properties of products with a plate thickness of 0.23 mm are
B 10 1.89T or more, W 17/50 0.90W/Kg or less ultra-low core loss unidirectional silicon steel sheets are being manufactured, and these are excellent B 10 and W 17/50 As will be explained in detail, this invention has newly discovered an ultra-thin tension coating that is useful for improving the magnetostrictive compression properties of unidirectional silicon steel sheets. In general, magnetostriction in silicon steel sheets is a phenomenon in which the steel sheet expands and contracts when it is magnetized, and is the largest cause of transformer noise. This magnetostrictive behavior is due to the fact that the magnetization process of the steel sheet includes 90° domain wall movement and rotational magnetization, and the magnetostriction increases in accordance with the compressive stress applied to the steel sheet. When assembling a transformer, compressive stress is inevitably applied to the steel plate, so it is advantageous in terms of magnetostrictive compressive stress characteristics if tension is applied to the steel plate in advance. Of course, applying tension to the steel plate is also effective in improving the iron loss of the grain-oriented silicon steel plate, and the effect is significant. In general, grain-oriented silicon steel sheets are annealed mainly with iron oxides called fireite (Fe 2 SiO 4 ), which are formed on the steel sheet surface during decarburization and primary recrystallization annealing before secondary recrystallization, and MgO. Tension is applied by the forsterite base film produced by a high-temperature reaction during final annealing with a separating agent, and a baked film containing phosphate and colloidal silica as main components, which causes magnetostriction. Although the characteristics have been improved, the improvement of the compressive stress characteristics of magnetostriction by such conventional methods is not necessarily sufficient. (Prior art) Development of an insulating film that can apply elastic tension to the surface of a steel plate in order to improve magnetostrictive properties.
56-521117 or Japanese Patent Publication No. 53-28375), but they are still ineffective. (Problems to be Solved by the Invention) It is possible to provide a tensile coating that can further advantageously improve the compressive properties of magnetostriction in a unidirectional silicon steel sheet, together with an effective reduction in core loss. The purpose of this invention is to make it practical to improve the electric and magnetic properties, and here the thin layer of TiN, TiC or Ti (CN) is applied to the surface of the grain-oriented silicon steel sheet to form a strong and strong layer. This is derived from the new finding that by coating in close contact, it is possible to improve the magnetostrictive compression properties as well as reduce iron loss. (Means for Solving the Problems) This invention consists of an ultra-thin layer of at least one of TiN, TiC, and Ti(CN), and the surface of a finish-annealed unidirectional silicon steel sheet has a centerline average roughness. 0.4μm
This is an ultra-thin tensile coating that improves the magnetostrictive compressive stress characteristics of unidirectional silicon steel sheets, and is characterized by being coated in close contact with the finished mirror surface. In practice, it is necessary to superimpose this ultra-thin tension coating by applying a baked coating based on phosphate and colloidal silica to provide electrical insulation. The explanation will begin with the experimental results that led to the success of this invention. C: 0.045% by weight (hereinafter simply expressed as %), Si3.38
%, Mn: 0.063%, Se: 0.021%, Sb: 0.025%,
Silicon steel cast slab containing Mo: 0.025%,
After heating at 1340°C for 4 hours, it was hot rolled to obtain a 2.0 mm thick hot rolled sheet. Thereafter, after uniform annealing at 900°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C for 3 minutes to obtain a final cold-rolled sheet with a thickness of 0.23 mm. After that, decarburization and primary recrystallization annealing were performed using wet hydrogen casting at 820°C, and Al 2 O 3 (70%) and MgO (30%) were added to the surface of the steel sheet.
%) is applied as the main component, and then
Secondary recrystallization annealing was performed at 850°C for 50 hours and blunting annealing was performed at 1200°C in dry hydrogen for 5 hours. After that, the steel plate surface was first pickled in 50°C HCl solution to remove oxides on the steel plate surface, and then chemically polished in a solution of 3% HF and H 2 O 2 to give the steel plate surface a center line average roughness of 0.05μ.
Finished with a mirror finish of m. Thereafter, a TiN tension thin film with a thickness of 0.7 μm was formed by a CVD reaction on the surface of the steel plate at 750° C. for 20 hours in a mixed gas atmosphere of TiCl 4 , H 2 , and N 2 using a CVD device. Thereafter, an insulating film containing phosphate and colloidal silica as main components was formed on the surface of the steel plate by baking, and then strain relief annealing was performed at 800°C for 2 hours to produce a product. Figure 1 shows the magnetostrictive compressive stress characteristics and magnetic characteristics of this product in comparison with a normally processed material (comparative material). The comparison material used here was a part of the final cold-rolled sheet with a thickness of 0.23 mm, which was decarburized and treated in wet hydrogen at 820°C.
After the next recrystallization annealing, the surface of the steel plate shows
After applying an annealing separator mainly composed of MgO, secondary recrystallization annealing was performed at 850℃ for 50 hours.
Regarding the annealing in dry hydrogen at 1200℃ for 5 hours, and the baking of the insulating coating mainly composed of phosphate and colloidal silica, which is superimposed on the forsterite base coating formed on the steel plate surface at this time. The same procedure was used for the sample materials listed above. As is clear from Figure 1, the magnetic properties of the product coated with the TiN ultra-thin tensile coating of this invention are B 10.
is 1.92T, W 17/50 is 0.69W/Kg, which is extremely good.
Moreover, even if the compressive stress is increased to 0.6 Kg/mm 2 , the increase in magnetostriction λpp is extremely small. On the other hand, the magnetic properties of products made from normal process materials (comparison materials) are 1.90T for B 10 and 0.87W/Kg for W 17/50 .
Moreover, the more compressive pressure is applied, the more the magnetostriction λpp
For example, when the compressive stress σ is 0.4 Kg/mm 2 , the magnetostriction λpp reaches a large value of 3.2×10 −6 . Subsequently, the inventors conducted extensive experiments to determine whether an ultra-low core loss unidirectional coarse steel sheet having excellent magnetostrictive compressive stress characteristics as described above could be obtained even when the product sheet thickness was different. That is, C0.042%, Si3.38%, Mn0.062%,
A continuously cast silicon steel slab containing 0.021% Se, 0.025% Sb, and 0.025% Mo was heated at 1360° C. for 5 hours and then hot rolled into a hot rolled plate having a thickness of 1.8 to 3.0 mm. After that, the hot-rolled plates of different thicknesses were uniformly annealed at 900℃ for 3 minutes, and then cold-rolled twice with intermediate annealing at 950℃ for 3 minutes.
The final cold rolled sheets were obtained grouped into 0.27, 0.30 and 0.35 mm thickness. After decarburization and primary recrystallization annealing in wet hydrogen at 820°C, Al 2 O 3 (70%) is deposited on the surface of the steel sheet.
An annealing separation material mainly composed of MgO (30%) is applied, followed by secondary recrystallization annealing at 850℃ for 50 hours.
A blunting annealing was performed at 1200°C in dry hydrogen for 5 hours. After that, the steel plate surface was first pickled in HCl solution at 70°C to remove oxides on the steel plate surface, and then chemically polished in a solution of 3% HF and H 2 O 2 to give the steel plate surface a center line average roughness of 0.05μ.
Finished with a mirror finish of m. Thereafter, using a PVD (ion plating) device, ultrathin tension coatings with various thicknesses ranging from 0.005 to 3 μm were formed on the surface of the steel plate. After that, an insulating film mainly composed of phosphate and colloidal silica is formed on the surface of the steel plate by baking, and then strain relief annealing is performed at 800°C for 2 hours to produce a product. The results of measuring the characteristics are summarized in Figure 2. Figure 2 shows the relationship between product thickness and tension coating thickness, together with the iron loss value for each product thickness, so that the magnetostriction of the product is 0.5×10 -6 λpp or less when the compressive stress is 0.4Kg/ mm2 . . As is clear from Figure 2, in order to obtain a unidirectional silicon steel sheet with excellent magnetostrictive properties as well as iron loss value,
It can be seen that there is a correlation between the product board thickness and the TiN film thickness, and it is necessary to reduce the TiN film thickness for products with thin product board thickness, and to increase the TiN film thickness for products with thick product board thickness. (Function) The reason why the magnetostrictive compressive stress characteristics and magnetic properties are improved by forming an ultra-thin tension film of TiN after mirror-finishing a finish annealed unidirectional silicon steel sheet as described above is that mirror-finishing improves the magnetic domain wall. This is thought to be because strong elastic tension was applied to the steel plate by forming a TiN tension coating with excellent adhesion to the steel plate while making it easy to move. this
The optimal thickness of the TiN tension coating depends on the thickness of the product board, and for thick products, it is necessary to increase the tension by increasing the TiN film thickness. The tensile stress applied to silicon steel sheets in this way is effective not only for magnetostriction but also for improving iron loss, and is particularly effective in the case of high magnetic flux density unidirectional silicon steel sheets that are strongly concentrated in the gas direction. Remarkable. Next, a unidirectional silicon steel sheet and its manufacturing process according to the present invention will be explained. The starting material is conventionally known unidirectional silicon steel material components, such as C: 0.03-0.05%, Si: 2.50-4.5% Mn: 0.01-0.2%, Mo: 0.003-0.1% Sb: 0.005-0.2%, S or Se type 1 or 2
Composition containing 0.005-0.05% in total of species C: 0.03-0.08%, Si: 2.0-4.0% S: 0.005-0.05%, N: 0.001-0.01% Al: 0.01-0.06%, Sn: 0.01-0.5 %, cu: 0.01~0.3%, Mn: 0.01~0.2% C: 0.03~0.06%, Si: 2.0~4.0% S: 0.005~0.05%, B: 0.0003~0.004%, N: 0.01~ Composition containing 0.05%, Mn: 0.01-0.2%, C: 0.03-0.05%, Si: 2.0-4.0% Se: 0.005-0.05%, Sb: 0.005-0.2% Composition containing C: 0.03-0.05% , Si: 2.0 to 4.0%, S: 0.005 to 0.05%, and Mn: 0.01 to 0.2%.Next, the hot-rolled sheet is uniformly annealed at 800 to 1100°C once. The final thickness is obtained by cold rolling the final thickness, or the two-step cold rolling method involves intermediate annealing between 850℃ and 1050℃, followed by further cooling.In the latter case, the initial rolling reduction is Approximately 50% to 80%, final reduction rate is 50
The final cold-rolled plate thickness is 0.15mm to 0.35mm at a rate of 85% to 85%. After the final cold rolling, the steel plate finished to the product thickness is degreased on the surface and then subjected to decarburization and primary recrystallization annealing in wet hydrogen at 750°C to 850°C. After that, Al 2 O 3 , ZrO 2 or TiO 2 was applied to the surface of the steel plate.
Apply an annealing separator mainly composed of MgO, etc.
The present invention is applicable regardless of whether forsterite is formed or not. It is especially effective not to form forsterite, which has traditionally been indispensable to be formed after finish annealing, in order to simplify the subsequent mirror finishing of the steel sheet, so Al 2 O 3 ,
It is preferable to use 50% or more of ZrO 2 , TiO 2 or the like mixed with MgO. After that, secondary recrystallization annealing is performed, but this process is performed to sufficiently develop secondary recrystallized grains with {110} <001> orientation, and is usually box annealed immediately at a temperature of 1000℃ or higher. This is done by heating and holding at that temperature. In this case, in order to develop a highly uniform secondary recrystallized grain composition in the {110}<001> orientation, it is advantageous to perform retention annealing at a low temperature of 820°C to 900°C.
In addition, slow heat annealing at a heating rate of 0.5 to 15° C./h may also be used. For annealing after secondary recrystallization, it is necessary to perform annealing in dry hydrogen at 1100° C. or higher for 1 to 20 hours to dull the steel sheet. After this blunt annealing, the oxide film on the surface of the steel sheet is removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and polishing, or a combination thereof. After this oxide removal treatment, conventional methods such as chemical polishing such as chemical polishing and electrolytic polishing, mechanical polishing such as buffing, or a combination thereof are used to polish the steel plate surface to a mirror-like state, that is, to a center line average roughness of 0.4 μm or less. Finish it. After such mirror polishing, one of TiN, TiC or Ti(CN) is removed by CVD, ion plating or ion implantation.
Forms an ultra-thin tensile film consisting of more than one species. As is clear from Figure 2, the optimal film thickness of the coating at this time varies depending on the product board thickness, and thicker products require a thicker film, while thinner products require a thinner film. . Furthermore, an insulating film containing phosphate and colloidal silica as main components is baked on the tension film thus produced, and then subjected to strain relief annealing in a temperature range of 600 to 900°C to produce a product. (Example) Example 1 (a) C: 0.042%, Si: 3.36%, Mn: 0.062%,
Mo: 0.024%, Se: 0.021%, Sb: 0.025%, (b) C: 0.056%, Si: 3.36%, Mn: 0.068%,
Al: 0.026%, S: 0.029%, N: 0.0069%,
Hot rolled sheets containing C: 0.1% and Sn: 0.05% were prepared. First, the hot-rolled sheet (a) was uniformly annealed at 900°C for 3 minutes and then cold-rolled twice with an intermediate annealing at 950°C to obtain a final cold-rolled sheet with a thickness of 0.20 mm. On the other hand, the hot-rolled sheet (b) was uniformly annealed at 1080°C for 3 minutes and then rapidly cooled, and then warm-rolled at 300°C to form a final cold-rolled sheet with a thickness of 0.20 mm. After that, all cold-rolled sheets were decarburized and annealed in wet hydrogen at 830℃, and Al 2 O 3 (75%) and MgO were added to the steel sheet surface.
(20%) and ZrO 2 (5%) as the main components, the sample made of material (a) was heated at 850℃ for 50℃.
After secondary recrystallization annealing for 5 hours, the sample made of material (b) was annealed in dry hydrogen at 1200℃ for 5 hours and was heated from 850℃ to 1050℃ at 5℃/hr for secondary recrystallization. Afterwards, each was subjected to blunt annealing in dry hydrogen at 1200°C for 8 hours. Thereafter, the oxide film was removed by pickling, and then chemical polishing was performed in a 3% HF and H 2 O solution to give a mirror finish. After that, using a CVD device, (i) a thin film of TiN is formed from a mixed gas of TiCl 4 , H 2 and N 2 , (ii) a thin film of TiCl 4 , H 2 and N 2 is formed.
A thin film of Ti( CN ) and (iii)
A thin film of TiC was formed using a mixed gas of TiCl 4 , H 2 , N 2 and CH 4 to a thickness of 0.7 μm. Also, using ion plating and ion implantation equipment, 0.7
A thin film with a thickness of ~0.9 μm was formed. After that, the surface of these treated samples was baked with an insulating coating mainly composed of phosphate and colloidal silica, and then subjected to strain relief annealing at 800°C for 2 hours. Table 1 shows the magnetic properties and magnetostrictive compressive stress properties (values of magnetostrictive λpp under compressive stress σ of 0.4 and 0.6 Kg/mm 2 ) of the product at that time.
【表】
実施例 2
C:0.043%、Si:3.42%、Mn:0.069%、Se:
0.021%、Sb:0.025%、Mo:0.025%を含有する
一方向性けい素鋼を1400℃で3時間加熱した後、
熱間圧延して1.8〜2.7mm厚の熱延板とした。その
後900℃で3分間の均一化焼鈍後、950℃で3分間
の中間焼鈍をはさんで2回の冷間圧延を施して
0.20、0.23、0.27mmおよび0.30mm厚の最終冷延板
とした。
その後830℃の湿水素中で脱炭を兼ねる1次再
結晶焼鈍を施した後、MgO(2%)、Al2O3(70
%)、TiO2(5%)、ZrO2(5%)の焼鈍分離剤を
塗布した後、850℃で50時間の2次再結晶焼鈍後、
1200℃で5時間乾H2ガス中で鈍化焼鈍を行つた。
その後軽酸洗により鋼板表面上の酸化物を除去し
た後、電解研磨を行つて鋼板表面を鏡面状態に仕
上げた。
その後PVD(イオンプレーテイング装置)を用
いてTiNの薄膜を形成させた後、りん酸塩とコ
ロイダルシリカを主成分とする絶縁被膜の焼付処
理をした後、800℃で3時間のひずみ取り焼鈍を
行つた。そのときの製品の板厚別磁気特性、
TiN薄膜の膜厚および磁歪の圧縮応力特性(圧
縮応力σが0.4Kg/mm2及び0.6Kg/mm2での磁気ひず
みλppの値)を表2に示す。[Table] Example 2 C: 0.043%, Si: 3.42%, Mn: 0.069%, Se:
After heating unidirectional silicon steel containing 0.021%, Sb: 0.025%, and Mo: 0.025% at 1400°C for 3 hours,
It was hot rolled into a hot rolled sheet with a thickness of 1.8 to 2.7 mm. Then, after uniform annealing at 900℃ for 3 minutes, cold rolling was performed twice with intermediate annealing at 950℃ for 3 minutes.
The final cold rolled sheets were 0.20, 0.23, 0.27 mm and 0.30 mm thick. After that, primary recrystallization annealing was performed in wet hydrogen at 830°C, which also served as decarburization, and then MgO (2%), Al 2 O 3 (70
%), TiO 2 (5%), ZrO 2 (5%) annealing separators were applied, and after secondary recrystallization annealing at 850 °C for 50 hours,
Blunt annealing was performed at 1200° C. for 5 hours in dry H 2 gas.
Thereafter, oxides on the surface of the steel plate were removed by light pickling, and then electrolytic polishing was performed to finish the surface of the steel plate to a mirror finish. After that, a thin TiN film was formed using PVD (ion plating equipment), and an insulating film containing phosphate and colloidal silica as main components was baked, followed by strain relief annealing at 800°C for 3 hours. I went. The magnetic properties of the product at that time depending on its plate thickness,
Table 2 shows the film thickness and magnetostriction compressive stress characteristics of the TiN thin film (values of magnetostriction λpp when compressive stress σ is 0.4 Kg/mm 2 and 0.6 Kg/mm 2 ).
【表】
(発明の効果)
この発明の極薄張力被膜は、一方向性けい素鋼
板における磁歪の圧縮応力特性の磁気特性ととも
にする改善に著しく寄与する。[Table] (Effects of the Invention) The ultra-thin tension coating of the present invention significantly contributes to improving the magnetostrictive compressive stress characteristics as well as the magnetic properties of grain-oriented silicon steel sheets.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図はTiN極薄張力被膜形成したけい素鋼
板と通常の工程材(比較材)のけい素鋼板の磁気
特性と磁歪の圧縮応力特性を示すグラフ、第2図
は鉄損と磁歪特性が共に良好な製品板厚とTiN
薄膜厚と関係を示す図表である。
Figure 1 is a graph showing the magnetic properties and magnetostrictive compressive stress characteristics of a silicon steel sheet with an ultra-thin TiN tension coating and a silicon steel sheet made of a conventional process material (comparison material). Figure 2 shows the iron loss and magnetostrictive properties Good product thickness and TiN
It is a chart showing the relationship between thin film thickness.