JPH0337844B2 - - Google Patents

Info

Publication number
JPH0337844B2
JPH0337844B2 JP16123285A JP16123285A JPH0337844B2 JP H0337844 B2 JPH0337844 B2 JP H0337844B2 JP 16123285 A JP16123285 A JP 16123285A JP 16123285 A JP16123285 A JP 16123285A JP H0337844 B2 JPH0337844 B2 JP H0337844B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
ultra
silicon steel
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16123285A
Other languages
Japanese (ja)
Other versions
JPS6222409A (en
Inventor
Masao Iguchi
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16123285A priority Critical patent/JPS6222409A/en
Priority to PCT/JP1986/000087 priority patent/WO1986004929A1/en
Priority to DE8686904726T priority patent/DE3673290D1/en
Priority to US06/907,734 priority patent/US4713123A/en
Priority to EP86904726A priority patent/EP0215134B1/en
Publication of JPS6222409A publication Critical patent/JPS6222409A/en
Publication of JPH0337844B2 publication Critical patent/JPH0337844B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 一方向性珪素鋼板の電気・磁気的特性の改善、
なかでも、鉄損の低減に係わる極限的な要請を満
たそうとする近年来の目覚ましい開発努力は、逐
次その実を挙げつつあるが、その実施に伴う重大
な弊害として、一方向性珪素鋼板の使用に当たつ
ての加工、組立てを経たのち、いわゆるひずみ取
り焼鈍がほどこされた場合に、特性劣化の随伴を
不可避に生じて、使途についての制限を受ける不
利が指摘される。 この明細書では、ひずみ取り焼鈍のような高温
の熱履歴を経ると否とに拘わらず、上記要請を有
利に充足し得る新たな方途を拓くことについての
開発研究の成果に関連して以下に述べる。 さて一方向性珪素鋼板は、よく知られていると
おり製品の2次再結晶粒を(110)〔001〕、すなわ
ちゴス方位に、高度に集積させたもので、主とし
て変圧器その他の電気機器の鉄心として使用され
電気・磁気的特性として製品の磁束密度(B10
で代表される)が高く、鉄損(W17/50値で代表さ
れる)の低いことが要求される。 この一方向性珪素鋼板は複雑多岐にわたる工程
を経て製造されるが、今までにおびただしい発
明・改善が加えられ、今日では板厚0.30mmの製品
の磁気特性がB101.90T以上、W17/501.50W/Kg以
下、また板厚0.23mmの製品の磁気特性がB101.89T
以上、W17/500.90W/Kg以下の超低鉄損一方向性
珪素鋼板が製造されるようになつて来ている。 特に最近では省エネの見地から電力損失の低減
を至上とする要請が著しく強まり、欧米では損失
の少ない変圧器を作る場合に鉄損の減少分を金額
に換算して変圧器価格に上積みする「ロス・エバ
リユエーシヨン」(鉄損評価)制度が普及してい
る。 (従来の技術) このような状況下において最近、一方向性珪素
鋼板の仕上焼鈍後の鋼板表面に圧延方向にほぼ直
角方向でのレーザ照射により局部微小ひずみを導
入して磁区を細分化し、もつて鉄損を低下させる
ことが提案された(特公昭57−2252号、特公昭57
−53419号、特公昭58−26405号及び特公昭58−
26406号各公報参照)。 この磁区細分化技術はひずみ取り焼鈍を施さな
い、積鉄心向けトランス材料として効果的である
が、ひずみ取り焼鈍を施す、主として巻鉄心トラ
ンス材料にあつては、レーザー照射によつて折角
に導入された局部微小ひずみが焼鈍処理により解
放されて磁区幅が広くなるため、レーザー照射効
果が失われるという欠点がある。 一方これより先に特公昭52−24499号公報にお
いては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板
表面を鏡面仕上げするか又はその鏡面仕上げ面上
に金属薄めつきやさらにその上に絶縁被膜を塗布
焼付けすることによる、超低鉄損一方向性珪素鋼
板の製造方法が提案されている。 しかしながらこの鏡面仕上げによる鉄損向上手
法は、工程的に採用するには、著しいコストアツ
プになる割りに鉄損低減への寄与が充分でない
上、とくに鏡面仕上後に不可欠な絶縁被膜を塗布
焼付した後の密着性に問題があるため、現在の製
造工程において採用されるに至つてはいない。ま
た特公昭56−4150号公報においても鋼板表面を鏡
面仕上げした後、酸化物系セラミツクス薄膜を蒸
着する方法が提案されている。しかしながらこの
方法も600℃以上の高温焼鈍を施すと鋼板とセラ
ミツク層とが剥離するため、実際の製造工程では
採用できない。 (発明が解決しようとする問題点) 発明者らは上記した鏡面仕上による鉄損向上の
実効をより有利に引き出すことにより、特に今日
の省エネ材料開発の観点では上記のごときコスト
アツプの不利を凌駕する特性、とくに高温処理で
も特性劣化を伴うことなくして絶縁層の密着性、
耐久性の問題の克服こそが肝要と考え、この基本
認識に立脚し、鏡面仕上後鋼板処理方法に根本的
な再検討を加えてこの発明に到達した。 (問題点を解決するための手段) ここに、中心線平均粗さ0.4μm以下の鏡面状態
に仕上げた一方向性珪素鋼板を600〜1000℃の加
熱下にTiを含む化合物(例えばTiCl2、TiCl3
はTiCl4など)を含むガスに加えてH2とN2およ
び/又はCH4ガスとの混合ガス雰囲気中で鋼板表
面上でCVD反応を行なわせることによつてTiN、
TiCないしTi(CN)の極薄張力被膜を形成させ
たあと、600〜1000℃の温度範囲でH2雰囲気焼鈍
を施すか又はさらにその後この張力被膜上に、り
ん酸塩とコロイダルシリカを主成分とする絶縁被
膜を形成させることから成る超低鉄損一方向性珪
素鋼板の製造方法である。 この発明の成功が導かれた実験例について述べ
る。 C:0.045重量%(以下単に%で示す)、Si:
3.38%、Mn:0.063%、Se:0.021%、Sb:0.025
%、Mo:0.025%を含有する珪素鋼連鋳スラブを
1340℃で4時間加熱後熱間圧延して2.0mm厚の熱
延板とした。 その後900℃で3分間の均一化焼鈍後、950℃で
3分間の中間焼鈍をはさむ2回の冷間圧延を施し
て0.23mm厚の最終冷延板とした。 その後820℃の湿水素中で脱炭・1次再結晶焼
鈍を施した後、鋼板表面にAl2O3(70%)とMgO
(30%)を主成分とする焼鈍分離剤を塗布し、つ
いで850℃で50時間の2次再結晶焼鈍と1200℃で
乾水素中で5時間の鈍化焼鈍を施した。 その後はまず50℃のHCl液中で酸洗して鋼板表
面の酸化物を除去した後、3%HFとH2O2の溶液
中で化学研磨し鋼板表面を中心線平均粗さ0.05μ
mの鏡面状態に仕上げた2種類の試料に次の処理
を施した。 (1) CVD装置を用いてTiCl4とH2およびN2の混
合ガス雰囲気中で750℃、20時間にわたり鋼板
表面上でCVD反応させ、鋼板表面上にTiN
(0.6μm厚)を形成(a)させた。このCVD処理後
1部の試料はさらに750℃で10時間H2ガス雰囲
気中で焼鈍(b)を施した。 (2) 同様にしてTiCl4とH2およびCH4の混合ガス
雰囲気中で850℃、5時間の鋼板表面上でCVD
反応させ鋼板表面上にTiC(0.5μm厚)を形成
(c)させた。このCVD処理後1部の試料はさら
に700℃で15時間H2ガス雰囲気中で焼鈍(d)を施
した。 このようにして得られた製品の磁気特性を、
表面状況及び鋼中のC、Nの分析値を通常の手
順による一方向性珪素鋼板(e)と比較して表1に
示す。
(Industrial application field) Improvement of electrical and magnetic properties of unidirectional silicon steel sheets,
In particular, the remarkable development efforts made in recent years to meet the extreme requirements of reducing iron loss are gradually bearing fruit, but one serious problem associated with their implementation is the use of grain-oriented silicon steel sheets. It has been pointed out that when a so-called strain relief annealing is applied after the initial processing and assembly, the deterioration of characteristics inevitably occurs, resulting in restrictions on usage. In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) [001], or Goss, orientation, and are mainly used in transformers and other electrical equipment. Used as an iron core, the product is required to have high electrical and magnetic characteristics such as high magnetic flux density (represented by the B 10 value) and low iron loss (represented by the W 17/50 value). This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of 0.30mm have magnetic properties of B 10 1.90T or more, W 17/ 50 1.50W/Kg or less, and the magnetic properties of products with a plate thickness of 0.23mm are B 10 1.89T
As described above, ultra-low core loss unidirectional silicon steel sheets with a W 17/50 of 0.90 W/Kg or less are being manufactured. In particular, recently there has been a marked increase in the demand for reducing power loss as a top priority from the standpoint of energy conservation.・The "Evaluation" (iron loss evaluation) system is becoming widespread. (Prior art) Under these circumstances, recently, a method has been developed in which micro-strain is introduced into the surface of a unidirectional silicon steel plate after final annealing by laser irradiation in a direction approximately perpendicular to the rolling direction to subdivide the magnetic domains. It was proposed to reduce iron loss by
−53419, Special Publication No. 58-26405 and Special Publication No. 58-
(Refer to each publication No. 26406). This magnetic domain refining technology is effective for transformer materials for laminated cores that are not subjected to strain relief annealing, but it is difficult to introduce by laser irradiation for transformer materials for rolled cores that are subjected to strain relief annealing. There is a drawback that the laser irradiation effect is lost because the localized minute strain is released by the annealing treatment and the magnetic domain width becomes wider. On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel plate after finish annealing was mirror-finished, or the mirror-finished surface was coated with metal thinning or an insulating coating was applied thereon. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by coating and baking has been proposed. However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective, as it does not contribute enough to reducing iron loss at the cost of a significant increase in costs. Due to problems with adhesion, it has not been adopted in current manufacturing processes. Japanese Patent Publication No. 56-4150 also proposes a method in which a thin film of oxide ceramics is deposited after mirror-finishing the surface of a steel plate. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher. (Problems to be Solved by the Invention) The inventors have attempted to overcome the disadvantage of increased costs, especially from the perspective of today's development of energy-saving materials, by taking advantage of the effect of improving iron loss due to the mirror finish described above. properties, especially the adhesion of the insulating layer without deterioration even during high-temperature treatment.
We believe that overcoming the problem of durability is essential, and based on this basic understanding, we fundamentally reexamined the method of processing steel sheets after mirror finishing and arrived at this invention. (Means for solving the problem) Here, a unidirectional silicon steel plate finished in a mirror-like state with a center line average roughness of 0.4 μm or less is heated at 600 to 1000°C and treated with a compound containing Ti (for example, TiCl 2 , TiN , _ _ _
After forming an ultra-thin tension coating of TiC or Ti(CN), annealing is performed in an H2 atmosphere at a temperature range of 600 to 1000℃, or after that, phosphate and colloidal silica, which are the main components, are added to the tension coating. This is a method of manufacturing an ultra-low iron loss unidirectional silicon steel sheet, which comprises forming an insulating coating. An experimental example that led to the success of this invention will be described. C: 0.045% by weight (hereinafter simply expressed as %), Si:
3.38%, Mn: 0.063%, Se: 0.021%, Sb: 0.025
%, Mo: Continuously cast silicon steel slab containing 0.025%
After heating at 1340°C for 4 hours, it was hot rolled to obtain a 2.0 mm thick hot rolled sheet. Thereafter, after uniform annealing at 900°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C for 3 minutes to obtain a final cold-rolled plate with a thickness of 0.23 mm. After decarburization and primary recrystallization annealing in wet hydrogen at 820℃, Al 2 O 3 (70%) and MgO are added to the surface of the steel sheet.
(30%) was applied as a main component, and then secondary recrystallization annealing was performed at 850°C for 50 hours and blunting annealing at 1200°C in dry hydrogen for 5 hours. After that, the steel plate surface was first pickled in 50°C HCl solution to remove oxides on the steel plate surface, and then chemically polished in a solution of 3% HF and H 2 O 2 to give the steel plate surface a center line average roughness of 0.05μ.
The following treatments were applied to two types of samples finished in a mirror-like state. (1) A CVD reaction was carried out on the steel plate surface for 20 hours at 750°C in a mixed gas atmosphere of TiCl 4 , H 2 and N 2 using a CVD equipment, and TiN was deposited on the steel plate surface.
(0.6 μm thick) was formed (a). After this CVD treatment, one part of the sample was further annealed at 750° C. for 10 hours in an H 2 gas atmosphere (b). (2) Similarly, CVD was performed on the steel plate surface at 850℃ for 5 hours in a mixed gas atmosphere of TiCl 4 , H 2 and CH 4 .
React to form TiC (0.5μm thick) on the steel plate surface
(c) caused. After this CVD treatment, one part of the sample was further annealed (d) at 700° C. for 15 hours in an H 2 gas atmosphere. The magnetic properties of the product obtained in this way are
Table 1 shows the surface condition and the analysis values of C and N in the steel in comparison with a unidirectional silicon steel plate (e) made using a normal procedure.

【表】 * ○ 良好
△ 不良
表1から明らかなように一方向性珪素鋼板の鏡
面化後CVD処理により鋼板表面上にTiNあるい
はTiCの極薄張力被膜を形成させた(a)〜(d)の条件
ではまず鉄損が0.64〜0.70W/Kgで(e)の鏡面仕上
及び極薄張力被膜を形成させない(通常工程処理
の比較材)条件の鉄損0.88W/Kgと比較して極端
に良好な鉄損を示すことが注目される。しかしな
がら(a)〜(d)の処理条件の中で(a)および(c)の製品の
鋼板表面状況はTiCl4の若干の残留によると見ら
れるべとつきが認められ表面酸化等鋼板への悪影
響が懸念されぬでもない。これに対して(b)および
(d)の処理条件では、H2雰囲気焼鈍の付加により
鋼板表面状況は良好で、しかも鉄損は0.64〜
0.65W/Kgと超低鉄損を示すことが注目される。 (作用) この発明に従い上記のような超低鉄損化が導か
れる理由は、完全に解明されたわけではないが、
鋼板表面上にTiN、TiCないしはTi(CN)の極
薄張力被膜を形成させた後のH2雰囲気焼鈍によ
り表1に示す鋼中のC、Nの分析値から明らかな
ように純化がさらに促進されたことと、H2焼鈍
によりより完全なTiN、TiCの被膜となつたため
一層の弾性張力が鋼板に加えられるようになつた
ためと考えられる。 このようにCVD処理により鋼板表面上にTiN、
TiC、Ti(CN)の極薄張力被膜を形成させた後、
さらにH2雰囲気中で焼鈍を施すことにより鉄損
の一層の向上と鋼板の表面状況の改善を図ること
ができる。 この発明による特性の向上は、鏡面鋼板と
CVD処理により形成させたTiN、TiC、Ti(C、
N)の極薄膜との間に強い密着性を保つた状態で
強い張力が珪素鋼板の面上に働いて従来比類のな
い超低鉄損が実現されるが、さらにその後H2
鈍を施すことにより鋼板の一層の純化が達成され
るのである。 ここに塑性的な微小ひずみの働きを利用するわ
けではないので、熱安定性に何らの問題なく、ひ
ずみ取り焼鈍の如き高温の熱履歴の下に電気・磁
気的特性に影響されるところがない。 ここに仕上表面の中心平均粗さは、Ra≦0.4μ
mの鏡面状態とすることが必要で、Ra>0.4μm
のとき、表面が粗いため、十分な鉄損低減が期待
できない。 次に張力絶縁被膜の膜厚は、0.05〜1μmの範囲
で適合し、0.05μmに満たないときは、必要な張
力付与に寄与し得ない一方、1μmをこえると、
占積率および密着性の不利が生じる。 次にこの発明による、一方向性珪素鋼板の製造
工程について説明する。 出発素材は従来公知の一方向性珪素鋼板素材成
分、例えば C:0.03〜0.05%、Si:2.50〜4.5%、Mn:
0.01〜0.2%、Mo:0.003〜0.1%、Sb:0.005〜
0.2%、S又はSeの1種あるいは2種合計で、
0.005〜0.05%を含有する組成 C:0.03〜0.08%、Si:2.0〜4.0%、S:
0.005〜0.05%、N:0.001〜0.01%、Al:0.01〜
0.06%、Sn:0.01〜0.5%、Cu:0.01〜0.3%、
Mn:0.01〜0.2%を含有する組成 C:0.03〜0.06%、Si:2.0〜4.0%、S:
0.005〜0.05%、B:0.0003〜0.0040%、N:
0.001〜0.01%、Mn:0.01〜0.2%を含有する組
成 の如きにおいて適用可能である。 次に熱延板は必要に応じて800〜1100℃の均一
化焼鈍を経て1回の冷間圧延で最終板厚とする1
回冷延法か又は、通常850℃から1050℃の中間焼
鈍をはさんでさらに冷延する2回冷延法にて、後
者の場合最初の圧下率は50%から80%程度、最終
の圧下率は50%から85%程度で0.15mmから0.35mm
の厚の最終冷延板厚とする。 最終冷延を終わり製品板厚に仕上げた鋼板は表
面脱脂後750℃から850℃の湿水素中で脱炭1次再
結晶焼鈍処理を施す。 その後鋼板表面にAl2O3、ZrO2あるいはTiO2
MgO等を主成分とする焼鈍分離剤を塗布する。
この発明の場合は、フオルステライトが形成され
る場合であつても形成されない場合であつても適
用可能である。仕上げ焼鈍後のフオルステライト
被膜を形成させないためにはAl2O3等の不活性焼
鈍分離剤の含有率を高めることが必要である。 その後2次再結晶焼鈍を行うが、この工程は
{110}<001>方位の2次再結晶粒を充分発達させ
るために施されるもので、通常箱焼鈍によつて直
ちに1000℃以上に昇温し、その温度に保持するこ
とによつて行われる。 この場合{110}<001>方位に、高度に揃つた
2次再結晶粒組織を発達させるためには820℃か
ら900℃の低温で保定焼鈍する方が有利であり、
そのほか例えば0.5〜15℃/hの昇温速度の徐熱
焼鈍でもよい。 2次再結晶焼鈍後の鈍化焼鈍は、乾水素中で
1100℃以上で1〜20時間焼鈍を行つて、鋼板の鈍
化を達成すること必要である。 次にこの発明では、純化焼鈍後に鋼板表面の酸
化物被膜を硫酸、硝酸または弗酸などの強酸によ
り除去する。またこの酸化物除去は機械研削によ
り行つてもよい。 この酸化物除去処理の後化学研磨あるいは電解
研磨等従来の手法により鋼板表面を鏡面状態つま
り中心線平均粗さ0.4μm以下に仕上げる。 その後鋼板表面をTiCl2、TiCl3又はTiCl4など
のTi化合物のガスに加えてH2とN2および/又は
CH4との混合ガス中でCVD処理することにより、
TiN、TiCあるいはTi(CN)の極薄張力被膜を
板面に形成させた後、600℃から1000℃の温度範
囲でH2雰囲気焼鈍することが必須条件である。 このH2雰囲気中での焼鈍温度は600℃より低い
とTiCl4等の反応が遅くなるため、また1000℃を
こえると鋼板の曲りが多くなり磁気特性が劣化す
るようになるため、600℃〜1000℃範囲にする必
要がある。 またH2中焼鈍時間は焼鈍温度によるが、通常
10分間〜50時間程度が適切である。 以上の処理を施した鋼板はさらにその上にりん
酸塩とコロイダルシリカを主成分とする絶縁コー
テイングを施すとさらに磁気特性が向上する。 上記のように処理された珪素鋼板は平たん化熱
処理を行うことができる。 (実施例) 実施例 1 C:0.043%、Si:3.42%、Mn:0.063%、
Mo:0.025%、Se:0.022%、Sb:0.025%を含有
する熱延板を、900℃で3分間の均一化焼鈍後、
950℃の中間焼鈍をはさんで2回の冷間圧延を行
つて0.23mm厚の最終冷延板とした。 その後820℃の湿水素中で脱炭焼鈍後鋼板表面
にAl2O3(70%)、MgO(30%)を主成分とする焼
鈍分離剤を塗布した後850℃で50時間、2次再結
晶焼鈍し、120℃で8時間乾水素中で純化焼鈍を
行つた。 その後酸洗により酸化被膜を除去後、3%HF
とH2O2液中で化学研磨して鏡面仕上げした。 その後CVD装置を用いてTiCl4とH2とN2ガス
雰囲気中で780℃で15時間のCVD反応により鋼板
表面上にTiN(0.65μm)の極薄張力被膜を形成さ
せた後、700℃で15時間の水素焼鈍を行なつた。
そのときの製品の磁気特性は次のようであつた。 B10:1.92T、W17/50:0.62W/Kg 実施例 2 C:0.058%、Si:3.36%、Mn:0.080%、Al:
0.025%、S:0.028%、N:0.0068%、Cu:0.1
%、Sn:0.05%を含有する熱延板を、1150℃で3
分間の均一化焼鈍後急冷処理を行い、その後300
℃の温度圧延を施して0.20mm厚の最終冷延板とし
た。 その後850℃の湿水素中で脱炭焼鈍後、表面に
Al2O3(80%)、MgO(20%)を主成分とする焼鈍
分離剤を塗布した後850℃から1150℃まで8℃/
hrで昇温して2次再結晶させた後、1200℃で8時
間乾水素中で純化焼鈍を行つた。 その後酸洗により酸化物被膜を除去し、ついで
3%HFとH2O2液中で化学研磨して鏡面仕上げし
た。 その後CVD装置を用いてTiCl4とH2とN2
CH4混合ガス中で800℃で17時間のCVD反応によ
り鋼板表面上にTi(C、N)の極薄張力被膜を形
成させた後、800℃で10時間のH2中焼鈍を施し
た。その後この表面上にさらにりん酸塩とコロイ
ダルシリカを主成分とする絶縁コーテイング処理
した。そのときの製品の磁気特性は次のようであ
つた。 B10:1.92T、W17/50:0.59W/Kg (発明の効果) 上掲各発明とも、CVD法の適用によるTiC、
TiN又はTi(C、N)からなる極薄張力被膜の特
性を最大限度に発現させることにあわせて鋼板の
純化促進にも寄与して、一方向性珪素鋼板の超低
鉄損化に有用である。
[Table] * ○ Good △ Bad As is clear from Table 1, an ultra-thin tension film of TiN or TiC was formed on the surface of the unidirectional silicon steel plate by CVD treatment after mirror polishing (a) to (d) Under the conditions, the iron loss is 0.64 to 0.70 W/Kg, which is extremely extreme compared to the iron loss of 0.88 W/Kg under the condition (e) where the mirror finish and ultra-thin tension coating are not formed (comparison material processed in the normal process). It is noteworthy that it shows good iron loss. However, under the treatment conditions (a) to (d), the steel plate surface condition of products (a) and (c) was found to be sticky, which appears to be due to some residual TiCl 4 , and there is no adverse effect on the steel plate such as surface oxidation. There is no cause for concern. On the other hand, (b) and
Under the treatment conditions (d), the surface condition of the steel plate is good due to the addition of H2 atmosphere annealing, and the iron loss is 0.64~
It is noteworthy that it exhibits an ultra-low iron loss of 0.65W/Kg. (Operation) The reason why the above-mentioned ultra-low iron loss is achieved according to this invention has not been completely elucidated, but
H2 atmosphere annealing after forming an ultra-thin tension film of TiN, TiC or Ti(CN) on the surface of the steel sheet further promotes purification as is clear from the analytical values of C and N in the steel shown in Table 1. This is thought to be because the H 2 annealing resulted in a more complete coating of TiN and TiC, which enabled more elastic tension to be applied to the steel sheet. In this way, CVD treatment creates TiN on the surface of the steel plate.
After forming an ultra-thin tension film of TiC and Ti(CN),
Furthermore, by performing annealing in an H 2 atmosphere, it is possible to further improve iron loss and improve the surface condition of the steel sheet. The improvement in properties achieved by this invention is similar to that of mirror-finished steel sheets.
TiN, TiC, Ti(C,
A strong tension is applied to the surface of the silicon steel sheet while maintaining strong adhesion with the ultra-thin film of N), achieving ultra - low iron loss unparalleled in the past. As a result, further purification of the steel plate is achieved. Since the function of plastic microstrain is not used here, there is no problem with thermal stability, and the electrical and magnetic properties are not affected by high-temperature thermal history such as strain relief annealing. Here, the center average roughness of the finished surface is Ra≦0.4μ
It is necessary to have a mirror surface state of Ra>0.4μm.
In this case, sufficient iron loss reduction cannot be expected because the surface is rough. Next, the thickness of the tension insulating film is suitable within the range of 0.05 to 1 μm; if it is less than 0.05 μm, it will not be able to contribute to providing the necessary tension, while if it exceeds 1 μm,
This results in disadvantages in space factor and adhesion. Next, the manufacturing process of a unidirectional silicon steel plate according to the present invention will be explained. The starting material has conventionally known unidirectional silicon steel plate material components, such as C: 0.03-0.05%, Si: 2.50-4.5%, Mn:
0.01~0.2%, Mo: 0.003~0.1%, Sb: 0.005~
0.2%, total of one or two types of S or Se,
Composition containing 0.005-0.05% C: 0.03-0.08%, Si: 2.0-4.0%, S:
0.005~0.05%, N: 0.001~0.01%, Al: 0.01~
0.06%, Sn: 0.01~0.5%, Cu: 0.01~0.3%,
Composition containing Mn: 0.01-0.2% C: 0.03-0.06%, Si: 2.0-4.0%, S:
0.005~0.05%, B: 0.0003~0.0040%, N:
It is applicable to compositions containing 0.001 to 0.01% and Mn: 0.01 to 0.2%. Next, the hot-rolled sheet is subjected to uniform annealing at 800 to 1100℃ as necessary, and then cold-rolled once to achieve the final thickness1.
Double cold rolling method or double cold rolling method, which usually involves intermediate annealing at 850℃ to 1050℃ and then further cold rolling.In the latter case, the initial rolling reduction is about 50% to 80%, and the final rolling reduction is about 50% to 80%. The rate is about 50% to 85% and 0.15mm to 0.35mm
The final cold-rolled sheet thickness shall be . After the final cold rolling, the steel plate finished to the product thickness is surface degreased and then subjected to a decarburization primary recrystallization annealing treatment in wet hydrogen at 750°C to 850°C. After that, Al 2 O 3 , ZrO 2 or TiO 2 was applied to the surface of the steel plate.
Apply an annealing separator mainly composed of MgO, etc.
The present invention is applicable regardless of whether forsterite is formed or not. In order to prevent the formation of a forsterite film after final annealing, it is necessary to increase the content of an inert annealing separator such as Al 2 O 3 . After that, secondary recrystallization annealing is performed, but this step is carried out to sufficiently develop secondary recrystallized grains with {110}<001> orientation, and is usually box annealed to immediately raise the temperature to 1000℃ or higher. This is done by heating and holding at that temperature. In this case, in order to develop a highly uniform secondary recrystallized grain structure in the {110}<001> orientation, it is advantageous to perform retention annealing at a low temperature of 820°C to 900°C.
In addition, slow heat annealing at a heating rate of 0.5 to 15° C./h may also be used. The blunting annealing after the secondary recrystallization annealing is performed in dry hydrogen.
It is necessary to perform annealing at 1100°C or higher for 1 to 20 hours to achieve dulling of the steel plate. Next, in the present invention, after purification annealing, the oxide film on the surface of the steel sheet is removed using a strong acid such as sulfuric acid, nitric acid, or hydrofluoric acid. Further, this oxide removal may be performed by mechanical grinding. After this oxide removal treatment, the surface of the steel plate is finished to a mirror-like state, that is, to a center line average roughness of 0.4 μm or less, by a conventional method such as chemical polishing or electrolytic polishing. After that, the steel plate surface is heated with H 2 and N 2 and/or Ti compound gas such as TiCl 2 , TiCl 3 or TiCl 4 .
By CVD treatment in a mixed gas with CH 4 ,
After forming an ultra-thin tension coating of TiN, TiC or Ti(CN) on the plate surface, it is essential to annealing it in an H 2 atmosphere at a temperature range of 600°C to 1000°C. If the annealing temperature in this H 2 atmosphere is lower than 600℃, the reaction of TiCl 4 etc. will be slow, and if it exceeds 1000℃, the steel plate will bend more and the magnetic properties will deteriorate. Must be in the 1000℃ range. Also, the annealing time in H2 depends on the annealing temperature, but usually
Approximately 10 minutes to 50 hours is appropriate. The magnetic properties of the steel sheet treated as described above are further improved by applying an insulating coating containing phosphate and colloidal silica as the main components. The silicon steel plate treated as described above can be subjected to flattening heat treatment. (Example) Example 1 C: 0.043%, Si: 3.42%, Mn: 0.063%,
After homogenizing a hot rolled sheet containing Mo: 0.025%, Se: 0.022%, and Sb: 0.025% at 900°C for 3 minutes,
Cold rolling was performed twice with intermediate annealing at 950°C to obtain a final cold rolled sheet with a thickness of 0.23 mm. After decarburization annealing in wet hydrogen at 820°C, an annealing separator containing Al 2 O 3 (70%) and MgO (30%) as main components was applied to the surface of the steel sheet, followed by secondary re-treatment at 850°C for 50 hours. Crystal annealing was performed, followed by purification annealing in dry hydrogen at 120°C for 8 hours. After removing the oxide film by pickling, 3% HF
and chemical polishing in H 2 O 2 solution to give a mirror finish. After that, an ultra-thin tension film of TiN (0.65μm) was formed on the steel plate surface by a CVD reaction at 780℃ for 15 hours in a TiCl 4 , H 2 and N 2 gas atmosphere using a CVD device, and then heated at 700℃. Hydrogen annealing was performed for 15 hours.
The magnetic properties of the product at that time were as follows. B 10 : 1.92T, W 17/50 : 0.62W/Kg Example 2 C: 0.058%, Si: 3.36%, Mn: 0.080%, Al:
0.025%, S: 0.028%, N: 0.0068%, Cu: 0.1
%, Sn: 0.05% hot-rolled sheet at 1150℃
After uniform annealing for 30 minutes, rapid cooling treatment is performed, and then 300 minutes
The final cold-rolled sheet with a thickness of 0.20 mm was obtained by rolling at a temperature of ℃. After decarburization annealing in wet hydrogen at 850℃, the surface
After applying an annealing separator mainly composed of Al 2 O 3 (80%) and MgO (20%), the temperature was increased from 850℃ to 1150℃ at 8℃/
After secondary recrystallization by raising the temperature to hr, purification annealing was performed in dry hydrogen at 1200°C for 8 hours. Thereafter, the oxide film was removed by pickling, and then chemical polishing was performed in a 3% HF and H 2 O solution to give a mirror finish. Then use CVD equipment to combine TiCl 4 , H 2 and N 2.
After forming an ultra-thin tension film of Ti (C, N) on the surface of the steel sheet by CVD reaction at 800°C for 17 hours in a CH 4 mixed gas, annealing was performed in H 2 at 800°C for 10 hours. Thereafter, this surface was further treated with an insulating coating mainly composed of phosphate and colloidal silica. The magnetic properties of the product at that time were as follows. B 10 : 1.92T, W 17/50 : 0.59W/Kg (Effect of the invention) Each of the above inventions uses TiC by applying the CVD method,
In addition to maximizing the properties of the ultra-thin tensile coating made of TiN or Ti (C, N), it also contributes to the purification of steel sheets, and is useful for ultra-low core loss of unidirectional silicon steel sheets. be.

Claims (1)

【特許請求の範囲】 1 仕上焼鈍済みの一方向性珪素鋼板の表面上の
酸化物を除去し、中心性平均粗さ0.4μm以下の鏡
面状態に仕上げた後、CVD処理により、鋼板表
面上にTiN、TiCないしはTi(CN)の極薄張力
被膜を形成させ、その後、600〜1000℃の温度範
囲でH2雰囲気中における焼鈍を加えることを特
徴とする超低鉄損一方向性珪素鋼板の製造方法。 2 仕上焼鈍済みの一方向性珪素鋼板の表面上の
酸化物を除去し、中心性平均粗さ0.4μm以下の鏡
面状態に仕上げた後、CVD処理により鋼板表面
上にTiN、TiCないしはTi(CN)の極薄張力被
膜を形成させ、その後、600〜1000℃の温度範囲
でH2雰囲気中における焼鈍を加え、さらに該張
力被膜上にりん酸塩とコロイダルシリカを主成分
とする絶縁被膜を被成することを特徴とする超低
鉄損一方向性珪素鋼板の製造方法。
[Claims] 1. After removing oxides on the surface of a finish-annealed unidirectional silicon steel sheet and finishing it to a mirror-like state with an average central roughness of 0.4 μm or less, CVD treatment is applied to the surface of the steel sheet. An ultra-low iron loss unidirectional silicon steel sheet is produced by forming an ultra-thin tensile film of TiN, TiC or Ti(CN), and then annealing it in an H2 atmosphere at a temperature range of 600 to 1000℃. Production method. 2 After removing the oxides on the surface of the finish-annealed unidirectional silicon steel sheet and finishing it to a mirror-like state with an average central roughness of 0.4 μm or less, TiN, TiC or Ti(CN) is applied to the surface of the steel sheet by CVD treatment. ) is formed, and then annealed in a H 2 atmosphere at a temperature range of 600 to 1000°C, and an insulating film containing phosphate and colloidal silica as main components is further coated on the tension film. A method for producing an ultra-low core loss unidirectional silicon steel sheet.
JP16123285A 1985-02-22 1985-07-23 Manufacture of ultra-low iron loss unidirectional silicon steel plate Granted JPS6222409A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16123285A JPS6222409A (en) 1985-07-23 1985-07-23 Manufacture of ultra-low iron loss unidirectional silicon steel plate
PCT/JP1986/000087 WO1986004929A1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
DE8686904726T DE3673290D1 (en) 1985-02-22 1986-02-21 MANUFACTURING METHOD FOR UNIDIRECTIONAL SILICON STEEL PLATE WITH EXCEPTIONAL IRON LOSS.
US06/907,734 US4713123A (en) 1985-02-22 1986-02-21 Method of producing extra-low iron loss grain oriented silicon steel sheets
EP86904726A EP0215134B1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16123285A JPS6222409A (en) 1985-07-23 1985-07-23 Manufacture of ultra-low iron loss unidirectional silicon steel plate

Publications (2)

Publication Number Publication Date
JPS6222409A JPS6222409A (en) 1987-01-30
JPH0337844B2 true JPH0337844B2 (en) 1991-06-06

Family

ID=15731142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16123285A Granted JPS6222409A (en) 1985-02-22 1985-07-23 Manufacture of ultra-low iron loss unidirectional silicon steel plate

Country Status (1)

Country Link
JP (1) JPS6222409A (en)

Also Published As

Publication number Publication date
JPS6222409A (en) 1987-01-30

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS6335684B2 (en)
JPS6332849B2 (en)
JPS61201732A (en) Manufacture of grain oriented silicon steel sheet having thermal stability and ultralow iron loss
JPH0337844B2 (en)
JPH0413426B2 (en)
JPH0577749B2 (en)
JP2719266B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JPS6354767B2 (en)
JPH075973B2 (en) Manufacturing method of ultra-low iron loss unidirectional silicon steel sheet
JPS6332850B2 (en)
JPS6335685B2 (en)
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH0327631B2 (en)
JPH0327633B2 (en)
JPH0327632B2 (en)
JPH0335377B2 (en)
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JP2678858B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPH0337845B2 (en)
JPH0374488B2 (en)
JPS6324017A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH0374486B2 (en)
JPH0699822B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet