JPS6335684B2 - - Google Patents

Info

Publication number
JPS6335684B2
JPS6335684B2 JP60074462A JP7446285A JPS6335684B2 JP S6335684 B2 JPS6335684 B2 JP S6335684B2 JP 60074462 A JP60074462 A JP 60074462A JP 7446285 A JP7446285 A JP 7446285A JP S6335684 B2 JPS6335684 B2 JP S6335684B2
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
ultra
steel sheet
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60074462A
Other languages
Japanese (ja)
Other versions
JPS61235514A (en
Inventor
Masao Iguchi
Toshihiko Funabashi
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60074462A priority Critical patent/JPS61235514A/en
Priority to US06/907,734 priority patent/US4713123A/en
Priority to DE8686904726T priority patent/DE3673290D1/en
Priority to EP86904726A priority patent/EP0215134B1/en
Priority to PCT/JP1986/000087 priority patent/WO1986004929A1/en
Publication of JPS61235514A publication Critical patent/JPS61235514A/en
Publication of JPS6335684B2 publication Critical patent/JPS6335684B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 一方向性珪素鋼板の電気、磁気的特性の改善、
なかでも、鉄損の低減に係わる極限的な要請を満
たそうとする近年来の目覚ましい開発努力は、逐
次その実を挙げつつあるが、その実施に伴う重大
な弊害として、一方向性珪素鋼板の使用に当たつ
ての加工、組立てを経たのちいわゆるひずみ取り
焼鈍がほどこされた場合に、特性劣化の随伴を不
可避に生じて、使途についての制限を受ける不利
が指摘される。 この明細書では、ひずみ取り焼鈍のような高温
の熱履歴を経ると否とに拘わらず、上記要請を有
利に充足し得る新たな方途を拓くことについての
開発研究の成果に関連して以下に述べる。 さて一方向性珪素鋼板は、よく知られていると
おり製品の2次再結晶粒を(100)〔001〕、すなわ
ちゴス方位に、高度に集積させたもので、主とし
て変圧器その他の電気機器の鉄心として使用され
電気・磁気的特性として製品の磁束密度(B10
で代表される)が高く、鉄損(W17/50値で代表さ
れる)の低いことが要求される。 この一方向性珪素鋼板は複雑多岐にわたる工程
を経て製造されるが、今までにおびただしい発
明・改善が加えられ、今日では板厚0.30mmの製品
の磁気特性がB101.90T以上、W17/501.05W/Kg以
下、また板厚0.23mmの製品の磁気特性がB101.89T
以上、W17/500.90W/Kg以下の超低鉄損一方向性
珪素鋼板が製造されるようになつて来ている。 特に最近では省エネの見地から電力損失の低減
を至上とする要請が著しく強まり、欧米では損失
の少ない変圧器を作る場合に鉄損の減少分を金額
に換算して変圧器価格に上積みする「ロス・エバ
リユエーシヨン」(鉄損評価)制度が普及してい
る。 (従来の技術) このような状況下において最近、一方向性珪素
鋼板の仕上焼鈍後の鋼板表面に圧延方向にほぼ直
角方向でのレーザー照射により局部微少ひずみを
導入して磁区を細分化し、もつて鉄損を低下させ
ることが提案された(特公昭57−2252号、特公昭
57−53419号、特公昭58−26405号及び特公昭58−
26406号公報参照)。 この磁区細分化技術はひずみ取り焼鈍を施さな
い、積鉄心向けトランス材料として効果的である
が、みずみ取り焼鈍を施す、主として巻鉄心トラ
ンス材料にあつては、レーザー照射によつて折角
導入された局部微少ひずみが焼鈍処理により開放
されて磁区幅が広くなるため、レーザー照射効果
が失われるという欠点がある。 一方これより先に特公昭52−24499号公報にお
いては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板
表面を鏡面仕上げするか又はその鏡面仕上げ面上
に金属薄めつきやさらにその上に絶縁被膜を塗布
焼付けすることによる、超低鉄損一方向性珪素鋼
板の製造方法が提案されている。 しかしながらこの鏡面仕上げによる鉄損向上手
法は、工程的に採用するには、著しいコストアツ
プになる割りに鉄損低減への寄与が充分でない
上、とくに鏡面仕上後に不可欠な絶縁被膜を塗布
焼付した後の密着性に問題があるため、現在の製
造工程において採用されるに至つてはいない。 また特公昭56−4150号公報においても鋼板表面
を鏡面仕上げした後、酸化物系セラミツクス薄膜
を蒸着する方法が提案されている。しかしながら
この方法も600℃以上の高温焼鈍を施すと鋼板と
セラミツクス層とがはく離するため、実際の製造
工程では採用できない。 (発明が解決しようとする問題点) 発明者らは上記した鏡面仕上による鉄損向上の
実効をより有利に引き出すこと、とくに今日の省
エネ材料開発の観点では上記したごときコストア
ツプの不利を凌駕する特性、なかでも高温処理で
も特性劣化を伴うことなくして絶縁層の密着性、
耐久性の問題を克服することこそが肝要と考え、
この基本認識に立脚して、鏡面仕上後鋼板処理方
法に根本的な再検討を加えてこの発明に到達し
た。 (問題点を解決するための手段) 種々検討した結果、 C:0.04〜0.05wt%(以下単に%で示す)、
Si:2.5〜4.0%、Mn:0.01〜0.2%、Mo:0.003
〜0.1%、Sb:0.005〜0.2%、S及びSeのうち
いずれか1種又は2種合計で0.005〜0.05%を
含み残部実質的にFeからなる組成、 C:0.04〜0.08%、Si:2.0〜4.0%、Mn:
0.01〜0.2%、sol Al:0.005〜0.06%、S:
0.005〜0.05%、N:0.001〜0.01%、Sn:0.01〜
0.5%、Cu:0.01〜0.3%を含み残部実質的にFe
からなる組成、 C:0.03〜0.06%、Si:2.0〜4.0%、Mn:
0.01〜0.2%、S:0.005〜0.05%、B:0.0003〜
0.004%、N:0.001〜0.01%を含み、残部実質
的にFeからなる組成、 C:0.04〜0.08%、Si:2.0〜4.0%、Mn:
0.01〜0.2%、Sol Al:0.005〜0.06%、S:
0.005〜0.05%、N:0.001〜0.01%を含み、残
部実質的にFeからなる組成 の珪素鋼スラブを熱間圧延して得られた熱延板
に、1回又は中間焼鈍をはさむ2回の冷間圧延を
施して最終板厚にしてから、脱炭・1次再結晶焼
鈍を施したのち2次再結晶焼鈍及び純化焼鈍を含
む最終仕上焼鈍を施した方向性珪素鋼板の表面上
の酸化物を除去した後、CVD、イオンプレーテ
ングもしくはイオンインプランテーシヨンにより
Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Co、
Ni、Al、B、Siの窒化物及び/又は炭化物のう
ちから選ばれる1種以上4種以下から成り、それ
らの鉄との混合相を介し鋼板表面に強固に被着し
た極薄張力被膜を形成させる(たとえば第1発
明)、さらにその上にりん酸塩とコロイダルシリ
カを主成分とする絶縁被膜を形成させる(たとえ
ば第2〜4発明)、また極薄張力被膜を形成させ
た後に、鋼板の圧延方向を横切る向きにレーザー
照射する(たとえば第5発明)、さらにその上に
低温絶縁コーテイング処理する(たとえば第6発
明) の手順に従つて有利に超低鉄損一方向性珪素鋼板
が得られることを発見した。 これより先に発明者らは一方向性珪素鋼の仕上
焼鈍板を鏡面研摩した後、上記の窒化物、炭化物
の極薄張力被膜を形成することによつて低鉄損一
方向性珪素鋼板の製造が可能であることを究明し
たが、この場合化学研摩もしくは電解研摩によつ
て鋼板表面を鏡面仕上げする必要があるため、製
造コストが非常に高価になるという欠点があつた
のに反してこの発明では、費用の嵩む研摩工程を
経ないで、つまり仕上げ焼鈍済みの鋼板の表面上
の酸化物を除去、例えば表面を酸洗又は機械的に
研削し、引続いて、CVD、イオンプレーテング
あるいはイオンインプランテーシヨンにより上記
窒化物、炭化物の極薄張力被膜を形成させること
によつて、超低鉄損の一方向性珪素鋼板がより安
価に得られる手段を確立したものである。 上記各発明の成功が導かれた具体的な実験に従
つて説明を進める。 C 0.046%、Si 3.38%、Mn 0.068%、Se
0.022%、Sb 0.025%、及びMo 0.025%を含有し
残部実質的にFeよりなる珪素鋼連鋳スラブを、
1340℃で4時間加熱後熱間圧延して2.0mm厚の熱
延板とした。 その後900℃で3分間の均一化焼鈍後、950℃で
3分間の中間焼鈍をはさむ2回の冷間圧延を施し
て0.23mm厚の最終冷延板とした。 その後820℃の湿水素雰囲気中で脱炭・一次再
結晶焼鈍を施した後、鋼板表面に不活性Al2O3
(80%)とMgO(20%)から成る焼鈍分離剤を塗
布し、ついで850℃で50時間の2次再結晶焼鈍と、
1200℃で乾水素中5時間の純化焼鈍とを施した。
かくして得られた仕上焼鈍済みの一方向性珪素鋼
板コイルを6区分しそれぞれについて、その後軽
く酸洗(10%のHCl液中)して鋼板表面の酸化物
を除去した。
(Industrial application field) Improvement of electrical and magnetic properties of unidirectional silicon steel sheets,
In particular, the remarkable development efforts made in recent years to meet the extreme requirements of reducing iron loss are gradually bearing fruit, but one serious problem associated with their implementation is the use of grain-oriented silicon steel sheets. It has been pointed out that when so-called strain-relief annealing is applied after initial processing and assembly, deterioration of properties inevitably occurs, resulting in restrictions on usage. In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (100) [001], or Goss, orientation, and are mainly used in transformers and other electrical equipment. Used as an iron core, the product is required to have high electrical and magnetic characteristics such as high magnetic flux density (represented by the B 10 value) and low iron loss (represented by the W 17/50 value). This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of 0.30mm have magnetic properties of B 10 1.90T or more, W 17/ 50 1.05W/Kg or less, and the magnetic properties of products with a plate thickness of 0.23mm are B 10 1.89T
As described above, ultra-low core loss unidirectional silicon steel sheets with a W 17/50 of 0.90 W/Kg or less are being manufactured. In particular, recently there has been a marked increase in the demand for reducing power loss as a top priority from the standpoint of energy conservation.・The "Evaluation" (iron loss evaluation) system is becoming widespread. (Prior art) Under these circumstances, recently, a method has been developed in which micro-strain is introduced into the surface of a unidirectional silicon steel plate after final annealing by laser irradiation in a direction approximately perpendicular to the rolling direction to subdivide the magnetic domains. It was proposed to reduce iron loss by
No. 57-53419, Special Publication No. 58-26405 and Special Publication No. 58-
(See Publication No. 26406). This magnetic domain refining technology is effective for transformer materials for laminated cores that are not subjected to strain relief annealing, but for transformer materials for rolled cores that are subjected to strain relief annealing, it is difficult to introduce by laser irradiation. The disadvantage is that the laser irradiation effect is lost because the local microstrain is released by the annealing treatment and the magnetic domain width becomes wider. On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel plate after finish annealing was mirror-finished, or the mirror-finished surface was coated with metal thinning or an insulating coating was applied thereon. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by coating and baking has been proposed. However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective, as it does not contribute enough to reducing iron loss at the cost of a significant increase in costs. Due to problems with adhesion, it has not been adopted in current manufacturing processes. Japanese Patent Publication No. 56-4150 also proposes a method in which a thin film of oxide ceramics is deposited after mirror-finishing the surface of a steel plate. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600°C or higher. (Problems to be Solved by the Invention) The inventors have sought to take advantage of the above-mentioned effect of improving iron loss due to the mirror finish, and in particular, from the viewpoint of the development of today's energy-saving materials, the inventors have developed a characteristic that outweighs the disadvantage of increased cost as described above. , especially the adhesion of the insulating layer without deteriorating its properties even during high-temperature treatment.
We believe that it is important to overcome the problem of durability,
Based on this basic understanding, we fundamentally reexamined the method of processing steel sheets after mirror finishing and arrived at this invention. (Means for solving the problem) As a result of various studies, C: 0.04 to 0.05 wt% (hereinafter simply expressed as %),
Si: 2.5~4.0%, Mn: 0.01~0.2%, Mo: 0.003
~0.1%, Sb: 0.005-0.2%, a total of 0.005-0.05% of any one or both of S and Se, and the remainder substantially consists of Fe, C: 0.04-0.08%, Si: 2.0 ~4.0%, Mn:
0.01~0.2%, sol Al: 0.005~0.06%, S:
0.005~0.05%, N: 0.001~0.01%, Sn: 0.01~
0.5%, Cu: 0.01~0.3%, the balance is essentially Fe
Composition consisting of C: 0.03-0.06%, Si: 2.0-4.0%, Mn:
0.01~0.2%, S: 0.005~0.05%, B: 0.0003~
0.004%, N: 0.001 to 0.01%, the remainder substantially consisting of Fe, C: 0.04 to 0.08%, Si: 2.0 to 4.0%, Mn:
0.01~0.2%, Sol Al: 0.005~0.06%, S:
A hot rolled sheet obtained by hot rolling a silicon steel slab having a composition of 0.005 to 0.05%, N: 0.001 to 0.01%, and the remainder substantially consisting of Fe is subjected to one or two intermediate annealing steps. Oxidation on the surface of a grain-oriented silicon steel sheet that has been cold rolled to the final thickness, decarburized and primary recrystallized annealed, and then subjected to final finishing annealing including secondary recrystallization annealing and purification annealing. After removing the material, use CVD, ion plating or ion implantation.
Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Co,
An ultra-thin tensile coating made of one or more selected from Ni, Al, B, and Si nitrides and/or carbides, and firmly adhered to the steel plate surface through a mixed phase with iron. (for example, the first invention), further forming thereon an insulating film containing phosphate and colloidal silica as main components (for example, the second to fourth inventions), and after forming an ultra-thin tensile film, An ultra-low core loss unidirectional silicon steel sheet can be advantageously obtained by following the steps of irradiating the laser beam in a direction transverse to the rolling direction (for example, the fifth invention) and further applying a low-temperature insulation coating thereon (for example, the sixth invention). I discovered that it can be done. Prior to this, the inventors mirror-polished a final annealed unidirectional silicon steel plate, and then formed an ultra-thin tensile coating of nitrides and carbides to create a low core loss unidirectional silicon steel plate. We found that it is possible to manufacture the steel sheet, but in this case, the surface of the steel plate must be polished to a mirror finish by chemical polishing or electrolytic polishing, so the manufacturing cost is extremely high. In the invention, the oxides on the surface of the finish annealed steel sheet are removed without an expensive polishing step, e.g. by pickling or mechanically grinding the surface, followed by CVD, ion plating or By forming an ultra-thin tensile film of the above-mentioned nitrides and carbides by ion implantation, we have established a means to obtain grain-oriented silicon steel sheets with ultra-low core loss at a lower cost. The explanation will proceed according to specific experiments that led to the success of each of the above inventions. C 0.046%, Si 3.38%, Mn 0.068%, Se
A continuously cast silicon steel slab containing 0.022%, Sb 0.025%, and Mo 0.025%, with the remainder substantially consisting of Fe,
After heating at 1340°C for 4 hours, it was hot rolled to obtain a 2.0 mm thick hot rolled sheet. Thereafter, after uniform annealing at 900°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C for 3 minutes to obtain a final cold-rolled plate with a thickness of 0.23 mm. After decarburization and primary recrystallization annealing in a wet hydrogen atmosphere at 820°C, inert Al 2 O 3 is added to the surface of the steel sheet.
(80%) and MgO (20%), followed by secondary recrystallization annealing at 850°C for 50 hours.
Purification annealing was performed at 1200°C in dry hydrogen for 5 hours.
The final annealed unidirectional silicon steel sheet coil thus obtained was divided into six sections, and each section was then lightly pickled (in a 10% HCl solution) to remove oxides on the surface of the steel sheet.

【表】 その後表1に示す(a)〜(f)の区分に従い、次のよ
うに処理した。 (a):イオンプレーテイング装置を用いて700℃の
試料温度の下にTiNよりなる0.5μmの極薄張力
被膜を形成させた。 (b):その後この上にりん酸塩をコロイダルシリカ
を主成分とするコーテイング液で絶縁被膜を形
成させた。 (c):またこれとは別にTiNの極薄張力被膜を形
成させた後レーザー照射(レーザー照射条件:
YAGレーザーを使用し、レーザー照射走査痕
間隔=1=6mm幅、レーザースポツト当たりの
エネルギー:4.0×10-3J、スポツト直径:0.2
mm、スボツトの中心間間隔:0.5mmで行なつた)
した。 (d):その後りん酸塩とコロイダルシリカを主成分
とするコーテイング液で600℃で1分間の焼付
処理を行なつた。 これらの製品の磁気特性を各工程処理別に、 (e):仕上焼鈍後の酸洗処理及び (g):通常工程条件による比較材 の成績を対比し表1にまとめて示す。 表1から明らかなように第1〜第4各発明に従
う(a)〜(d)の各処理による磁気特性は、B10が1.91
〜1.90Tで、W17/50が0.82〜0.75W/Kgと極端に良
好であることが注目される。 これに対して(e)の条件の酸洗処理後の酸化物を
除去しただけの磁気特性は、B10が1.89T、W17/50
が0.94W/Kgで、通常工程材(f)のB10が1.89T、
W17/50が0.89W/Kgであるのに比し極端な劣化が
みられ、何れも(a)〜(d)と較べてはるかに悪い。 以上このようにこの発明では仕上焼鈍後の鋼板
表面上の酸化被膜を酸洗又は機械的研削により除
去し、その鋼板表面上に極薄の窒化物、炭化物と
地鉄との混合相を介し仕上表面上に強固に被着し
た極薄張力被膜を形成させることにより超低鉄損
一方向性珪素鋼板を製造することができ、この製
造方法は仕上焼鈍後の鋼板表面を鏡面化しなくて
もよいため製造コストが安価で、磁気特性の良好
な一方向性珪素鋼板の製造が可能であることを示
したものである。 (作用) 上に述べたように仕上焼鈍後に表面の酸化物を
除去した後、CVD、イオンプレーテイングもし
くはイオンインプランテーシヨンより極薄張力被
膜を形成させることによつて超低鉄損の一方向性
珪素鋼板の製造が可能である。またこの発明では
この極薄張力被膜の上にレーザー処理により局所
歪を導入することによつても超低鉄損の一方向性
珪素鋼板を製造することができる。 以上の実験結果は、TiNよりなる張力被膜に
ついて専ら述べたが張力被膜はこのほかにもTi、
Zr、V、Nb、Ta、Cr、Mo、Co、Ni、Mn、
Al、B、W、Siの窒化物及び/又は炭化物のう
ちから選ばれる1種以上4種以下よりなる場合に
あつても、TiNについてのべたところをほぼ同
様な作用効果をあらわし、何れもこの発明の目的
に適合する。 次に、一方向性珪素鋼板の製造工程について一
般的な説明を含めて詳しく述べる。 まず、この発明において対象とする一方向性珪
素鋼板用素材の成分組成を限定する理由を以下に
述べる。 Cは、熱延あるいは冷延時に微細で均一な組織
制御に重要な役割りを果す元素であるが、インヒ
ビターに応じて下記のとおりに限定される。 Al−N−S系及びAl−N−Sn−Cu系では、
0.08%を超えて多くなると2次再結晶焼鈍前の脱
炭焼鈍時に長時間を要し生産性を低下させると共
に、脱炭も不充分となつて磁気特性の劣化を生
じ、一方Cが少なくなつてくると熱延集合組織制
御が困難となつて大きな伸長粒が形成されるよう
になり磁気特性が劣化してくるので、良好な鉄損
特性を得るためには、0.04%以上とする必要があ
る。 次にMo−S−Sb系、Mo−Se−Sb系及びMo
−S−Se−Sb系では、0.05%を超えて多くなる
と2次再結晶焼鈍前の脱炭焼鈍時に長時間を要し
生産性を低下させると共に、脱炭も不充分となつ
て磁気特性の劣化を生じ、一方Cが少なくなつて
くると熱延集合組織制御が困難となつて大きな伸
長粒が形成されるようになり磁気特性が劣化して
くるので、良好な鉄損特性を得るためには、0.04
%以上とする必要がある。 また、B−N−S系では0.06%を超えて多くな
ると2次再結晶焼鈍前の脱炭焼鈍時に長時間を要
し生産性を低下させると共に、脱炭も不充分とな
つて磁気特性の劣化を生じ、一方Cが少なくなつ
てくると熱延集合組織制御が困難となつて大きな
伸長粒が形成されるようになり磁気特性が劣化し
てくるので、良好な鉄損特性を得るためには、
0.03%以上とする必要がある。 Siは磁気特性、特に鉄損特性にとつて重要な元
素であるが、インヒビターに応じて下記のとおり
に限定される。 Al−N−S系、Al−N−Sn−Cu系及びB−N
−S系では2.0%より少ないと電気抵抗が低く渦
流損失増大に基づいて鉄損値が大きくなり、一方
4.0%より多いと冷延の際に脆性割れを生じ易い
ためSiは2.0〜4.0%の範囲内にする必要がある。 Mo−S−Sb系、Mo−Se−Sb系及びMo−S
−Se−Sb系では、2.5%より少ないと電気抵抗が
低く渦流損失増大に基づいて鉄損値が大きくな
り、一方4.0%より多いと冷延の際に脆性割れを
生じ易いためSiは2.5〜4.0%の範囲内にする必要
がある。 Mnは、{110}<001>方位の2次再結晶粒の生
成を左右するインヒビターすなわち分散析出相と
してのMnSあるいはMnSeの析出に不可欠な元素
である。Mn量が0.01%未満では、1次再結晶粒
成長を抑制するためのMnSあるいはMnSeの絶対
量が不足し不完全2次再結晶を起す。一方Mn量
が0.2%を超えると、スラブ加熱時においてMnS
あるいはMnSeの解離固溶が困難となり、また仮
に解離固溶が行われたとしても、熱間圧延時に析
出する分散析出相が粗大化し易く、インヒビター
としての最適なサイズ分布が損なわれて磁気特性
が劣化する。これらの理由から、Mnは0.01〜0.2
%の範囲に限定した。 Sb及びMoはいずれも、後述のS、Seの併存す
ることにより2次再結晶の1次粒の成長を抑制し
{110}<001>方位の2次再結晶粒の成長を促進さ
せ、これにより製品の磁気特性をより一層向上さ
せる役割を果たす。したがつてこの発明の方法に
使用されるけい素鋼素材としては、後述のS及
び/又はSeのほか、Sb及びMoを含有するものを
用いるものとする。ただしSbが0.2%を超えると
冷間加工性を劣化させるとともに、磁束密度が低
下し始めて磁気特性の劣化を招き、またMoが0.1
%を超えると熱間加工性及び冷間加工性が劣化す
るだけでなく鉄損特性が劣化する。一方Sbが
0.005%、又Moが0.003%に満たないと、それら
の添加効果に乏しいのでSbの含有量は0.005〜0.2
%、又Moの含有量は0.003〜0.1%の範囲に規制
する必要がある。S、Seは、2次再結晶時にお
いて1次粒の成長を抑制するインヒビターとして
MnS、MnSeの形成に必要な元素であり、少なく
ともいずれか1種が含有されていれば良いが、そ
の含有量が単独添加又は複合添加いずれの場合に
おいても0.05%を超えると熱間及び冷間加工性が
劣化するので、含有量の上限は0.05%とし、一方
含有量が0.005%未満ではMnS、MnSeの絶対量
が不足し、インヒビターとしての機能が得られな
いので、含有量の下限は0.005%とした。 Alは、鋼中に含まれるとNと結合してAlNの
微細析出物を形成し、強力なインヒビターとして
作用する。とくに冷延圧下率70〜95%の強冷延法
によつて2次再結晶を発達させるためにはsol Al
として0.005〜0.06%の範囲で含有させる必要が
ある。というのはAlが0.005%未満ではインヒビ
ターとしてのAlN微細析出物の析出粒が不足し、
{110}<001>方位の2次再結晶粒の発達が不充分
となり、一方0.06%を超えるとかえつて{110}<
001>方位の2次再結晶粒の発達が悪くなるから
である。 NはAlNあるいはBNをインヒビターとして利
用する際の不可欠の元素であり、Nが0.001%よ
りも少ないとAlNあるいはBNによるインヒビタ
ー効果が弱く、一方添加量が0.01%を超えるとブ
リスターと呼ばれる表面欠陥が多発し、製品歩留
りが低下するのでNは0.001〜0.01%の範囲に規
制する必要がある。 Bは鋼中に含まれるNと結合してBNの微細析
出物を形成し、強力なインヒビターとして作用す
る。Bが0.0003%未満ではインヒビターとしての
BN微細析出物の析出量が不足し、一方0.004%を
超えると{110}<001>方位の2次再結晶粒の発
達が悪くなるため、Bは0.0003〜0.004%の範囲
に限定すべきである。 Snは2次再結晶粒の微細化に役立つもので0.01
%未満では効果が弱く、一方0.5%を超えるとCu
との複合添加であることもあつて圧延性及び酸洗
性が劣化する。 Cuは複膜の形成にとつて好ましいもので0.01%
未満では被膜改善に効果が少なく、一方0.3%を
超えると磁気特性の面から好ましくない。 次に熱延板を800〜1100℃の均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又
は、通常850℃から1050℃の中間焼鈍をはさんで
さらに冷延する2回冷延法にて、後者の場合最初
の圧下率は50%から80%程度、最終の圧下率は50
%から85%程度で0.15mmから0.35mm厚の最終冷延
板厚とする。 最終冷延を終わり製品板厚に仕上げた鋼板は表
面脱脂後750℃から850℃の湿水素中の脱炭1次再
結晶焼鈍処理を施す。 その後は通常、鋼板表面にMgOを主成分とす
る焼鈍分離剤を塗布する。この際、一般的には仕
上げ焼鈍後の形成を不可決としていたフオルステ
ライトをとくに形成させない方がその後の鋼板の
酸洗又は機械的研削処理を簡便にするのに有効で
あるので、焼鈍分離剤としてAl2O3、ZrO2
TiO2等を50%以上でMgOに混入して使用するの
が好ましい。 その後2次再結晶焼鈍を行うが、この工程は
{110}<001>方位の2次再結晶粒を充分発達させ
るために施されるもので、通常箱焼鈍によつて直
ちに1000℃以上に昇温し、その温度に保持するこ
とによつて行われる。 この場合{110}<001>方位に、高度に揃つた
2次再結晶粒組織を発達させるためには820℃か
ら900℃の低温で保持焼鈍する方が有利であり、
そのほか例えば0.5〜15℃/hの昇温速度の徐熱
焼鈍でもよい。 2次再結晶粒焼鈍後の純化焼鈍は、乾水素中で
1100℃以上で1〜20時間焼鈍を行つて鋼板の純化
を達成することが必要である。 この純化焼鈍後に鋼板表面の酸化物被膜を硫
酸、硝酸又は弗酸などの強酸によりあるいは表面
を機械研削、切削等により除去する。 その後CVD、イオンプレーテングもしくはイ
オンインプランテーシヨンによりTi、Zr、V、
Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Al、
B、Siの窒化物及び/又は炭化物のうちから選ん
だ1種以上4種以下から成る0.1〜2μm程度の極
薄被膜を形成させる。なお、この極薄被膜を構成
する化合物の組合せは如何ような組合せでも、又
何種でも本発明の効果は何ら影響されないが、処
理上の複雑さやコスト上の問題から4種以下に限
定した。その後この極薄張力被膜上に絶縁性を確
保するためりん酸塩とコロイダルシリカを主成分
と絶縁被膜を被成する。 またこの極薄張力被膜上に圧延方向とほぼ直角
方向に3〜15μm程度の間隔でレーザー照射を施
す。このときの照射条件はパレスレーザーを用い
てスポツト当たりのエネルギーは1〜10×
10-3J/m2、スポツト直径は0.05〜0.5mmレーザー
スポツトの中心間隔は0.1〜2.5mmが最適である。 またレーザー照射した後の絶縁性を確保するこ
とが必要であるが、レーザー照射効果を生かすた
め、絶縁コーテング処理は600℃以下の低温で1
秒から30分間の短時間焼付処理を施すことが適当
である。この600℃以下の絶縁被膜処理を行なう
処理液としてはリン酸塩、クロム酸塩の1種又は
2種以上を含有する処理液を主成分とし、これに
コロイダルシリカ、コロイダルアルミナ、酸化チ
タン、硼酸化合物の1種又は2種以上を添加した
ものがある。その他にクロム酸塩の還元剤とし
て、多価アルコール、グリセリン等の有機化合
物、加工性向上のため水溶液又はエマルジヨン樹
脂、高抵抗、加工性向上のため1μm以上の粒径
を有する有機樹脂粉末の如き有機化合物の1種又
は2種以上を含有させることができる。 (実施例) 実施例 1 C:0.44%、Si:3.42%、Mn:0.068%、Mo:
0.025%、Se:0.024%、Sb:0.020%、を含有し
酸部実質的にFeよりなる熱延板を900℃で3分間
の均一化焼鈍後、950℃の中間焼鈍をはさんで2
回の冷間圧延を行つて0.23mm厚の最終冷延板とし
た。 その後820℃の湿水素中で脱炭焼鈍後鋼板表面
にAl2O3(80%)、MgO(20%)を主成分とする焼
鈍分離剤を塗布した後850℃で50時間の2次再結
晶焼鈍し、1200℃で8時間乾水素中で純化焼鈍を
行なつた。 その後酸洗により酸化被膜を除去した後イオン
プレーテイングによりTiNの0.5μm極薄被膜を形
成させた。その後の1部の製品はりん酸塩とコロ
イダルシリカを主成分とする絶縁コーテング被膜
を施した。これらの処理を行なつた製品の磁気特
性は、 ●極薄被膜形成 B10=1.92T、W17/50=0.79W/
Kg ●極薄被膜上に絶縁被膜 B10=1.91T、W17/50
0.78W/Kg であつた。 実施例 2 C:0.063%、Si:3.36%、Mn:0.086%、Al:
0.024%、S:0.028%、N:0.0068%を含有し残
部実質的にFeよりなる熱延板を、1150℃で3分
間の均一化焼鈍後急冷処理を行い、その後300℃
の温間圧延を施して0.23mm厚の最終冷延板とし
た。 その後850℃の湿水素中で脱炭焼鈍後、表面に
Al2O3(60%)、MgO(40%)を主成分とする焼鈍
分離剤を塗布した後850℃から1150℃まで8℃/
hrで昇温して2次再結晶させた後、1200℃で8時
間乾水素中で純化焼鈍を行つた。 その後酸洗により酸化被膜を除去した後、
CVD法により900℃の温度でTiCl4とH2とN2の混
合ガスで熱処理し表面にTiNを0.8μm厚みで形成
させた。 その後パルスレーザーにより次の条件でレーザ
ー照射した。(レーザー照射エネルギーは5×
10-3J/m2、スポツト直径0.10mm、スポツトの中
心間隔:2mmであつた)。その後1部の製品は550
℃で低温の絶縁コーテング処理を行なつた。 これらの処理した製品の磁気特性は ●レーザー処理 B10=1.95T、W17/50=0.76W/
Kg ●レーザー処理後絶縁コーテイング B10
1.94T、W17/50=0.75W/Kg であつた。 実施例 3 C:0.043%、Si:3.44%、Mn:0.066%、
Mo:0.025%、Se:0.0222、Sb:0.025を含有し
残部実質的にFeよりなる熱延板を900℃で3分間
の均一化焼鈍後、900℃の中間焼鈍をはさんで2
回の冷間圧延を行なつて0.20mm厚の最終冷延板と
した。 その後820℃の湿水素中で脱炭焼鈍後鋼板表面
にAl2O3(80%)、MgO(15%)ZrO2(5%)を主
成分とする焼鈍分離剤を塗布した後850℃で50時
間の2次再結晶焼鈍し、1200℃で10時間乾水素中
で純化焼鈍を行なつた。その後酸洗により酸化被
膜を除去した後CVD法によりBN、Si3N4、ZrN、
AlN、VN、NbN、MnN、CrN、WNの窒化物、
TiC、SiC、ZrC、MoC、TaC、CoC、NiCの炭
化物の張力薄被膜(0.4〜0.7μm厚)を形成させ
た後、その表面にりん酸塩とコロイダルシリカを
主成分とする絶縁コーテイング被膜を施した。こ
れらの処理を行なつた製品の磁気特性を表2に示
す。
[Table] The samples were then processed as follows according to the categories (a) to (f) shown in Table 1. (a): An ultra-thin tension film of 0.5 μm made of TiN was formed at a sample temperature of 700° C. using an ion plating device. (b): Thereafter, an insulating film was formed on the phosphate using a coating liquid containing colloidal silica as a main component. (c): Separately, an ultra-thin tension film of TiN is formed and then laser irradiated (laser irradiation conditions:
Using YAG laser, laser irradiation scanning trace interval = 1 = 6 mm width, energy per laser spot: 4.0 × 10 -3 J, spot diameter: 0.2
mm, center-to-center spacing of subbots: 0.5 mm)
did. (d): Thereafter, baking treatment was performed at 600°C for 1 minute using a coating liquid containing phosphate and colloidal silica as main components. The magnetic properties of these products are summarized in Table 1, comparing the performance of comparative materials under each process treatment (e): pickling treatment after final annealing and (g): normal process conditions. As is clear from Table 1, the magnetic properties obtained by each of the treatments (a) to (d) according to the first to fourth inventions have a B 10 of 1.91.
It is noted that at ~1.90T, the W 17/50 is extremely good at 0.82-0.75W/Kg. On the other hand, the magnetic properties obtained by simply removing oxides after pickling under condition (e) are B 10 1.89T and W 17/50.
is 0.94W/Kg, B 10 of normal process material (f) is 1.89T,
Extreme deterioration is seen compared to W 17/50 which is 0.89W/Kg, and all are much worse than (a) to (d). As described above, in this invention, the oxide film on the surface of the steel plate after finish annealing is removed by pickling or mechanical grinding, and the finish is applied to the surface of the steel plate through an extremely thin mixed phase of nitrides, carbides, and base iron. Ultra-low iron loss unidirectional silicon steel sheets can be manufactured by forming an ultra-thin tensile film firmly adhered to the surface, and this manufacturing method does not require mirror polishing of the steel sheet surface after final annealing. This shows that it is possible to manufacture a unidirectional silicon steel sheet with low manufacturing cost and good magnetic properties. (Function) As mentioned above, after finishing annealing and removing the oxides on the surface, an ultra-thin tensile film is formed by CVD, ion plating or ion implantation to achieve ultra-low iron loss. It is possible to manufacture grain-oriented silicon steel sheets. Furthermore, in the present invention, an ultra-low core loss unidirectional silicon steel sheet can also be produced by introducing local strain onto this ultra-thin tension coating by laser treatment. The above experimental results are exclusively about the tension coating made of TiN, but the tension coating can also be made of Ti,
Zr, V, Nb, Ta, Cr, Mo, Co, Ni, Mn,
Even when it is composed of one or more and four or less selected from among the nitrides and/or carbides of Al, B, W, and Si, it has almost the same effect as described for TiN, and both Compatible with the purpose of the invention. Next, the manufacturing process of the unidirectional silicon steel sheet will be described in detail, including a general explanation. First, the reason for limiting the composition of the material for a unidirectional silicon steel sheet, which is the object of this invention, will be described below. C is an element that plays an important role in controlling a fine and uniform structure during hot rolling or cold rolling, but it is limited as follows depending on the inhibitor. In the Al-N-S and Al-N-Sn-Cu systems,
If the amount exceeds 0.08%, decarburization annealing before secondary recrystallization annealing takes a long time, reducing productivity, and decarburization becomes insufficient, resulting in deterioration of magnetic properties, while C decreases. As the iron loss increases, it becomes difficult to control the hot rolling texture and large elongated grains are formed, deteriorating the magnetic properties. Therefore, in order to obtain good iron loss properties, it is necessary to set the content to 0.04% or more. be. Next, Mo-S-Sb system, Mo-Se-Sb system and Mo
In the -S-Se-Sb system, if the amount exceeds 0.05%, the decarburization annealing before the secondary recrystallization annealing takes a long time, reducing productivity, and decarburization becomes insufficient, resulting in poor magnetic properties. On the other hand, as C decreases, it becomes difficult to control the hot rolling texture and large elongated grains are formed, deteriorating the magnetic properties. is 0.04
% or more. In addition, when the B-N-S system exceeds 0.06%, it takes a long time during decarburization annealing before secondary recrystallization annealing, reducing productivity, and decarburization becomes insufficient, resulting in poor magnetic properties. On the other hand, as C decreases, it becomes difficult to control the hot rolling texture and large elongated grains are formed, deteriorating the magnetic properties. teeth,
It needs to be 0.03% or more. Si is an important element for magnetic properties, especially iron loss properties, but it is limited as follows depending on the inhibitor. Al-N-S system, Al-N-Sn-Cu system and B-N
- In the S system, if it is less than 2.0%, the electrical resistance is low and the iron loss value increases due to increased eddy current loss;
If it is more than 4.0%, brittle cracking tends to occur during cold rolling, so Si needs to be in the range of 2.0 to 4.0%. Mo-S-Sb system, Mo-Se-Sb system and Mo-S
In the -Se-Sb system, if it is less than 2.5%, the electrical resistance is low and the iron loss value increases due to increased eddy current loss.On the other hand, if it is more than 4.0%, brittle cracks are likely to occur during cold rolling. Must be within the range of 4.0%. Mn is an inhibitor that controls the formation of secondary recrystallized grains with {110}<001> orientation, that is, an element essential for the precipitation of MnS or MnSe as a dispersed precipitation phase. If the Mn content is less than 0.01%, the absolute amount of MnS or MnSe to suppress primary recrystallized grain growth is insufficient, causing incomplete secondary recrystallization. On the other hand, if the Mn content exceeds 0.2%, MnS
Alternatively, it becomes difficult to dissociate solid solution of MnSe, and even if dissociated solid solution is carried out, the dispersed precipitated phase that precipitates during hot rolling tends to become coarse, and the optimal size distribution as an inhibitor is lost, resulting in poor magnetic properties. to degrade. For these reasons, Mn is 0.01-0.2
% range. Both Sb and Mo suppress the growth of primary grains in secondary recrystallization and promote the growth of secondary recrystallized grains with {110}<001> orientation due to the coexistence of S and Se, which will be described later. This plays a role in further improving the magnetic properties of the product. Therefore, the silicon steel material used in the method of the present invention should contain Sb and Mo in addition to S and/or Se, which will be described later. However, if Sb exceeds 0.2%, cold workability deteriorates, the magnetic flux density begins to decrease, leading to deterioration of magnetic properties, and Mo exceeds 0.1%.
%, not only hot workability and cold workability deteriorate, but also iron loss characteristics deteriorate. On the other hand, Sb
If Mo is less than 0.005% or 0.003%, the effect of these additions will be poor, so the Sb content should be 0.005 to 0.2.
%, and the content of Mo needs to be regulated within the range of 0.003 to 0.1%. S and Se act as inhibitors that suppress the growth of primary grains during secondary recrystallization.
It is an element necessary for the formation of MnS and MnSe, and it is fine if at least one of them is contained, but if the content exceeds 0.05%, whether added alone or in combination, hot or cold Since processability deteriorates, the upper limit of the content is set to 0.05%, whereas if the content is less than 0.005%, the absolute amount of MnS and MnSe is insufficient and the function as an inhibitor cannot be obtained, so the lower limit of the content is set to 0.005%. %. When Al is included in steel, it combines with N to form fine precipitates of AlN and acts as a strong inhibitor. In particular, sol Al
It is necessary to contain it in the range of 0.005 to 0.06%. This is because if the Al content is less than 0.005%, there will be insufficient precipitated grains of AlN fine precipitates as an inhibitor.
The development of secondary recrystallized grains with {110}<001> orientation becomes insufficient, and on the other hand, if it exceeds 0.06%, the {110}<
This is because the development of secondary recrystallized grains in the 001> orientation becomes poor. N is an essential element when using AlN or BN as an inhibitor. If the amount of N is less than 0.001%, the inhibitor effect of AlN or BN will be weak, while if the amount added exceeds 0.01%, surface defects called blisters will occur. Since this occurs frequently and the product yield decreases, N needs to be regulated within the range of 0.001 to 0.01%. B combines with N contained in steel to form fine BN precipitates and acts as a strong inhibitor. When B is less than 0.0003%, it is not effective as an inhibitor.
B should be limited to a range of 0.0003 to 0.004% because the amount of BN fine precipitates will be insufficient, and if it exceeds 0.004%, the development of secondary recrystallized grains with {110}<001> orientation will deteriorate. be. Sn is useful for refining secondary recrystallized grains and is 0.01
Below 0.5%, the effect is weak, while above 0.5%, Cu
Because it is added in combination with the above, rolling properties and pickling properties deteriorate. Cu is 0.01%, which is preferable for forming a multilayer film.
If it is less than 0.3%, it will have little effect on improving the coating, while if it exceeds 0.3%, it is unfavorable from the viewpoint of magnetic properties. Next, the hot-rolled sheet is uniformly annealed at 800-1100°C and then cold-rolled once to reach the final thickness, or it is usually subjected to intermediate annealing at 850-1050°C and further processed. In the two-step cold rolling method, in the latter case, the initial rolling reduction is about 50% to 80%, and the final rolling reduction is 50%.
The final cold-rolled plate thickness is 0.15mm to 0.35mm at a rate of 85% to 85%. After the final cold rolling, the steel plate finished to the product thickness is surface degreased and then subjected to primary decarburization recrystallization annealing in wet hydrogen at 750°C to 850°C. After that, an annealing separator whose main component is MgO is usually applied to the surface of the steel sheet. At this time, it is effective to prevent the formation of forsterite, which is generally prohibited from forming after final annealing, in order to simplify the subsequent pickling or mechanical grinding treatment of the steel plate, so it is recommended to use an annealing separator. as Al 2 O 3 , ZrO 2 ,
It is preferable to use TiO 2 or the like mixed with MgO in an amount of 50% or more. After that, secondary recrystallization annealing is performed, but this step is carried out to sufficiently develop secondary recrystallized grains with {110}<001> orientation, and is usually box annealed to immediately raise the temperature to 1000℃ or higher. This is done by heating and holding at that temperature. In this case, in order to develop a highly aligned secondary recrystallized grain structure in the {110}<001> orientation, it is advantageous to perform holding annealing at a low temperature of 820°C to 900°C.
In addition, slow heat annealing at a heating rate of 0.5 to 15° C./h may also be used. Purification annealing after secondary recrystallized grain annealing is performed in dry hydrogen.
It is necessary to perform annealing at 1100°C or higher for 1 to 20 hours to achieve purification of the steel plate. After this purification annealing, the oxide film on the surface of the steel sheet is removed with a strong acid such as sulfuric acid, nitric acid, or hydrofluoric acid, or by mechanical grinding, cutting, etc. of the surface. Then, by CVD, ion plating or ion implantation, Ti, Zr, V,
Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Al,
An extremely thin film of about 0.1 to 2 μm is formed from one or more and four or less selected from B, Si nitrides and/or carbides. Although the effects of the present invention are not affected in any way by any combination of compounds constituting this ultra-thin film, the number is limited to four or less due to processing complexity and cost issues. Thereafter, an insulating film is formed on this ultra-thin tension film, mainly consisting of phosphate and colloidal silica, to ensure insulation. Further, laser irradiation is applied to this ultra-thin tension coating at intervals of approximately 3 to 15 μm in a direction substantially perpendicular to the rolling direction. The irradiation conditions at this time were to use a pulse laser, and the energy per spot was 1 to 10×.
10 -3 J/m 2 , the spot diameter is 0.05 to 0.5 mm, and the optimal distance between the centers of the laser spots is 0.1 to 2.5 mm. It is also necessary to ensure insulation after laser irradiation, but in order to take advantage of the laser irradiation effect, insulation coating treatment must be performed at a low temperature of 600℃ or less.
It is appropriate to perform a short-time baking treatment of from seconds to 30 minutes. The main component of the treatment solution for this insulation coating treatment at 600℃ or below is a treatment solution containing one or more of phosphates and chromates, and includes colloidal silica, colloidal alumina, titanium oxide, and boric acid. Some contain one or more compounds added. In addition, as reducing agents for chromate, organic compounds such as polyhydric alcohols and glycerin, aqueous solutions or emulsion resins to improve processability, and organic resin powders with particle sizes of 1 μm or more to improve processability and high resistance are also available. One or more organic compounds may be contained. (Example) Example 1 C: 0.44%, Si: 3.42%, Mn: 0.068%, Mo:
A hot-rolled sheet containing 0.025%, Se: 0.024%, and Sb: 0.020%, and whose acid part is essentially Fe, was uniformly annealed at 900°C for 3 minutes, then intermediate annealed at 950°C.
Cold rolling was performed twice to obtain a final cold rolled sheet with a thickness of 0.23 mm. After decarburization annealing in wet hydrogen at 820°C, an annealing separator containing Al 2 O 3 (80%) and MgO (20%) as main components was applied to the surface of the steel sheet, followed by secondary re-treatment at 850°C for 50 hours. Crystal annealing was performed, followed by purification annealing in dry hydrogen at 1200° C. for 8 hours. Thereafter, the oxide film was removed by pickling, and then an ultra-thin 0.5 μm TiN film was formed by ion plating. Some subsequent products were coated with an insulating coating consisting mainly of phosphate and colloidal silica. The magnetic properties of products that have undergone these treatments are as follows: Ultra-thin film formation B 10 = 1.92T, W 17/50 = 0.79W/
Kg ●Insulating coating on ultra-thin coating B 10 = 1.91T, W 17/50 =
It was 0.78W/Kg. Example 2 C: 0.063%, Si: 3.36%, Mn: 0.086%, Al:
A hot-rolled sheet containing 0.024%, S: 0.028%, and N: 0.0068%, with the remainder substantially consisting of Fe, was uniformly annealed at 1150°C for 3 minutes and then rapidly cooled, and then quenched at 300°C.
A final cold-rolled sheet with a thickness of 0.23 mm was obtained by warm rolling. After decarburization annealing in wet hydrogen at 850℃, the surface
After applying an annealing separator mainly composed of Al 2 O 3 (60%) and MgO (40%), it was heated from 850℃ to 1150℃ at 8℃/
After secondary recrystallization by raising the temperature to hr, purification annealing was performed in dry hydrogen at 1200°C for 8 hours. After removing the oxide film by pickling,
Heat treatment was performed using a mixed gas of TiCl 4 , H 2 and N 2 at a temperature of 900°C using the CVD method to form TiN with a thickness of 0.8 μm on the surface. Thereafter, laser irradiation was performed using a pulse laser under the following conditions. (The laser irradiation energy is 5×
10 -3 J/m 2 , spot diameter 0.10 mm, spot center spacing: 2 mm). After that, the first part of the product is 550
A low-temperature insulating coating treatment was performed at ℃. The magnetic properties of these treated products are: Laser treatment B 10 = 1.95T, W 17/50 = 0.76W/
Kg ●Insulating coating after laser treatment B 10 =
It was 1.94T, W 17/50 = 0.75W/Kg. Example 3 C: 0.043%, Si: 3.44%, Mn: 0.066%,
A hot-rolled sheet containing Mo: 0.025%, Se: 0.0222, Sb: 0.025, with the remainder substantially consisting of Fe, was uniformly annealed at 900℃ for 3 minutes, and then subjected to intermediate annealing at 900℃ for 2 hours.
A final cold-rolled sheet with a thickness of 0.20 mm was obtained by cold rolling twice. After decarburization annealing in wet hydrogen at 820°C, an annealing separator containing Al 2 O 3 (80%), MgO (15%), and ZrO 2 (5%) as main components was applied to the surface of the steel sheet, and then annealing was performed at 850°C. Secondary recrystallization annealing was performed for 50 hours, and purification annealing was performed in dry hydrogen at 1200°C for 10 hours. After that, the oxide film was removed by pickling, and then BN, Si 3 N 4 , ZrN,
Nitride of AlN, VN, NbN, MnN, CrN, WN,
After forming a tensile thin film (0.4 to 0.7 μm thick) of carbides of TiC, SiC, ZrC, MoC, TaC, CoC, and NiC, an insulating coating film mainly composed of phosphate and colloidal silica is applied to the surface. provided. Table 2 shows the magnetic properties of the products subjected to these treatments.

【表】 実施例 4 (A)C 0.042%、Si 3.39%、Mn 0.066%、S
0.022%、Sb 0.031%、Mo 0.015%、(B)C 0.058
%、Si 3.43%、Mn 0.078%、S 0.026%、Al
0.031%、Cu 0.1%、Sn 0.04%、N 0.0081%及
び(C)C 0.036%、Si 3.31%、Mn 0.049%、S
0.029%、B 0.0022%、N 0.0072%を含有し残
部実質的にFeよりなる一方向性珪素鋼の熱延板
を用いた。 この中で(A)の熱延板は900℃で3分間の均一化
焼鈍を施した。その後950℃の中間焼鈍をはさん
で2回の冷間圧延を施して0.20mm厚の最終冷延板
とした。また(B)、(C)の熱延板は1050℃(B)及び950
℃(C)の中間焼鈍をはさんで2回の冷間圧延を施し
て0.20mm厚の最終冷延板とした。 その後(A)の最終冷延板は表面を脱脂後820℃の
湿水素中、(B)、(C)の冷延板は850℃(B)及び840℃(C)
の湿水素中で脱炭を兼ねる1次再結晶焼鈍を施し
た後、Al2O3(65%)、MgO(35%)を主成分とす
る焼鈍分離剤を鋼板表面上に塗布した。 その後(A)の鋼板は850℃で50時間の2次再結晶
焼鈍、(B)、(C)の鋼板は850℃から1050℃まで150
℃/hrで昇温してGoss方位2次再結晶粒を発達
させた後、1200℃で乾H2中で10時間の純化焼鈍
を施した。 その後酸洗により鋼板表面上の酸化物を除去し
た後、イオンプレーテイング法によつて、鋼板表
面上に表2に示す2〜4種の窒化物、炭化物及び
窒化物と炭化物の薄膜張力被膜(約1μm厚)を
被成させた後、りん酸塩とコロイダルシリカを主
成分とする絶縁被膜の焼付処理を施した。その後
800℃で2時間の歪み取り焼鈍を行つた。 そのときの製品の磁気特性を表3に示す。
[Table] Example 4 (A)C 0.042%, Si 3.39%, Mn 0.066%, S
0.022%, Sb 0.031%, Mo 0.015%, (B)C 0.058
%, Si 3.43%, Mn 0.078%, S 0.026%, Al
0.031%, Cu 0.1%, Sn 0.04%, N 0.0081% and (C)C 0.036%, Si 3.31%, Mn 0.049%, S
A hot-rolled sheet of unidirectional silicon steel containing 0.029% B, 0.0022% B, and 0.0072% N, with the remainder substantially consisting of Fe was used. Among these, the hot rolled sheet (A) was uniformly annealed at 900°C for 3 minutes. Thereafter, it was cold-rolled twice with intermediate annealing at 950°C to obtain a final cold-rolled sheet with a thickness of 0.20 mm. In addition, the hot rolled sheets of (B) and (C) are heated at 1050℃ (B) and 950℃.
Cold rolling was performed twice with intermediate annealing at °C (C) to obtain a final cold rolled sheet with a thickness of 0.20 mm. After that, the final cold-rolled sheet (A) was heated in wet hydrogen at 820°C after degreasing the surface, and the cold-rolled sheets (B) and (C) were heated at 850°C (B) and 840°C (C).
After performing primary recrystallization annealing that also serves as decarburization in wet hydrogen, an annealing separator containing Al 2 O 3 (65%) and MgO (35%) as main components was applied onto the surface of the steel sheet. After that, the steel plate (A) was subjected to secondary recrystallization annealing at 850℃ for 50 hours, and the steel plates (B) and (C) were annealed for 150 hours from 850℃ to 1050℃.
After increasing the temperature at a rate of °C/hr to develop Goss-oriented secondary recrystallized grains, purification annealing was performed at 1200 °C in dry H 2 for 10 hours. After that, oxides on the surface of the steel sheet were removed by pickling, and then a thin film tension coating of 2 to 4 types of nitrides, carbides, and nitrides and carbides shown in Table 2 was applied to the surface of the steel sheet by ion plating. After depositing an insulating film (approximately 1 μm thick), an insulating film containing phosphate and colloidal silica as its main components was baked. after that
Strain relief annealing was performed at 800°C for 2 hours. Table 3 shows the magnetic properties of the product at that time.

【表】 (発明の効果) 第1〜第6発明とも、仕上焼鈍を経た方向性珪
素鋼板表面の酸化物、被膜除去面に対する鏡面加
工を施すまでもなく、該除去面に直接張力被膜を
形成するため、鏡面仕上げのために処理コストが
嵩む不利なしに、鉄損特性の著しい改善が有利に
遂げられる。
[Table] (Effects of the invention) In both the first to sixth inventions, oxides on the surface of grain-oriented silicon steel sheets that have undergone finish annealing form a tension film directly on the surface from which the film has been removed, without the need for mirror polishing. Therefore, a significant improvement in iron loss characteristics can be advantageously achieved without the disadvantage of increased processing costs due to mirror finishing.

Claims (1)

【特許請求の範囲】 1 C:0.04〜0.05wt% Si:2.5〜4.0wt% Mn:0.01〜0.2wt% Mo:0.003〜0.1wt% Sb:0.005〜0.2wt% S及びSeのうちいずれか1種又は2種合計で
0.005〜0.05wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して最終板厚に
してから、脱炭・1次再結晶焼鈍を施したのち2
次再結晶焼鈍及び純化焼鈍を含む最終仕上焼鈍を
施した方向性珪素鋼板の表面上の酸化物を除去し
た後、 CVD、イオンプレーテングもしくはイオンイ
ンプランテーシヨンによりTi、Zr、V、Nb、
Ta、Cr、Mo、W、Mn、Co、Ni、Al、B、Si
の窒化物及び/又は炭化物のうちから選ばれる1
種以上4種以下から成り、それらの鉄との混合相
を介し鋼板表面に強固に被着した極薄張力被膜を
形成させる ことを特徴とする熱安定性、超低鉄損一方向性珪
素鋼板の製造方法。 2 C:0.04〜0.05wt% Si:2.5〜4.0wt% Mn:0.01〜0.2wt% Mo:0.003〜0.1wt% Sb:0.005〜0.2wt% S及びSeのうちいずれか1種又は2種合計で
0.005〜0.05wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して最終板厚に
してから、脱炭・1次再結晶焼鈍を施したのち2
次再結晶焼鈍及び純化焼鈍を含む最終仕上焼鈍を
施した方向性珪素鋼板の表面上の酸化物を除去し
た後、 CVD、イオンプレーテングもしくはイオンイ
ンプランテーシヨンによりTi、Zr、V、Nb、
Ta、Cr、Mo、W、Mn、Co、Ni、Al、B、Si
の窒化物及び/又は炭化物のうちから選ばれる1
種以上4種以下から成り、それらの鉄との混合相
を介し鋼板表面に強固に被着した極薄張力被膜を
形成させ、 その後、りん酸塩とコロイダルシリカを主成分
とする絶縁被膜を形成させる ことを特徴とする熱安定性、超低鉄損一方向性珪
素鋼板の製造方法。 3 C:0.04〜0.08wt% Si:2.0〜4.0wt% Mn:0.01〜0.2wt% sol Al:0.005〜0.06wt% S:0.005〜0.05wt% N:0.001〜0.01wt% Sn:0.01〜0.5wt% Cu:0.01〜0.3wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して最終板厚に
してから、脱炭・1次再結晶焼鈍を施したのち2
次再結晶焼鈍及び純化焼鈍を含む最終仕上焼鈍を
施した方向性珪素鋼板の表面上の酸化物を除去し
た後、 CVD、イオンプレーテングもしくはイオンイ
ンプランテーシヨンによりTi、Zr、V、Nb、
Ta、Cr、Mo、W、Mn、Co、Ni、Al、B、Si
の窒化物及び/又は炭化物のうちから選ばれる1
種以上4種以下から成り、それらの鉄との混合相
を介し鋼板表面に強固に被着した極薄張力被膜を
形成させ、 その後、りん酸塩とコロイダルシリカを主成分
とする絶縁被膜を形成させる ことを特徴とする熱安定性、超低鉄損一方向性珪
素鋼板の製造方法。 4 C:0.03〜0.06wt% Si:2.0〜4.0wt% Mn:0.01〜0.2wt% S:0.005〜0.05wt% B:0.0003〜0.004wt% N:0.001〜0.01wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して最終板厚に
してから、脱炭・1次再結晶焼鈍を施したのち2
次再結晶焼鈍及び純化焼鈍を含む最終仕上焼鈍を
施した方向性珪素鋼板の表面上の酸化物を除去し
た後、 CVD、イオンプレーテングもしくはイオンイ
ンプランテーシヨンによりTi、Zr、V、Nb、
Ta、Cr、Mo、W、Mn、Co、Ni、Al、B、Si
の窒化物及び/又は炭化物のうちから選ばれる1
種以上4種以下から成り、それらの鉄との混合相
を介し鋼板表面に強固に被着した極薄張力被膜を
形成させ、 その後、りん酸塩とコロイダルシリカを主成分
とする絶縁被膜を形成させる ことを特徴とする熱安定性、超低鉄損一方向性珪
素鋼板の製造方法。 5 C:0.04〜0.08wt% Si:2.0〜4.0wt% Mn:0.01〜0.2wt% Sol Al:0.005〜0.06wt% S:0.005〜0.05wt% N:0.001〜0.01wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して最終板厚に
してから、脱炭・1次再結晶焼鈍を施したのち2
次再結晶焼鈍及び純化焼鈍を含む最終仕上焼鈍を
施した方向性珪素鋼板の表面上の酸化物を除去し
た後、 CVD、イオンプレーテングもしくはイオンイ
ンプランテーシヨンによりTi、Zr、V、Nb、
Ta、Cr、Mo、W、Mn、Co、Ni、Al、B、Si
の窒化物及び/又は炭化物のうちから選ばれる1
種以上4種以下から成り、それらの鉄との混合相
を介し鋼板表面に強固に被着した極薄張力被膜を
形成させ、 その後鋼板の圧延方向を横切る向きにレーザー
照射する ことを特徴とする熱安定性、超低鉄損一方向性珪
素鋼板の製造方法。 6 C:0.04〜0.08wt% Si:2.0〜4.0wt% Mn:0.01〜0.2wt% Sol Al:0.005〜0.06wt% S:0.005〜0.05wt% N:0.001〜0.01wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して最終板厚に
してから、脱炭・1次再結晶焼鈍を施したのち2
次再結晶焼鈍及び純化焼鈍を含む最終仕上焼鈍を
施した方向性珪素鋼板の表面上の酸化物を除去し
た後、 CVD、イオンプレーテングもしくはイオンイ
ンプランテーシヨンによりTi、Zr、V、Nb、
Ta、Cr、Mo、W、Mn、Co、Ni、Al、B、Si
の窒化物及び/又は炭化物のうちから選ばれる1
種以上4種以下から成り、それらの鉄との混合相
を介し鋼板表面に強固に被着した極薄張力被膜を
形成させ、 その後鋼板の圧延方向を横切る向きにレーザー
照射し、 さらにその上に低温絶縁コーテイング処理を施
す ことを特徴とする熱安定性、超低鉄損一方向性珪
素鋼板の製造方法。
[Claims] 1 C: 0.04-0.05wt% Si: 2.5-4.0wt% Mn: 0.01-0.2wt% Mo: 0.003-0.1wt% Sb: 0.005-0.2wt% Any one of S and Se species or two species total
A hot-rolled sheet obtained by hot rolling a silicon steel slab containing 0.005 to 0.05 wt% with the remainder substantially consisting of Fe is cold-rolled once or twice with intermediate annealing in between to form a final sheet. After thickening, decarburization and primary recrystallization annealing are performed.
After removing oxides on the surface of a grain-oriented silicon steel sheet that has been subjected to final finish annealing including secondary recrystallization annealing and purification annealing, Ti, Zr, V, Nb, etc. are removed by CVD, ion plating or ion implantation.
Ta, Cr, Mo, W, Mn, Co, Ni, Al, B, Si
1 selected from nitrides and/or carbides of
A thermally stable, ultra-low iron loss unidirectional silicon steel sheet characterized by forming an ultra-thin tensile film firmly adhered to the surface of the steel sheet through a mixed phase with iron. manufacturing method. 2 C: 0.04-0.05wt% Si: 2.5-4.0wt% Mn: 0.01-0.2wt% Mo: 0.003-0.1wt% Sb: 0.005-0.2wt% Any one or two of S and Se in total
A hot-rolled sheet obtained by hot rolling a silicon steel slab containing 0.005 to 0.05 wt% with the remainder substantially consisting of Fe is cold-rolled once or twice with intermediate annealing in between to form a final sheet. After thickening, decarburization and primary recrystallization annealing are performed.
After removing oxides on the surface of a grain-oriented silicon steel sheet that has been subjected to final finish annealing including secondary recrystallization annealing and purification annealing, Ti, Zr, V, Nb, etc. are removed by CVD, ion plating or ion implantation.
Ta, Cr, Mo, W, Mn, Co, Ni, Al, B, Si
1 selected from nitrides and/or carbides of
Forms an ultra-thin tensile film that firmly adheres to the surface of the steel plate through a mixed phase with iron, and then forms an insulating film whose main components are phosphate and colloidal silica. A method for producing a thermally stable, ultra-low iron loss unidirectional silicon steel sheet characterized by: 3 C: 0.04-0.08wt% Si: 2.0-4.0wt% Mn: 0.01-0.2wt% sol Al: 0.005-0.06wt% S: 0.005-0.05wt% N: 0.001-0.01wt% Sn: 0.01-0.5wt % Cu: 0.01 to 0.3 wt%, and the remainder substantially consists of Fe. A hot rolled sheet obtained by hot rolling is subjected to cold rolling once or twice with intermediate annealing in between. After making the final plate thickness, decarburization and primary recrystallization annealing were performed.
After removing oxides on the surface of a grain-oriented silicon steel sheet that has been subjected to final finish annealing including secondary recrystallization annealing and purification annealing, Ti, Zr, V, Nb, etc. are removed by CVD, ion plating or ion implantation.
Ta, Cr, Mo, W, Mn, Co, Ni, Al, B, Si
1 selected from nitrides and/or carbides of
Forms an ultra-thin tensile film that firmly adheres to the surface of the steel plate through a mixed phase with iron, and then forms an insulating film whose main components are phosphate and colloidal silica. A method for producing a thermally stable, ultra-low iron loss unidirectional silicon steel sheet characterized by: 4 Contains C: 0.03-0.06wt% Si: 2.0-4.0wt% Mn: 0.01-0.2wt% S: 0.005-0.05wt% B: 0.0003-0.004wt% N: 0.001-0.01wt%, and the remainder is substantially A hot rolled sheet obtained by hot rolling a silicon steel slab made of Fe is cold rolled once or twice with intermediate annealing to achieve the final thickness, then decarburized and primary recrystallized. After annealing 2
After removing oxides on the surface of a grain-oriented silicon steel sheet that has been subjected to final finish annealing including secondary recrystallization annealing and purification annealing, Ti, Zr, V, Nb, etc. are removed by CVD, ion plating or ion implantation.
Ta, Cr, Mo, W, Mn, Co, Ni, Al, B, Si
1 selected from nitrides and/or carbides of
Forms an ultra-thin tensile film that firmly adheres to the surface of the steel plate through a mixed phase with iron, and then forms an insulating film whose main components are phosphate and colloidal silica. A method for producing a thermally stable, ultra-low iron loss unidirectional silicon steel sheet characterized by: 5 Contains C: 0.04-0.08wt% Si: 2.0-4.0wt% Mn: 0.01-0.2wt% Sol Al: 0.005-0.06wt% S: 0.005-0.05wt% N: 0.001-0.01wt%, the remainder being substantially A hot rolled sheet obtained by hot rolling a silicon steel slab made of Fe is cold rolled once or twice with an intermediate annealing to achieve the final thickness, and then decarburized and primary recycled. After crystal annealing 2
After removing oxides on the surface of a grain-oriented silicon steel sheet that has been subjected to final finish annealing including secondary recrystallization annealing and purification annealing, Ti, Zr, V, Nb, etc. are removed by CVD, ion plating or ion implantation.
Ta, Cr, Mo, W, Mn, Co, Ni, Al, B, Si
1 selected from nitrides and/or carbides of
It is characterized by forming an ultra-thin tensile film that firmly adheres to the surface of the steel plate through a mixed phase of these and iron, and then irradiating the steel plate with a laser in a direction transverse to the rolling direction of the steel plate. A method for producing thermally stable, ultra-low core loss unidirectional silicon steel sheets. 6 Contains C: 0.04-0.08wt% Si: 2.0-4.0wt% Mn: 0.01-0.2wt% Sol Al: 0.005-0.06wt% S: 0.005-0.05wt% N: 0.001-0.01wt%, the remainder being substantially A hot rolled sheet obtained by hot rolling a silicon steel slab made of Fe is cold rolled once or twice with an intermediate annealing to achieve the final thickness, and then decarburized and primary recycled. After crystal annealing 2
After removing oxides on the surface of a grain-oriented silicon steel sheet that has been subjected to final finish annealing including secondary recrystallization annealing and purification annealing, Ti, Zr, V, Nb, etc. are removed by CVD, ion plating or ion implantation.
Ta, Cr, Mo, W, Mn, Co, Ni, Al, B, Si
1 selected from nitrides and/or carbides of
Forms an ultra-thin tensile film that firmly adheres to the surface of the steel plate through a mixed phase with iron, and then irradiates the steel plate with a laser in a direction transverse to the rolling direction of the steel plate. A method for producing a thermally stable, ultra-low core loss unidirectional silicon steel sheet characterized by applying a low-temperature insulation coating treatment.
JP60074462A 1985-02-22 1985-04-10 Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability Granted JPS61235514A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60074462A JPS61235514A (en) 1985-04-10 1985-04-10 Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
US06/907,734 US4713123A (en) 1985-02-22 1986-02-21 Method of producing extra-low iron loss grain oriented silicon steel sheets
DE8686904726T DE3673290D1 (en) 1985-02-22 1986-02-21 MANUFACTURING METHOD FOR UNIDIRECTIONAL SILICON STEEL PLATE WITH EXCEPTIONAL IRON LOSS.
EP86904726A EP0215134B1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
PCT/JP1986/000087 WO1986004929A1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074462A JPS61235514A (en) 1985-04-10 1985-04-10 Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability

Publications (2)

Publication Number Publication Date
JPS61235514A JPS61235514A (en) 1986-10-20
JPS6335684B2 true JPS6335684B2 (en) 1988-07-15

Family

ID=13547939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074462A Granted JPS61235514A (en) 1985-02-22 1985-04-10 Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability

Country Status (1)

Country Link
JP (1) JPS61235514A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672266B2 (en) * 1987-01-28 1994-09-14 川崎製鉄株式会社 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2733657B2 (en) * 1987-02-17 1998-03-30 株式会社 リケン Vane type compressor
JP2627083B2 (en) * 1989-03-15 1997-07-02 新日本製鐵株式会社 Method for producing low iron loss unidirectional silicon steel sheet
DE69218511T2 (en) * 1991-07-10 1997-11-06 Nippon Steel Corp Grain-oriented silicon steel sheet with excellent primary glass film properties
DE69838419T2 (en) * 1997-12-24 2008-06-05 Jfe Steel Corp. CORNORATED SILICON STEEL PLATE WITH VERY LOW IRON LOSS AND METHOD OF MANUFACTURING THE SAME
CN101981228B (en) 2008-03-31 2013-01-09 新日本制铁株式会社 Grain-oriented magnetic steel sheet and process for producing the same
JP5919617B2 (en) * 2010-08-06 2016-05-18 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
RU2482218C1 (en) * 2011-09-07 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" Ion implantation method of surfaces of parts from structural steel
KR102243871B1 (en) 2016-10-18 2021-04-22 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS61235514A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS6335684B2 (en)
JPS6332849B2 (en)
JPS6335685B2 (en)
JPH0619113B2 (en) Method for producing grain-oriented electrical steel sheet with extremely low iron loss
JPS6354767B2 (en)
JPS6332850B2 (en)
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH0327631B2 (en)
JPH0577749B2 (en)
JPH0374488B2 (en)
JPS6335686B2 (en)
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JPH0335377B2 (en)
JPH0413426B2 (en)
JPH0374486B2 (en)
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPS6335687B2 (en)
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS63278209A (en) Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS63227719A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss