JPH0619113B2 - Method for producing grain-oriented electrical steel sheet with extremely low iron loss - Google Patents

Method for producing grain-oriented electrical steel sheet with extremely low iron loss

Info

Publication number
JPH0619113B2
JPH0619113B2 JP8371287A JP8371287A JPH0619113B2 JP H0619113 B2 JPH0619113 B2 JP H0619113B2 JP 8371287 A JP8371287 A JP 8371287A JP 8371287 A JP8371287 A JP 8371287A JP H0619113 B2 JPH0619113 B2 JP H0619113B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
less
decarburization
recrystallization annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8371287A
Other languages
Japanese (ja)
Other versions
JPS63250419A (en
Inventor
道郎 小松原
宏威 石飛
洽 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8371287A priority Critical patent/JPH0619113B2/en
Publication of JPS63250419A publication Critical patent/JPS63250419A/en
Publication of JPH0619113B2 publication Critical patent/JPH0619113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 方向性けい素鋼板の電気・磁気的特性の改善、なかでも
鉄損の低減に係わる極限的な要請を満たそうとする近年
来の目覚ましい開発努力は、逐次その実を挙げつつある
が、その実施に伴う重大な弊害として、一方向性けい素
鋼板の使用に当たっての加工、組立てを経たのちいわゆ
るひずみ取り焼鈍がほどこされた場合に、特性劣化の随
伴を不可避に生じて、使途についての制限を受ける不利
が指摘される。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The remarkable development of recent years that attempts to meet the extreme demands for improving the electrical and magnetic properties of grain-oriented silicon steel sheets, and especially for reducing iron loss. Efforts are gradually showing fruit, but as a serious adverse effect associated with its implementation, deterioration of properties is caused when so-called strain relief annealing is performed after processing and assembling in the use of unidirectional silicon steel sheet. It is pointed out that disadvantages arise due to the inevitable occurrence of companionship and restrictions on usage.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を招くことについての開発研究の成果に関連
して以下に述べる。
In this specification, regardless of whether or not a high-temperature heat history such as strain relief annealing is performed, the following will be described in relation to the results of development research on inducing a new way that can advantageously satisfy the above requirements. Describe.

さて方向性けい素鋼板は、よく知られているとおり製品
の2次再結晶粒を {100}<001>、すなわちゴス方位
に、高度に集積させたもので、主として変圧器その他の
電気機器の鉄心として使用され、電気・磁気的特性とし
て製品の磁束密度(B10で代表される)が高く、鉄損(W
17/50値で代表される)の低いことが要求される。
As is well known, grain-oriented silicon steel sheet is a highly integrated secondary recrystallized grain of the product in {100} <001>, that is, Goss orientation, and is mainly used in transformers and other electrical equipment. It is used as an iron core, has high magnetic flux density (typically represented by B 10 ) of the product as electric and magnetic characteristics, and iron loss (W
17/50 value) is required.

この方向けい素鋼板は複雑多岐にわたる工程を経て製造
されるが、今までにおびただしい発明・改善が加えら
れ、今日では板厚0.30mmの製品の磁気特性がB10 1.90T
以上、W17/50 1.05W/Kg 以下、また板厚0.23mmの製品の
磁気特性がB10 1.89T 以上、W17/50 0.90W/Kg 以下の超
低鉄損一方向性けい素鋼板が製造されるようになって来
ている。
This direction silicon steel sheet is manufactured through a variety of complicated processes, but numerous inventions and improvements have been added so far, and today the product with a plate thickness of 0.30 mm has a magnetic property of B 10 1.90T.
Above, W 17/50 1.05 W / Kg or less, and a product with a sheet thickness of 0.23 mm has an ultra-low iron loss unidirectional silicon steel sheet with a magnetic property of B 10 1.89 T or more and W 17/50 0.90 W / Kg or less. It is becoming manufactured.

特に最近では省エネの見地から電力損失の低減を至上と
する要請が著しく強まり、欧米では損失の少ない変圧器
を作る場合に鉄損の減少分を金額に換算して変圧器価格
に上積みする「ロス・エバリュエーション」(鉄損評
価)制度が普及している。
Particularly in recent years, there has been a marked increase in demand to reduce power loss from the viewpoint of energy saving, and in Europe and the United States, when making a transformer with low loss, the amount of iron loss reduction is converted into a monetary amount and added to the transformer price.・ The “evaluation” (iron loss evaluation) system is widespread.

(従来の技術) このような状況下において最近、一方向性けい素鋼板に
おけるフォルステライト被膜の除去あるいはその形成を
阻止しついで鋼板表面を平滑面に仕上げ、張力被膜を被
成することによって極めて鉄損の低い方向性けい素鋼板
を提供する技術が開発されている。
(Prior Art) Under such a circumstance, it has recently been possible to remove a forsterite coating on a grain-oriented silicon steel sheet or prevent the formation thereof, finish the surface of the steel sheet to be a smooth surface, and apply a tension coating to obtain a very strong iron coating. Techniques have been developed to provide low loss grain oriented silicon steel sheets.

例えば、特開昭62−1821号公報には、仕上焼鈍後の鋼板
表面のフォルステライト質下地被膜を除去し、ついで研
磨により0.4 μm以下の平滑面にしさらにCVD法によ
り窒化物、炭化物あるいは酸化物の張力被膜を形成する
ことにより極めて鉄損の低い方向性けい素鋼板を提供す
る技術が開示されている。
For example, in Japanese Patent Laid-Open No. 62-1821, the forsterite undercoat on the surface of a steel sheet after finish annealing is removed, and then polished to a smooth surface of 0.4 μm or less, and further nitride, carbide or oxide is formed by a CVD method. The technique of providing a grain-oriented silicon steel sheet having extremely low iron loss by forming the tension coating film is disclosed.

また、これに関連して、特開昭62−1822号公報において
は脱炭・1次再結晶焼鈍後に、塗布される焼鈍分離剤の
成分組成を限定し、最終仕上げ焼鈍の際のフォルステラ
イト生成反応を抑制し、仕上焼鈍済の方向性けい素鋼板
表面上の非金属物質層を除去した後、研磨処理により、
平均粗さ0.4 μm以下の平滑面に仕上げ、ついでCVD
法、イオンインプランテーション法により、窒化物や炭
化物あるいは酸化物の張力被膜を被着させ、極めて鉄損
の低い方向性けい素鋼板を提供する技術の開示がある。
In connection with this, in JP-A-62-1822, the composition of the annealing separator applied after decarburization / primary recrystallization annealing is limited so that forsterite is formed during final finishing annealing. After suppressing the reaction and removing the non-metallic substance layer on the surface of the grain-finished grain-oriented silicon steel sheet after finish annealing, by polishing treatment,
Finished to a smooth surface with an average roughness of 0.4 μm or less, then CVD
Method and ion implantation method, a tension coating of nitride, carbide or oxide is applied to provide a grain-oriented silicon steel sheet having extremely low iron loss.

後者の手法は前者の手法と比較すると、フォルステライ
ト質下地被膜が鋼板表面を被覆していないため、Ra :
0.4 μm以下の平滑面にするための酸洗や、研磨工程が
大幅に簡便化され、コストダウンを計れるが、平均粗さ
Ra :0.4 μm以下の平滑面化を施した後、前述の手法
によって張力被膜を被着させた際の磁気特性は、前者の
手法に比べ劣る。
Compared with the former method, the latter method does not cover the steel sheet surface with the forsterite undercoating, so Ra:
Although the pickling and polishing steps for making a smooth surface of 0.4 μm or less are greatly simplified and the cost can be reduced, the average roughness Ra: 0.4 μm or less is used for smoothing, and then the above-mentioned method is used. The magnetic properties when the tension coating is applied are inferior to the former method.

また、従来フォルステライト被膜を形成させない手法と
して、最終仕上焼鈍前に使用される焼鈍分離剤の成分に
ついて考察したものがある。すなわち特開昭53−22113
号公報には厚さ4μm以下の脱炭・1次再結晶焼鈍板
に、含水珪酸塩鉱物粉末と微粒子アルミナよりなる焼鈍
分離剤を塗布する方法が、特開昭55−89423 号公報には
脱炭・1次再結晶焼鈍板に、 Al2O3を主成分としさらに
Sr またはBa 化合物を含む焼鈍分離剤を塗布する方法
が、及び特開昭59−96278 号公報には、Al2O3 を主成分
とし、不活性なMgO を配合した焼鈍分離剤を塗布する方
法がそれぞれ開示されている。しかし、これらの手法は
いずれも Al2O3を主成分として使用しているため、最終
仕上げ焼鈍後の鋼板表面に Al2O3が局部的に固着し、そ
の除去に多大の労力を必要とするばかりか、平均粗さ0.
4 μm以下の平滑面化を施した後の磁気特性は、フォル
ステライト被膜を形成させた後、該被膜を除去した場合
と同等であったが、その後張力被膜を被着させた際の磁
気特性は劣るものである。
Further, as a conventional method of not forming a forsterite coating, there is a method of considering the components of the annealing separator used before the final finish annealing. That is, JP-A-53-22113
Japanese Unexamined Patent Publication No. 55-89423 discloses a method of applying an annealing separator composed of hydrous silicate mineral powder and fine particle alumina to a decarburized / primary recrystallization annealed plate having a thickness of 4 μm or less. A method of applying an annealing separator containing Al 2 O 3 as a main component and further containing an Sr or Ba compound to a charcoal / primary recrystallization annealed plate, and Japanese Patent Laid-Open No. 59-96278 discloses Al 2 O 3 Each of them discloses a method of applying an annealing separator containing, as a main component, inactive MgO. However, since all of these methods use Al 2 O 3 as a main component, Al 2 O 3 locally adheres to the surface of the steel sheet after final finish annealing, and a great deal of labor is required to remove it. Not only does it have an average roughness of 0.
The magnetic properties after smoothing the surface to 4 μm or less were the same as when the forsterite film was formed and then the film was removed, but the magnetic properties when the tension film was subsequently applied. Is inferior.

(発明が解決しようとする問題点) そこでフォルステライト被膜を形成させない手法によっ
ても、フォルステライト被膜を形成させた後該被膜を除
去する手法と同等の磁気特性を実現することが、この発
明の目的である。
(Problems to be solved by the invention) Therefore, it is an object of the present invention to realize magnetic characteristics equivalent to those of a method of forming a forsterite film and then removing the film even by a method of not forming the forsterite film. Is.

(問題点を解決するための手段) 発明者らは、平滑面化後フォルステライト被膜を形成さ
せ、ついで該被膜を除去し、Ra :0.3 μmに平滑面化
してTiNを被着した板厚0.23mmの試料と、フォルステ
ライト被膜の形成を抑制してRa :0.3 μmに平滑面化
してTiNを被着した板厚0.23mmの試料とにつき、各試
料の鋼板表層の地鉄素地を、化学研磨によってさらに数
段階の研磨を行って、各研磨段階で張力被膜を被着させ
たときの磁気特性及び平均粗さの変化を調べた。その結
果を元の地鉄素地面からの研磨厚みの関数として、第1
図に示すように、フォルステライト被膜除去法では、鋼
板表面の平均粗さが0.4 μm以下になるにしたがい良好
な磁気特性が得られるのに対し、フォルステライト被膜
形成抑制法においては、鋼板表面粗さがRa :0.4 μm
となっても磁気特性は改善されず、良好な磁気特性を得
るためには5μm以上の厚さでの研磨を必要とする。し
かしながら、地鉄素地を研磨することは、多大の労力な
らびにコストを必要とし、工業的規模での実施は極めて
困難である。
(Means for Solving Problems) The inventors of the present invention formed a forsterite film after smoothing the surface, removed the film, then smoothed the surface to Ra: 0.3 μm, and deposited TiN to a plate thickness of 0.23. mm and a 0.23 mm thick plate with TiN deposited with Ra: 0.3 μm smoothed by suppressing the formation of forsterite coating. Chemically polish the base metal surface of the steel plate of each sample. Further, several stages of polishing were performed, and changes in magnetic properties and average roughness when a tension film was applied at each polishing stage were examined. The result, as a function of the polishing thickness from the original ground metal surface,
As shown in the figure, in the forsterite film removal method, good magnetic properties are obtained as the average roughness of the steel plate surface becomes 0.4 μm or less, whereas in the forsterite film formation suppression method, the steel plate surface roughness is reduced. Saga Ra: 0.4 μm
However, the magnetic characteristics are not improved, and polishing with a thickness of 5 μm or more is required to obtain good magnetic characteristics. However, polishing a base metal substrate requires a great deal of labor and cost, and is extremely difficult to carry out on an industrial scale.

発明者らは、最終仕上げ焼鈍を施した鋼板の表面を平滑
面化しその上に張力被膜を被着させる手法においては、
脱炭・1次再結晶焼鈍板の酸素目付量を極めて低くしか
つ脱炭を十分施こすことにより、張力被膜を被着させた
後の磁気特性が極めて優れたものになることを新規に知
見し、又この際、脱炭・1次再結晶焼鈍後の鋼板に塗布
する焼鈍分離剤としては、MgO を主成分とする必要があ
ることも見出し、この発明の端緒を得た。
In the method of making the surface of the steel sheet subjected to final finish annealing smooth and applying a tension coating on it, the inventors
It has been newly found that the magnetic properties after applying the tension coating become extremely excellent by making the oxygen basis weight of the decarburized / primary recrystallization annealed plate extremely low and sufficiently performing the decarburization. However, at this time, it was also found that it is necessary to use MgO as a main component as an annealing separator applied to the steel sheet after decarburization / primary recrystallization annealing, and obtained the beginning of the present invention.

すなわちこの発明は、含けい素鋼スラブを熱間圧延して
得られた熱延板に1回又は中間焼鈍をはさむ2回の冷間
圧延を施して最終板厚にしてから、脱炭・1次再結晶焼
鈍を施したのち、焼鈍分離剤を塗布して引続く二次再結
晶焼鈍及び純化焼鈍を含む最終仕上焼鈍を施し、鋼板表
面上の非金属物質層を除去した後、平均粗さをRa で0.
4 μm以下の平滑面に仕上げ、この表面上に、CVD
法、イオンプレーティング法又はイオンインプランテー
ション法により金属又はセラミックの張力被膜を被成す
る方向性電磁鋼板の製造方法において、脱炭・1次再結
晶焼鈍後における鋼板表層の酸化物の量を酸素目付量と
して、片面当り0.3 g/m以下でかつ鋼板中の炭素含
有量を0.003 wt%以下とし、焼鈍分離剤としてMgO を主
成分とする分離剤を用いることを特徴とする鉄損の極め
て低い方向性電磁鋼板の製造方法である。
That is, according to the present invention, a hot-rolled sheet obtained by hot-rolling a silicon steel slab is cold-rolled once or twice with intermediate annealing to obtain a final sheet thickness, and then decarburized. After performing the secondary recrystallization annealing, after applying the annealing separation agent and subsequent final finishing annealing including secondary recrystallization annealing and purification annealing, after removing the non-metallic substance layer on the steel sheet surface, the average roughness Ra at 0.
Finished to a smooth surface of 4 μm or less, and CVD on this surface
In the method for producing a grain-oriented electrical steel sheet on which a tension coating of metal or ceramic is formed by a metal ion method, an ion plating method or an ion implantation method, the amount of oxide on the surface layer of the steel sheet after decarburization and primary recrystallization annealing is set to oxygen The weight per unit surface is 0.3 g / m 2 or less, the carbon content in the steel sheet is 0.003 wt% or less, and the separating agent containing MgO as the main component is used as the annealing separating agent. It is a method of manufacturing a low-oriented electrical steel sheet.

又実施に当り、 含けい素鋼スラブは、C:0.010 wt%以下、Si :2.0
wt%以下、酸可溶性Al :0.010 〜0.060 wt%及びTota
l N:0.003 〜0.010 wt%を含有するものであること、 脱炭・1次再結晶焼鈍前の圧延は、平滑なロールを用い
て鋼板表面の平均粗さをRa で0.2 μm以下にするもの
であること 平滑面仕上げが、圧延処理によるものであること、 酸素目付量の低減を、脱炭・1次再結晶焼鈍に先立つF
e ,Co ,Ni ,Mn 及びCd のうちから選ばれる1種
または2種以上を0.5 g/m以上20g/m未満の付
着量でめっきすることによって行うこと及び 酸素目付量の低減を、脱炭・1次再結晶焼鈍後の鋼板表
層を研削することによって行うことが有利に適合する。
Moreover, in the implementation, the silicon steel slab contains C: 0.010 wt% or less, Si: 2.0
wt% or less, acid-soluble Al: 0.010 to 0.060 wt% and Tota
l N: 0.003 to 0.010 wt% is contained, and rolling before decarburization and primary recrystallization annealing uses a smooth roll to reduce the average roughness of the steel sheet surface to Ra of 0.2 μm or less. The smooth surface finish is due to the rolling treatment, and the reduction of the oxygen basis weight is reduced before decarburization and primary recrystallization annealing.
e, Co, Ni, Mn and Cd are plated with one or more selected from the group of 0.5 g / m 2 or more and less than 20 g / m 2 and the oxygen basis weight is reduced. It is advantageous to carry out by grinding the surface layer of the steel sheet after decarburization and primary recrystallization annealing.

ここに脱炭・1次再結晶焼鈍後における鋼板表層の酸化
物の酸素目付量は、鋼板の両面について分析した酸素量
から、鋼板内部すなわち鋼板表層を20μm厚以上で除去
した試料の酸素量を差引いた値に基づいて、鋼板表面及
び裏面の単位面積当りの酸素量を算出した値である。
Here, the oxygen basis weight of the oxide of the steel sheet surface layer after decarburization / primary recrystallization annealing is the oxygen content of the sample obtained by removing the inside of the steel sheet, that is, the steel sheet surface layer with a thickness of 20 μm or more from the oxygen content analyzed on both sides of the steel sheet. It is a value obtained by calculating the oxygen amount per unit area of the front and back surfaces of the steel sheet based on the subtracted value.

なお脱炭・1次再結晶焼鈍後における鋼板表層の酸素量
及び炭素量の低減は、上記した手法のほかにも、脱炭・
1次再結晶焼鈍における雰囲気の酸化度、焼鈍温度及び
焼鈍時間を調整することによって達成でき、又該手法を
含む上記した各手法を組合わすことも可能である。
In addition to the methods described above, decarburization / reduction of oxygen and carbon in the steel sheet surface layer after decarburization / primary recrystallization annealing
This can be achieved by adjusting the degree of oxidation of the atmosphere in the primary recrystallization annealing, the annealing temperature and the annealing time, and it is also possible to combine the above-mentioned methods including the method.

次に上記、各発明の成功が導かれた具体的な実験に従っ
て説明を進める。
Next, the description will proceed according to the concrete experiments that have led to the success of each invention.

C:0.045 wt%(以下単に%で示す)、Si 3.35%、M
n 0.065 %、Se 0.020 %、Sb 0.025 %及びMo 0.01
2 %を含有するけい素鋼連鋳スラブを、1320℃で4時間
加熱後熱間圧延して2.0 mm厚の熱延板とした。その後90
0 ℃で3分間の均一化焼鈍後、950 ℃で3分間の中間焼
鈍をはさむ2回の冷間圧延を施して0.03mm厚の最終冷延
板とした。
C: 0.045 wt% (hereinafter simply referred to as%), Si 3.35%, M
n 0.065%, Se 0.020%, Sb 0.025% and Mo 0.01
A continuous cast slab of silicon steel containing 2% was heated at 1320 ° C. for 4 hours and then hot rolled into a hot rolled sheet having a thickness of 2.0 mm. Then 90
After homogenizing annealing at 0 ° C. for 3 minutes, cold rolling was performed twice with intermediate annealing at 950 ° C. for 3 minutes to obtain a final cold-rolled sheet having a thickness of 0.03 mm.

その後820 ℃の湿水素雰囲気中で脱炭・1次再結晶焼鈍
を施す際に、湿水素雰囲気における露点と焼鈍時間等を
変更して、鋼中炭素の含有量を0.001 %〜0.008 %、鋼
板表層の酸素量を0.1 g/m〜0.5 g/mで変化さ
せた。
After that, when performing decarburization and primary recrystallization annealing in a wet hydrogen atmosphere at 820 ° C, the dew point and annealing time in the wet hydrogen atmosphere were changed to change the carbon content in the steel to 0.001% to 0.008%, steel sheet. The oxygen amount in the surface layer was changed from 0.1 g / m 2 to 0.5 g / m 2 .

上記、脱炭・1次再結晶焼鈍を施した各鋼板を2分割
し、一方はMgO を主成分とする焼鈍分離剤を塗布、他
方は Al2O3(70%)とMgO (30%)とから成る焼鈍分
離剤を塗布した後、それぞれ850 ℃で50時間の2次再結
晶焼鈍と、1200℃で乾水素中5時間の純化焼鈍とを施し
た。
Each of the above decarburized and primary recrystallization annealed steel sheets is divided into two parts, one is applied with an annealing separator containing MgO as the main component, and the other is Al 2 O 3 (70%) and MgO (30%). After the annealing separator composed of and was applied, secondary recrystallization annealing was carried out at 850 ° C. for 50 hours and purification annealing was carried out at 1200 ° C. in dry hydrogen for 5 hours.

上記において脱炭・1次再結晶焼鈍後の鋼板表層の酸
素目付量を片面当り0.3 g/m以下にしたものと上記
におけるすべての鋼板とにはフォルステライト被膜が
形成されておらず、10%H2SO4 液中の軽酸洗処理によっ
て表面酸化物が除去できた。しかしながら、上記にお
いて脱炭・1次再結晶焼鈍後の鋼板表層の酸素目付量が
片面当り0.3 g/mを越えるものについては、10%H2
SO4 液中の軽酸洗処理によって表面酸化物が除去でき
ず、以後の実験は中止した。
In the above, forsterite coating was not formed on all the steel sheets in which the oxygen basis weight of the steel sheet surface layer after decarburization / primary recrystallization annealing was set to 0.3 g / m 2 or less per one surface, and 10 The surface oxide could be removed by a light pickling treatment in a% H 2 SO 4 solution. However, if the oxygen basis weight of the surface layer of the steel sheet after decarburization / primary recrystallization annealing exceeds 0.3 g / m 2 per side, 10% H 2
The surface oxide could not be removed by the light pickling treatment in SO 4 solution, and the subsequent experiments were stopped.

次に、軽酸洗処理によって鋼板表面の酸化物が除去でき
た試料について、化学研磨及び電解研磨により、鉄素地
面を表層より2.0 μm研磨したところ、いずれもRa :
0.3 μmの平滑面状態を得た。
Next, with respect to the sample from which the oxide on the surface of the steel sheet could be removed by the light pickling treatment, the iron ground surface was polished by 2.0 μm from the surface layer by chemical polishing and electrolytic polishing.
A smooth surface condition of 0.3 μm was obtained.

その後イオンプレーティングを行った。このときの製品
の磁気特性をまとめて表1及び表2に示す。
After that, ion plating was performed. The magnetic properties of the products at this time are summarized in Tables 1 and 2.

同表から、炭素含有量及び鋼板表層の酸素目付量がこの
発明に従う範囲にありかつ焼鈍分離剤にMgO を主成分と
するものを用いることにより、良好な磁気特性のものが
得られることがわかった。
From the table, it can be seen that the carbon content and the oxygen basis weight of the steel plate surface layer are in the range according to the present invention, and by using the annealing separator having MgO as the main component, good magnetic properties can be obtained. It was

(作 用) 上記した磁気特性の向上は、脱炭・1次再結晶焼鈍時に
形成される鋼板表層の酸化物の酸素目付量と、鋼板の炭
素含有量の規制下において、MgO を主成分とする焼鈍分
離剤を使用することによりフォルステライト被膜形成が
抑制され、かつ平滑面化した表面に、張力被膜を被着さ
せることにより容易に実現し得る。
(Operation) The above-mentioned improvement of magnetic properties is due to the fact that MgO is the main component under the control of the oxygen basis weight of the oxide of the surface layer of the steel sheet formed during decarburization and primary recrystallization annealing and the carbon content of the steel sheet. The formation of the forsterite coating is suppressed by using the annealing separator, and can be easily realized by depositing the tension coating on the smoothed surface.

ここに焼鈍分離剤の成分を変更してフォルステライト被
膜形成を抑制した場合の鋼板地鉄表層部を詳細に調査し
たところ、鋼板表層部5μm迄の層においてわずかにSi
O2を主成分とする酸化物粒子の分散が認められ、これは
極めて微量であるため、平滑面化状態での鋼板の磁気特
性には影響を及ぼさないが、これに張力被膜を被成した
場合、その張力効果によって磁性の劣化をもたらすこと
がわかった。
When the composition of the annealing separator was changed and the forsterite film formation was suppressed, the surface layer of the steel plate base metal was investigated in detail.
Dispersion of oxide particles containing O 2 as the main component was observed, and since this is an extremely small amount, it does not affect the magnetic properties of the steel sheet in the smoothed state, but a tension coating was applied to this. In some cases, it was found that the tension effect causes deterioration of magnetism.

これに対し、脱炭・1次再結晶焼鈍板の酸素目付量を片
面当り0.3 g/m以下と低くすれば、最終仕上焼鈍後
の鋼板表層部における酸化物粒子の分散はごく表層のみ
となり、通常の平滑面化処理によってこの層は十分に除
去される。しかし酸素目付量を片面当り0.3 g/m
下に規制した場合は、 Al2O3を主剤とする焼鈍分離剤を
用いると最終仕上げ焼鈍時の純化焼鈍において鋼板の純
化が不足し好ましくないため、MgO を主成分とする焼鈍
分離剤を使用する必要があり、この場合においても、フ
ォルステライト被膜は形成されない。
On the other hand, if the oxygen basis weight of the decarburized / primary recrystallization annealed sheet is reduced to 0.3 g / m 2 or less per side, the oxide particles are dispersed only in the surface layer of the steel sheet after the final finish annealing. This layer is sufficiently removed by the usual smoothing treatment. However, when the oxygen basis weight is restricted to 0.3 g / m 2 or less per side, if an annealing separator with Al 2 O 3 as the main component is used, the purification of the steel sheet during the final annealing is not sufficient, and this is not preferable. , It is necessary to use an annealing separating agent containing MgO as a main component, and even in this case, the forsterite coating is not formed.

又脱炭・1次再結晶焼鈍板の酸素目付量を片面当り0.3
g/m以下に規制すると、しばしば大幅な鉄損劣化が
発生すること、すなわち酸素目付量を片面当り0.3 g/
以下に低減する際、鋼板中に高濃度で残留した炭素
が最終的に製品の磁気特性を劣化させるため、脱炭・1
次再結晶焼鈍後の鋼板の炭素含有量を0.003 %以下に規
制することが必要である。そして脱炭・1次再結晶焼鈍
によって、酸素目付量を片面当り0.3 g/m以下にす
るためには脱炭・1次再結晶焼鈍前の冷間圧延後の鋼板
で、炭素含有量を0.50%以下に調整しておくことが望ま
しい。
The oxygen basis weight of the decarburized / primary recrystallization annealed sheet is 0.3
If it is regulated to g / m 2 or less, significant iron loss often occurs, that is, the oxygen basis weight is 0.3 g / side per side.
When reducing to m 2 or less, carbon remaining in high concentration in the steel sheet finally deteriorates the magnetic properties of the product, so decarburization.
It is necessary to regulate the carbon content of the steel sheet after the secondary recrystallization annealing to 0.003% or less. Then, in order to reduce the oxygen basis weight to 0.3 g / m 2 or less per side by decarburization / primary recrystallization annealing, the carbon content in the steel sheet after cold rolling before decarburization / primary recrystallization annealing is It is desirable to adjust it to 0.50% or less.

次に、この発明における酸素目付量と炭素量を規制する
のに有利な手法について詳しく述べる。
Next, a detailed description will be given of an advantageous method for controlling the oxygen basis weight and the carbon content in the present invention.

一般に、脱炭反応と、鋼板表面の酸化反応は、焼鈍雰囲
気中の水蒸気の作用により同時に進行するので、脱炭を
進行させかつ酸化を抑制する焼鈍条件は、その範囲が狭
くその再現性も悪い。
Generally, the decarburization reaction and the oxidation reaction on the surface of the steel sheet simultaneously proceed due to the action of water vapor in the annealing atmosphere, so the annealing conditions for promoting the decarburization and suppressing the oxidation have a narrow range and poor reproducibility. .

又脱炭・1次再結晶焼鈍後の鋼板の表層酸化物を研削研
磨等で除去する方法は、酸素目付量が低い場合には有効
であるが、酸素目付量が高い場合はコストアップとな
り、好ましくない。
Further, the method of removing the surface oxides of the steel sheet after decarburization and primary recrystallization annealing by grinding and polishing is effective when the oxygen weight is low, but the cost is increased when the oxygen weight is high. Not preferable.

低酸素目付量にも拘らず、脱炭を十分に行うためには、
脱炭焼鈍前の炭素量を規制することが好ましく、脱炭焼
鈍前の炭素量を0.050 %以下にしておくことが望まし
い。これには、スラブの炭素量を低減する方法、熱間圧
延の際に炭素を低減する方法、熱延板の焼ならしの際に
炭素を低減する方法及び2回の冷間圧延の中間焼鈍で炭
素を低減する方法等がある。
In order to perform sufficient decarburization despite the low oxygen basis weight,
It is preferable to control the amount of carbon before decarburizing and annealing, and it is desirable to keep the amount of carbon before decarburizing and annealing to be 0.050% or less. This includes a method of reducing the carbon content of the slab, a method of reducing carbon during hot rolling, a method of reducing carbon during normalizing a hot rolled sheet, and an intermediate annealing between two cold rollings. There is a method to reduce carbon.

また、脱炭・1次再結晶焼鈍前の圧延において、平滑な
ロールを用いて圧延を行ない鋼板の表面粗さをRa :0.
2 μm以下にすることによっても実現される。
In the rolling before decarburization and primary recrystallization annealing, the surface roughness of the steel sheet was Ra: 0.
It can also be realized by setting the thickness to 2 μm or less.

また、スラブの含有Si 量を2%以下に規制すれば、熱
間圧延時に0.010 %以下の低いC含有量でも、α-γ変
態を起こすので、脱炭・1次再結晶焼鈍時の脱炭には有
利である。この時には、AlNを抑制剤とするスラブが
有利であり、この他にMnSやMnSeを抑制剤として加え
てもよい。この時の有効なAlの範囲としては酸可溶性
Al0.010 〜0.060 %、Total Nとしては0.003 〜0.01
0 %が適正範囲である。
Also, if the Si content in the slab is restricted to 2% or less, α-γ transformation will occur even with a low C content of 0.010% or less during hot rolling, so decarburization during decarburization and primary recrystallization annealing Is advantageous to At this time, a slab using AlN as an inhibitor is advantageous, and MnS or MnSe may be added as an inhibitor besides this. At this time, the effective Al range is acid-soluble Al 0.010 to 0.060%, and the total N is 0.003 to 0.01.
0% is the proper range.

次に一方向性けい素鋼板の一般的な製造工程も含めてよ
り詳しく説明する。
Next, a more detailed description will be given including a general manufacturing process of a unidirectional silicon steel sheet.

出発素材は従来公知の一方向性けい素鋼素材成分、例え
ば C:0.01〜0.060 %、Si :2.50〜4.5 %、Mn :0.
01〜0.2 %、Mo :0.003 〜0.1 %、Sb :0.005 〜0.
2 %、SあるいはSe の1種あるいは2種合計で、0.00
5 〜0.05%を含有する組成 C:0.01〜0.08%、Si :2.0 〜4.0 %、Sol AL:0.
005 〜0.06%、S:0.005 〜0.05%、N:0.001 〜0.01
%、Sn :0.01〜0.5 %、Cu:0.01〜0.3 %、Mn :0.
01〜0.2 %を含有する組成 C:0.01〜0.06%、Si :2.0 〜4.0 %、S:0.005
〜0.05%、B:0.0003〜0.0040%、N:0.001 〜0.01
%、Mn:0.01〜0.2 %を含有する組成 の如きにおいて適用可能である 次に熱延板は800 〜1100℃の均一化焼鈍を経て1回の冷
間圧延で最終板厚とする1回冷延法か又は、通常850 ℃
から1050℃の中間焼鈍をはさんでさらに冷延する2回冷
延法にて、後者の場合最初の圧下率は50%から80%程
度、最終の圧下率は50%から85%程度で0.15mmから0.35
mm厚の最終冷延板厚とする。
The starting material is a conventionally known unidirectional silicon steel material component, for example, C: 0.01 to 0.060%, Si: 2.50 to 4.5%, Mn: 0.
01 to 0.2%, Mo: 0.003 to 0.1%, Sb: 0.005 to 0.
2%, 1 or 2 total of S or Se, 0.00
Composition containing 5 to 0.05% C: 0.01 to 0.08%, Si: 2.0 to 4.0%, Sol AL: 0.
005 to 0.06%, S: 0.005 to 0.05%, N: 0.001 to 0.01
%, Sn: 0.01 to 0.5%, Cu: 0.01 to 0.3%, Mn: 0.
Composition containing 01 to 0.2% C: 0.01 to 0.06%, Si: 2.0 to 4.0%, S: 0.005
~ 0.05%, B: 0.0003-0.0040%, N: 0.001-0.01
%, Mn: 0.01-0.2%, and the like. Then, the hot-rolled sheet is homogenized at 800-1100 ° C and then cold-rolled once to obtain the final sheet thickness. Rolling method or usually 850 ℃
In the latter case, the initial rolling reduction is about 50% to 80% and the final rolling reduction is about 50% to 85%. mm to 0.35
The final cold-rolled sheet thickness is mm.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750℃から850℃の湿水素中で脱炭・1次再結晶焼鈍処
理を施す。
The steel sheet that has been finished cold-rolled and finished to the product thickness is subjected to decarburization and primary recrystallization annealing treatment in wet hydrogen at 750 ° C to 850 ° C after surface degreasing.

ここにおいて、脱炭・1次再結晶焼鈍後における鋼板の
酸素目付量を片面当り0.3 g/m以下とし、かつ鋼板
の炭素含有量を0.003 %以下とする。鋼板の酸素目付量
が片面当り0.3 g/mを越えるものでは、最終仕上焼
鈍後にフォルステライト被膜が形成され、平滑面化が困
難となる。また炭素含有量が0.003 %を越えると、製品
の磁気特性が劣化する。この後、鋼板表面にMgO を主成
分とする焼鈍分離剤を塗布し巻きとる。この分離剤成分
としては、MgO が50%以上でなければ、次工程の純化焼
鈍において、抑制剤の純化が不充分となり、良好な特性
が得られない。
Here, the oxygen basis weight of the steel sheet after decarburization / primary recrystallization annealing is 0.3 g / m 2 or less per side, and the carbon content of the steel sheet is 0.003% or less. If the oxygen areal weight of the steel sheet exceeds 0.3 g / m 2 per side, a forsterite film is formed after the final finish annealing, and it becomes difficult to smooth the surface. If the carbon content exceeds 0.003%, the magnetic properties of the product deteriorate. After that, an annealing separator having MgO as a main component is applied to the surface of the steel sheet and wound. If MgO is not more than 50% as the separating agent component, the purification of the inhibitor will be insufficient in the purification annealing in the next step, and good characteristics cannot be obtained.

次いで、2次再結晶焼鈍とそれに続く、純化焼鈍を含
む、最終仕焼鈍を施こす。
Then, a final annealing including a secondary recrystallization annealing and a subsequent purification annealing is performed.

この2次再結晶焼鈍工程は {110}<001>方位の2次再
結晶粒を充分発達させるために施されるもので、通常箱
焼鈍によって1000℃以上に昇温または、その温度に保持
することによって行われるが、 {110}<001>方位に、
高度に揃った2次再結晶粒組織を発達させるためには82
0 ℃から900 ℃の低温で保定焼鈍する方が有利な場合が
あり、そのほか例えば0.5 〜15℃/hの昇温速度の徐熱焼
鈍でもよい。
This secondary recrystallization annealing process is performed to sufficiently develop the secondary recrystallized grains in the {110} <001> orientation, and is usually heated to 1000 ° C or higher by box annealing or maintained at that temperature. It is done by doing things, but in the {110} <001> direction,
82 to develop highly uniform secondary recrystallized grain structure
In some cases, it may be advantageous to carry out the holding annealing at a low temperature of 0 ° C. to 900 ° C. In addition, the annealing may be performed at a heating rate of 0.5 to 15 ° C./h.

2次再結晶焼鈍後の純化焼鈍は、乾水素中で1100℃以上
で1〜20時間焼鈍を行って鋼板の純化を達成することが
必要である。
The purification annealing after the secondary recrystallization annealing requires annealing in dry hydrogen at 1100 ° C. or higher for 1 to 20 hours to achieve purification of the steel sheet.

次にこの焼鈍後表面上の非金属物質を公知の酸洗などの
化学除去法や切削、研削などの機械的除去法またはそれ
らの組み合せにより除去する。
Then, after this annealing, the non-metal substance on the surface is removed by a known chemical removal method such as pickling, a mechanical removal method such as cutting or grinding, or a combination thereof.

この除去処理の後、化学研磨、電解研磨などの化学研磨
や、バフ研磨等の機械的研磨あるいはそれらの組合せな
どの従来の手法により鋼板表面を平滑面状態つまり中心
線平均粗さ0.4 μm以下に容易に仕上げることができ
る。
After this removal treatment, the steel plate surface is made smooth by the conventional method such as chemical polishing such as chemical polishing and electrolytic polishing, mechanical polishing such as buffing, or a combination thereof, that is, the center line average roughness is 0.4 μm or less. It can be finished easily.

また、さらに圧延を行なうことにより、0.4 μm以下に
仕上げることも可能である。この場合、次工程の張力被
膜を被着させた後に、再結晶焼鈍を施こすことになるの
で、鋼板の結晶粒径が小さく、高周波用のけい素鋼板と
して適している。したがって、この圧延における板厚
は、0.020 〜0.150 mmが好ましい。すなわち、0.020 mm
未満では圧延が困難になり、0.150 mmを越えると高周波
の磁気特性上不利となる。
Further, it is possible to finish it to 0.4 μm or less by further rolling. In this case, since the recrystallization annealing is performed after applying the tension film in the next step, the crystal grain size of the steel sheet is small, and it is suitable as a high-frequency silicon steel sheet. Therefore, the plate thickness in this rolling is preferably 0.020 to 0.150 mm. Ie 0.020 mm
If it is less than 0.1 mm, rolling becomes difficult, and if it exceeds 0.150 mm, it is disadvantageous in terms of high-frequency magnetic properties.

また、平均粗さRa :0.4 μmよりも粗い表面状態であ
ると、張力被膜の効果が得られない。
Further, if the surface state is rougher than the average roughness Ra: 0.4 μm, the effect of the tension coating cannot be obtained.

その後に、CVD,イオンプレーティング若しくはイオ
ンインプランテーションにより、平滑面状態の鋼板表面
に張力被膜を形成することが必要である。
After that, it is necessary to form a tension film on the surface of the steel sheet in a smooth surface state by CVD, ion plating or ion implantation.

このときCVD,イオンプレーティングあるいはイオン
インプランテーションに使用する装置は従来公知のもの
を用いて良い。
At this time, as a device used for CVD, ion plating or ion implantation, a conventionally known device may be used.

これらの方法による極薄の張力被膜としては、例えばT
iN,TiC,VN,VC,NbN,NbC,Si3N4,Si
C,Cr2N,Cr37 ,AlN,AlC,BN,Ni
C,CoC,CoN,Mo2C,WC,W2N,ZrC,Hf
C,Mn2C,TaC,TaN,Al2O3,SiO2,ZnO,Ti
O2,ZrO2,SnO2,Fe2O3,NiO,CuO,MgOなどが適
当である。
Examples of the ultrathin tension film formed by these methods include T
iN, TiC, VN, VC, NbN, NbC, Si 3 N 4 , Si
C, Cr 2 N, Cr 3 C 7 , AlN, Al 4 C, BN, Ni
C, CoC, CoN, Mo 2 C, WC, W 2 N, ZrC, Hf
C, Mn 2 C, TaC, TaN, Al 2 O 3 , SiO 2 , ZnO, Ti
O 2 , ZrO 2 , SnO 2 , Fe 2 O 3 , NiO, CuO, MgO and the like are suitable.

さらに、CVD,イオンプレーティングあるイオンイン
プランテーションにより極薄の張力被膜を形成したあ
と、これに重ねて、りん酸塩とコロイダルシリカとを主
成分とする絶縁被膜の塗布焼付を行なうことが、100 万
KVAにも上る大容量トランスの使途において当然に必要
であり、この絶縁性塗布焼付層の形成の如きは、従来公
知の手法を用いて良い。
Furthermore, after forming an ultrathin tension film by CVD or ion plating with ion plating, an insulating film mainly composed of phosphate and colloidal silica is applied and baked on top of this. Ten thousand
Needless to say, it is necessary in the use of a large-capacity transformer as high as KVA, and a conventionally known method may be used for forming the insulating coating baking layer.

また、平滑面状態に仕上げた後に、磁区細分化処理を施
して張力被膜を被着させること及び張力被膜を被着させ
た後に、磁区細分化処理を施こすことにより、磁気特性
は加算的に向上する。磁区細分化処理としては、レーザ
ー照射や、イオンインプランテーション等公知の手法が
適用できる。
In addition, after finishing to a smooth surface state, a magnetic domain refining treatment is applied to apply a tension coating, and after a tension coating is applied, a magnetic domain refining treatment is applied, whereby the magnetic characteristics are additively added. improves. As the magnetic domain subdivision processing, known methods such as laser irradiation and ion implantation can be applied.

(実施例) (イ)実施例1 適合例1 C:0.047 %、Si :3.4 %、Mn :0.062 %、Mo :
0.025 %、Se :0.022 %、Sb :0.020 %を含有する
熱延板を、900 ℃で3分間の均一化焼鈍後、950 ℃の中
間焼鈍をはさんで2回の冷間圧延を行って0.23mm厚の最
終冷延板とした。
(Example) (a) Example 1 Applicable Example 1 C: 0.047%, Si: 3.4%, Mn: 0.062%, Mo:
A hot-rolled sheet containing 0.025%, Se: 0.022%, Sb: 0.020% was homogenized and annealed at 900 ℃ for 3 minutes, and then cold-rolled twice with an intermediate anneal at 950 ℃ to 0.23. The final cold-rolled sheet with a thickness of mm was used.

このとき圧延ロールには#120 仕上げの表面粗さのもの
を用い、鋼板表面粗さをRa で0.25μmとした。この鋼
板に表3中に示す各条件にて湿水素雰囲気での脱炭・1
次再結晶焼鈍を行った。この後 MgOを主成分とする焼鈍
分離剤を塗布したあと850 ℃で50時間の2次再結晶焼鈍
を行い、ひき続き1200℃で8時間の乾水素中での純化焼
鈍を行った。その後ブラシング及び H2SO4酸洗を行な
い、表層の非金属物質層を除去した後、3%HFとH2S2
からなる液中で化学研磨し表面を平滑面とした。このと
きの鋼板の溶解量を3μmとした。さらにこの後10KV
のイオン化電圧による3分間のイオンプレーティングに
よって膜厚0.5 μmのTiN張力絶縁被膜を形成した。
At this time, the rolling roll having a surface roughness of # 120 finish was used, and the surface roughness of the steel plate was Ra of 0.25 μm. Decarburization of this steel sheet under wet hydrogen atmosphere under the conditions shown in Table 1
Next recrystallization annealing was performed. After that, an annealing separating agent containing MgO as a main component was applied, followed by secondary recrystallization annealing at 850 ° C. for 50 hours, and subsequent purification annealing in dry hydrogen at 1200 ° C. for 8 hours. After that, brushing and H 2 SO 4 pickling are performed to remove the non-metallic substance layer on the surface layer, and then 3% HF and H 2 S 2 are added.
The surface was smoothed by chemical polishing in a liquid containing The melting amount of the steel sheet at this time was 3 μm. After this, 10KV
A TiN tension insulating film having a thickness of 0.5 μm was formed by ion plating for 3 minutes with the ionization voltage of.

次にりん酸塩とコロイダルシリカとを主成分とする絶縁
性塗布焼付層を形成し、その後800 ℃で2時間のひずみ
取り焼鈍を行った。
Next, an insulating coating baking layer containing phosphate and colloidal silica as main components was formed, and then strain relief annealing was performed at 800 ° C. for 2 hours.

比較例1 適合例1と同じ鋼板を表3中に示すごとく、脱炭・1次
再結晶の条件のみを2条件に変更した他、すべて適合例
1と同条件で処理した。
Comparative Example 1 As shown in Table 3 for the same steel sheet as in the conforming example 1, only the conditions of decarburization and primary recrystallization were changed to 2 conditions, and all the treatments were performed under the same conditions as in the conforming example 1.

適合例2 適合例1と同じ熱延板を、同じ工程で2回の冷間圧延を
行ない最終製品厚みとする際に、#600 仕上げの表面粗
さを有する圧延ロールを用いて圧延し、鋼板の表面粗さ
をRa で0.16μmとした。この鋼板を比較例1(b) と同
じ条件で脱炭・1次再結晶焼鈍を行ない、他はすべて適
合例1と同条件で処理した。
Application Example 2 When the same hot-rolled sheet as in Application Example 1 was cold-rolled twice in the same process to obtain the final product thickness, it was rolled using a rolling roll having a surface roughness of # 600 finish, The surface roughness Ra was 0.16 μm. This steel sheet was subjected to decarburization / primary recrystallization annealing under the same conditions as in Comparative Example 1 (b), and was otherwise treated under the same conditions as in Comparative Example 1.

適合例3 最終板厚への圧延を終った適合例1と同じ鋼板に、脱炭
・1次再結晶焼鈍に先立って硫酸塩を主体としためっき
浴中で鋼板を陰極として表3中に示す目付量でFe ,C
o ,Ni ,Mn 及びCd をめっきした。その後、脱炭・
1次再結晶焼鈍を比較例1(b) と同条件で行い、さらに
引続いて適合例1と同条件で処理した。
Application Example 3 The same steel sheet as in Application Example 1 that has finished rolling to the final plate thickness is shown in Table 3 with the steel sheet as a cathode in a plating bath mainly containing sulfate prior to decarburization and primary recrystallization annealing. Fe and C in basis weight
O, Ni, Mn and Cd were plated. After that, decarburization
Primary recrystallization annealing was carried out under the same conditions as in Comparative Example 1 (b), and subsequently, under the same conditions as in Compatible Example 1.

比較例2 脱炭・1次再結晶焼鈍に先立つめっきをFe とNi と
し、かつその目付量を表3に示すようにした他、適合例
3と同様に処理した。
Comparative Example 2 Fe and Ni were used as the plating prior to decarburization / primary recrystallization annealing, and the basis weights were set as shown in Table 3, and the same treatment as in Comparative Example 3 was performed.

適合例4 適合例1と同じ鋼板を適合例1と同じ工程で処理し、か
つ平滑面化以降の段階で、真空中で加速電圧150 KV、
直径0.5 mmの電子ビームを圧延方向に直角に5mm間隔に
線状に照射することによる磁区細分化処理を行った。な
お、この磁区細分化処理は(a) 平滑面化した後でTiN
の張力被膜を付与する前、あるいは(b) 平滑面化し、さ
らに張力被膜を付与した後の2つの異なる段階で実施し
た。なお、この場合のみ、磁性は歪取り焼鈍前に測定し
た。
Application Example 4 The same steel plate as in Application Example 1 was processed in the same process as in Application Example 1, and after the smoothing, the acceleration voltage was 150 KV in vacuum.
Magnetic domain refinement processing was performed by linearly irradiating an electron beam with a diameter of 0.5 mm at intervals of 5 mm perpendicular to the rolling direction. This magnetic domain subdivision processing is (a) TiN after smoothing.
Before applying the tension coating of (1) or (b) smoothing and then applying the tension coating in two different stages. Only in this case, the magnetism was measured before the strain relief annealing.

適合例5 適合例1と同じ鋼板を比較例1(b) と同条件で脱炭・1
次再結晶焼鈍を行ったあと、砥粒入り不しょく布ロール
(スコッチブライト)で表面を研削し、表層の酸素目付
量を0.7 g/mに低減した。その後、適合例1と同じ
条件で処理した。
Conformance example 5 Decarburization of the same steel sheet as in conformity example 1 under the same conditions as in comparison example 1 (b).
After the subsequent recrystallization annealing, the surface was ground with an abrasive grain-containing cloth roll (Scotchbright) to reduce the oxygen basis weight of the surface layer to 0.7 g / m 2 . Then, it processed on the same conditions as the example 1 of adaptation.

上記適合例1〜5及び比較例1,2に関して、脱炭・1
次再結晶焼鈍後の鋼板のC含有量、表層の酸素目付量及
び歪取り焼鈍後の磁気特性の測定結果を、表3にまとめ
て示す。
Regarding the above-mentioned conformity examples 1-5 and comparative examples 1 and 2, decarburization.
Table 3 shows the measurement results of the C content of the steel sheet after the subsequent recrystallization annealing, the oxygen basis weight of the surface layer, and the magnetic properties after the strain relief annealing.

(ロ)実施例2 C:0.043 %、Si :3.46%、Mn :0.060 %、Mo :
0.026 %、Se :0.023 %、Sb :0.025 %を含有する
熱延板を、900 ℃で3分間の均一化焼鈍後、950 ℃の中
間焼鈍をはさんで2回の冷間圧延を行って0.20mm厚の最
終冷延板とした。
(B) Example 2 C: 0.043%, Si: 3.46%, Mn: 0.060%, Mo:
A hot-rolled sheet containing 0.026%, Se: 0.023%, Sb: 0.025% was homogenized and annealed at 900 ° C for 3 minutes, and then cold-rolled twice with intermediate annealing at 950 ° C for 0.20. The final cold-rolled sheet with a thickness of mm was used.

その後800 ℃の湿水素中で脱炭焼鈍後、鋼板表面を研削
して、酸素目付量を片面当り0.25g/mとした。この
とき炭素含有量は、0.002 %であった。次にコイルを2
分割し、一方にMgO (80%)と Al2O3(20%)からなる
焼鈍分離剤を塗布(実施例)し、他方は Al2O3(70%)
とMgO (30%)からなる焼鈍分離剤を塗布(比較例)し
た。これらのコイルは850 ℃で50時間の2次再結晶焼鈍
し、1180℃で10時間乾水素中で純化焼鈍を行った。
Then, after decarburization annealing in wet hydrogen at 800 ° C., the surface of the steel sheet was ground to give an oxygen basis weight of 0.25 g / m 2 per side. At this time, the carbon content was 0.002%. Then coil 2
Divide and apply an annealing separator consisting of MgO (80%) and Al 2 O 3 (20%) on one side (Example), and on the other side Al 2 O 3 (70%)
And an annealing separator composed of MgO (30%) were applied (comparative example). These coils were subjected to a secondary recrystallization annealing at 850 ° C. for 50 hours and a purification annealing at 1180 ° C. for 10 hours in dry hydrogen.

この結果、両者ともに、フォルステライト被膜は形成さ
れなかった。
As a result, neither of the forsterite coatings was formed.

その後軽酸洗し、ついで3%HFとH2O2液中で化学研磨
してRa 0.05μmの中心線平均粗さの平滑面に仕上げ
た。
After that, it was lightly pickled and then chemically polished in a 3% HF and H 2 O 2 solution to obtain a smooth surface having a center line average roughness Ra of 0.05 μm.

その後CVD法により膜厚0.4 μmにてTiCの極薄の
張力被膜を形成させた。
After that, an extremely thin tension film of TiC was formed with a film thickness of 0.4 μm by the CVD method.

そのときの製品の磁気特性は、実施例がB10=1.92T,
17/50 =0.69 W/kgで、比較例がB10=1.90T,W
17/50 =0.95 W/kgであった。
The magnetic characteristics of the product at that time were B 10 = 1.92T in the example,
W 17/50 = 0.69 W / kg, comparative example is B 10 = 1.90T, W
It was 17/50 = 0.95 W / kg.

(ハ)実施例3 C:0.061 %、Si :3.38%、Mn :0.080 %、Al:
0.025 %、S:0.029 %、N:0.0068%を含有する熱延
板を、1150℃で3分間の均一焼鈍後急冷処理を行い、そ
の後300 ℃の温間圧延を施して0.23mm厚の最終冷延板と
した。その際圧延ロールとして平滑ロールを用い、鋼板
の表面粗さをRa :0.15μmとした。その後、850 ℃の
湿水素中で脱炭焼鈍した後、表面にMgO (90%)とZrO2
(10%)からなる焼鈍分離剤を塗布した後、850 から11
50℃まで8℃/hrで昇温して2次再結晶させた後、1200
℃で8時間乾水素中で純化焼鈍を行った。
(C) Example 3 C: 0.061%, Si: 3.38%, Mn: 0.080%, Al:
A hot-rolled sheet containing 0.025%, S: 0.029% and N: 0.0068% was uniformly annealed at 1150 ° C for 3 minutes, then quenched, and then warm-rolled at 300 ° C to give a final cooling of 0.23mm. It was a rolled sheet. At that time, a smooth roll was used as a rolling roll, and the surface roughness of the steel sheet was Ra: 0.15 μm. Then, after decarburizing annealing in wet hydrogen at 850 ° C, MgO (90%) and ZrO 2 were applied to the surface.
After applying the annealing separator consisting of (10%), 850 to 11
After re-crystallizing by heating up to 50 ℃ at 8 ℃ / hr, 1200
Purification annealing was performed in dry hydrogen at 8 ° C. for 8 hours.

その後軽酸洗し、表面の非金属物質を除去した後、この
コイルを2分割し、一方は圧延によって0.100 mmの厚み
とした。この時の表面の平均粗さRa は0.3 μmであっ
た。この鋼板表面にTiNの被膜を蒸着法により被着さ
せた後、900 ℃で5分間の再結晶焼鈍を施した。このと
きの製品の高周波磁気特性はB10:1.85T,W5/1000
4.3 W/kg,W10/1000 :20.1W /kg,W10/400:5.1
W /kg及びW15/400:10.3 W/kgであった。残る一方
は、3%HFとH2O2液中で化学研磨してRa 0.3 μmの
中心線平均粗さに平滑面仕上した。
After that, it was lightly pickled to remove non-metallic substances on the surface, and then this coil was divided into two, one of which was rolled to a thickness of 0.100 mm. The average surface roughness Ra at this time was 0.3 μm. A TiN film was deposited on the surface of the steel sheet by a vapor deposition method, and then recrystallization annealing was performed at 900 ° C. for 5 minutes. The high frequency magnetic characteristics of the product at this time are B 10 : 1.85T, W 5/1000 :
4.3 W / kg, W 10/1000 : 20.1 W / kg, W 10/400 : 5.1
W / kg and W 15/400 : 10.3 W / kg. The remaining one was chemically polished in a 3% HF and H 2 O 2 solution to have a smooth surface finish with a center line average roughness of Ra 0.3 μm.

次いで、イオンインプランテーション法により、Bを鋼
板のコイル・長手方向に垂直な方向に、間隔5mmで線状
に注入した後、TiNの張力被膜をイオンプレーティン
グ法で全面に被着させた。次にりん酸塩とコロイダルシ
リカとを主成分とする絶縁性塗布焼付層を形成させた
後、800 ℃で2時間のひずみ取り焼鈍を行った。
Then, by ion implantation, B was linearly injected in a direction perpendicular to the longitudinal direction of the coil of the steel sheet at a distance of 5 mm, and then a TiN tension coating was applied to the entire surface by ion plating. Next, after forming an insulating coating baking layer containing phosphate and colloidal silica as main components, strain relief annealing was performed at 800 ° C. for 2 hours.

そのときの製品の磁気特性は、B10=1.94T,W17/50
=0.63 W/kgであった。
The magnetic properties of the product at that time were B 10 = 1.94T, W 17/50
= 0.63 W / kg.

(発明の効果) この発明により、製品の磁気特性を損うことなく、フォ
ルステライト被膜形成を抑制する適切な製造方法を確立
し得る。
(Effects of the Invention) According to the present invention, it is possible to establish an appropriate manufacturing method for suppressing the formation of forsterite film without impairing the magnetic properties of the product.

【図面の簡単な説明】[Brief description of drawings]

第1図は、磁気特性と研磨厚みとの関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between magnetic characteristics and polishing thickness.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】含けい素鋼スラブを熱間圧延して得られた
熱延板に1回又は中間焼鈍をはさむ2回の冷間圧延を施
して最終板厚にしてから、脱炭・1次再結晶焼鈍を施し
たのち、焼鈍分離剤を塗布して引続く二次再結晶焼鈍及
び純化焼鈍を含む最終仕上焼鈍を施し、鋼板表面上の非
金属物質層を除去した後、平均粗さをRa で0.4 μm以
下の平滑面に仕上げ、この表面上にCVD法、イオンプ
レーティング法又はイオンインプランテーション法によ
り金属又はセラミックの張力被膜を被成する方向性電磁
鋼板の製造方法において、 脱炭・1次再結晶焼鈍後における鋼板表層の酸化物の量
を酸素目付量として、片面当り0.3 g/m以下でかつ
鋼板中の炭素含有量を0.003 wt%以下とし、焼鈍分離剤
としてMgO を主成分とする分離剤を用いることを特徴と
する鉄損の極めて低い方向性電磁鋼板の製造方法。
1. A hot-rolled sheet obtained by hot-rolling a silicon steel slab is cold-rolled once or twice with intermediate annealing to obtain a final sheet thickness, and then decarburized. After performing the secondary recrystallization annealing, after applying the annealing separation agent and subsequent final finishing annealing including secondary recrystallization annealing and purification annealing, after removing the non-metallic substance layer on the steel sheet surface, the average roughness To a smooth surface of 0.4 μm or less with Ra, and a metal or ceramic tension coating is formed on this surface by the CVD method, ion plating method or ion implantation method.・ Oxygen basis weight of the surface layer of the steel sheet after the primary recrystallization annealing is 0.3 g / m 2 or less per side and the carbon content of the steel sheet is 0.003 wt% or less, and MgO is used as an annealing separator. Characterized by using a separating agent as the main component Method for producing an extremely low-oriented electrical steel sheet the iron loss to be.
【請求項2】含けい素鋼スラブは、C:0.010 wt%以
下、Si :2.0 wt%以下、酸可溶性Al :0.010〜0.060
wt%及びTotal N:0.003 〜0.010wt%を含有するもの
である特許請求の範囲第1項記載の製造方法。
2. A silicon steel slab containing C: 0.010 wt% or less, Si: 2.0 wt% or less, acid-soluble Al: 0.010 to 0.060.
The manufacturing method according to claim 1, which contains wt% and Total N: 0.003 to 0.010 wt%.
【請求項3】脱炭・1次再結晶焼鈍前の圧延は、平滑な
ロールを用いて鋼板表面の平均粗さをRa で0.2 μm以
下にするものである特許請求の範囲第1項記載の製造方
法。
3. The rolling before decarburization / primary recrystallization annealing is performed by using a smooth roll to reduce the average roughness of the steel sheet surface to Ra of 0.2 μm or less. Production method.
【請求項4】平滑面仕上げが、圧延処理によるものであ
る特許請求の範囲第1項記載の製造方法。
4. The manufacturing method according to claim 1, wherein the smooth surface finish is a rolling treatment.
【請求項5】圧延処理が、板厚を0.02〜0.15mmとするも
のである特許請求の範囲第4項記載の製造方法。
5. The manufacturing method according to claim 4, wherein the rolling treatment is performed so that the plate thickness is 0.02 to 0.15 mm.
【請求項6】酸素目付量の低減を、脱炭・1次再結晶焼
鈍に先立つFe ,Co ,Ni ,Mn 及びCd のうちから
選ばれる1種または2種以上を0.5 g/m以上20g/
未満の付着量でめっきすることによって行う特許請
求の範囲第1項記載の製造方法。
6. A reduction of the oxygen basis weight is achieved by 0.5 g / m 2 or more and 20 g or more of one or more selected from Fe, Co, Ni, Mn and Cd prior to decarburization / primary recrystallization annealing. /
The manufacturing method according to claim 1, which is performed by plating with an adhesion amount of less than m 2 .
【請求項7】酸素目付量の低減を、脱炭・1次再結晶焼
鈍後の鋼板表層を研削することによって行う特許請求の
範囲第1項記載の製造方法。
7. The manufacturing method according to claim 1, wherein the oxygen basis weight is reduced by grinding the surface layer of the steel sheet after decarburization and primary recrystallization annealing.
JP8371287A 1987-04-07 1987-04-07 Method for producing grain-oriented electrical steel sheet with extremely low iron loss Expired - Lifetime JPH0619113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8371287A JPH0619113B2 (en) 1987-04-07 1987-04-07 Method for producing grain-oriented electrical steel sheet with extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8371287A JPH0619113B2 (en) 1987-04-07 1987-04-07 Method for producing grain-oriented electrical steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPS63250419A JPS63250419A (en) 1988-10-18
JPH0619113B2 true JPH0619113B2 (en) 1994-03-16

Family

ID=13810113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8371287A Expired - Lifetime JPH0619113B2 (en) 1987-04-07 1987-04-07 Method for producing grain-oriented electrical steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JPH0619113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3534383B1 (en) * 2016-12-21 2024-01-24 JFE Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624028B2 (en) * 2016-12-01 2019-12-25 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
BR112021012986A2 (en) * 2019-01-08 2021-09-14 Nippon Steel Corporation ORIENTED GRAIN ELECTRIC STEEL SHEET, FINAL ANNEEL USE STEEL SHEET FOR MANUFACTURING GRAIN ORIENTED ELECTRIC STEEL SHEET, ANNEEDING SEPARATOR, AND, METHODS FOR MANUFACTURING ORIENTED GRAIN ELECTRIC STEEL SHEET AND TO MANUFACTURE STEEL SHEET FOR USE IN FINAL ANNEALING
EP3913085A4 (en) * 2019-01-16 2022-09-21 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet
CN117344210A (en) * 2022-06-29 2024-01-05 宝山钢铁股份有限公司 Oriented silicon steel and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3534383B1 (en) * 2016-12-21 2024-01-24 JFE Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS63250419A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
JPH0619113B2 (en) Method for producing grain-oriented electrical steel sheet with extremely low iron loss
JPS6335684B2 (en)
JPH05263135A (en) Production of grain-oriented silicon steel sheet having metallic luster and excellent in magnetic property
JPS6332849B2 (en)
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JPH06179977A (en) Grain-oriented silicon steel sheet excellent in bendability and core loss property
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JPH0663034B2 (en) Method for producing grain-oriented silicon steel sheet with extremely low iron loss
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
RU2768930C1 (en) Method of making a sheet of electrical steel with an oriented grain structure
JPS6332850B2 (en)
JP4119614B2 (en) Method for producing grain-oriented electrical steel sheet
JPH04272166A (en) Manufacture of ultralow core loss grain-oriented silicon steel sheet
JPH075973B2 (en) Manufacturing method of ultra-low iron loss unidirectional silicon steel sheet
JPS6335685B2 (en)
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPH0741861A (en) Production of grain-oriented silicon steel sheet
JPH0327633B2 (en)
JPH067527B2 (en) Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same
JPH0374488B2 (en)