JPH08222423A - Grain oriented silicon steel plate of low core loss and its manufacture - Google Patents

Grain oriented silicon steel plate of low core loss and its manufacture

Info

Publication number
JPH08222423A
JPH08222423A JP7023993A JP2399395A JPH08222423A JP H08222423 A JPH08222423 A JP H08222423A JP 7023993 A JP7023993 A JP 7023993A JP 2399395 A JP2399395 A JP 2399395A JP H08222423 A JPH08222423 A JP H08222423A
Authority
JP
Japan
Prior art keywords
grain
steel sheet
silicon steel
oriented silicon
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7023993A
Other languages
Japanese (ja)
Inventor
Hirotake Ishitobi
宏威 石飛
Tsutomu Kami
力 上
Takashi Suzuki
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7023993A priority Critical patent/JPH08222423A/en
Publication of JPH08222423A publication Critical patent/JPH08222423A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates

Abstract

PURPOSE: To obtain a grain oriented silicon steel plate having tension coating of good adhesion property by providing a composite metallic plating layer wherein oxide grain is dispersed between tension coating and a grain oriented silicon steel plate surface. CONSTITUTION: A silicon steel plate is electrolytically ground, a surface is magnetically smoothened and composite electroplating is applied to the obtained steel plate. The plating is carried out by performing cathode electrolysis for a steel plate in electrolytic bath wherein oxide colloidal grain is dispersed in plating bath containing matrix metallic ion. Thereafter, water-based treatment solution mainly composed of magnesium phosphate, colloidal silica and chromic acid anhydride is applied as tension coating and burnt, and a film is formed. In the process, oxide colloidal grain is one kind or two or more kinds selected from SiO2 , Al2 O3 , Cr2 O3 , Fe2 O3 , TiO2 , ZrO2 , Sb2 O5 , SnO2 and MgO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、低鉄損の方向性けい
素鋼板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low iron loss grain-oriented silicon steel sheet and a method for producing the same.

【0002】方向性けい素鋼板はSi:4wt%(以下単に
%で示す)以下と少量のMnS, MnSeあるいはAlN などの
2次再結晶インヒビターとを含有するけい素鋼素材を熱
間圧延し、焼鈍と1回または2回以上の冷間圧延工程に
より最終製品板厚の冷延板とし、次に脱炭を兼ねた1次
再結晶焼鈍を施して、SiO2を主成分とするサブスケール
を生成させたのち、MgO を主成分とする焼鈍分離剤を水
スラリーの形で塗布して乾燥させ、ついでコイル状に巻
取ってから最終仕上げ焼鈍を施し(110)〔001〕
方位の2次再結晶粒を発達させ、同時に再結晶インヒビ
ターとしての役割を終えた鋼中のS,Seなどの有害不純
物を除去するとともに、上記SiO2とMgOを反応させて2
〜5μm 厚のフォルステライト(Mg2SiO4) 被膜を形成さ
せ、ときにはさらにリン酸塩系処理剤の上塗りによって
絶縁コーティングを焼付け形成させる、一連の製造工程
を経て製品にされるのが通例である。
A grain-oriented silicon steel sheet is obtained by hot rolling a silicon steel material containing Si: 4 wt% or less (hereinafter simply referred to as%) and a small amount of a secondary recrystallization inhibitor such as MnS, MnSe or AlN. A cold rolled sheet of final product thickness is obtained by annealing and one or more cold rolling steps, and then primary recrystallization annealing that also serves as decarburization is performed to obtain a subscale containing SiO 2 as a main component. After being formed, an annealing separating agent containing MgO as a main component is applied in the form of a water slurry, dried, and then wound into a coil and then subjected to final finishing annealing (110) [001].
Oriented secondary recrystallized grains are developed, and at the same time harmful impurities such as S and Se in the steel that has finished its role as a recrystallization inhibitor are removed, and the above SiO 2 and MgO are reacted to
The product is usually manufactured through a series of manufacturing steps in which a forsterite (Mg 2 SiO 4 ) film having a thickness of ˜5 μm is formed, and sometimes an insulating coating is formed by baking on a phosphate-based treatment agent. .

【0003】このようにして得られた方向性けい素鋼板
は、主として変圧器その他の電気機器の鉄心として使用
し、磁気特性として磁束密度(B8 値で代表される)が
高く、鉄損(W17/50 で代表される)が低いことが要求
される。とくに省エネルギーの見地から鉄心内部で電気
的エネルギーが熱エネルギーとなって無駄なエネルギー
として消費されることを極力避けるために、鉄損の低減
がより重要視されてきている。
The grain-oriented silicon steel sheet thus obtained is mainly used as an iron core of a transformer or other electric equipment, has a high magnetic flux density (represented by a B 8 value) as a magnetic property, and has an iron loss ( ( Represented by W 17/50 ) is required to be low. In particular, from the viewpoint of energy saving, reduction of iron loss is becoming more important in order to prevent electric energy from being converted into heat energy and wasted as wasteful energy inside the iron core.

【0004】[0004]

【従来の技術】ところで方向性けい素鋼板の仕上げ焼鈍
時に鋼板面に形成されるフォルステライト被膜を除去
し、次いで表面を平滑に仕上げると著しい鉄損の減少が
認められることが知られている。例えば特公昭52−2449
9 号公報(超低鉄損一方向性珪素鋼板の製造方法)には
仕上げ焼鈍後、酸洗により、表面生成物を除去し、次い
で化学研磨または電解研磨により鏡面状態に仕上げる方
法が開示されている。また特公平4−72920 号公報(低
鉄損方向性けい素鋼板の製造方法)には、表面生成物を
除去したのち、ハロゲン化物水溶液中で電解処理する方
法が開示されている。さらに特開平5−43943 号公報
(方向性けい素鋼板の鏡面化方法)にはフォルステライ
ト被膜を除去したあと、1000〜1200℃のH2中でサーマル
エッチングする方法が開示されている。このような平滑
化によって鉄損が減少するのは、磁化過程における磁壁
移動の妨げとなるピンニングサイトの減少によってヒス
テリシス損失が減るためである。なお、ヒステリシス損
失を減少させる磁気的に平滑な表面とは一般にRa(中心
線平均粗さ)で表現される、いわゆる表面粗度だけで示
されるものでないことは、上記特公平4−72920 号公報
に示されているとおりである。
2. Description of the Related Art By the way, it is known that if the forsterite coating film formed on the surface of a grain-oriented silicon steel sheet is finish-annealed and then the surface is finished to be smooth, a remarkable reduction in iron loss is recognized. For example, Japanese Patent Publication No.
Japanese Unexamined Patent Publication No. 9 (a method for producing ultra-low iron loss unidirectional silicon steel sheet) discloses a method in which after finish annealing, surface products are removed by pickling, and then chemical polishing or electrolytic polishing is performed to obtain a mirror-finished state. There is. Further, Japanese Patent Publication No. 4-72920 (method for producing low iron loss grain oriented silicon steel sheet) discloses a method of electrolytic treatment in an aqueous halide solution after removing surface products. Further, Japanese Patent Application Laid-Open No. 5-43943 (method for mirror-finishing grain-oriented silicon steel sheet) discloses a method in which the forsterite coating is removed and then thermal etching is performed in H 2 at 1000 to 1200 ° C. The reason why the iron loss is reduced by such smoothing is that the hysteresis loss is reduced due to the reduction of pinning sites that hinder the domain wall movement in the magnetization process. It should be noted that the magnetically smooth surface that reduces the hysteresis loss is not generally represented by Ra (center line average roughness), which is so-called surface roughness alone. As shown in.

【0005】以上のようにして平滑化された表面にコー
ティング処理によって張力を付与すると鉄損はさらに減
少することが知られている。これは磁化方向に張力を加
えると静磁エネルギーを減少しようとする作用により、
磁区が細分化されて渦流損失が減るためである。
It is known that iron loss can be further reduced by applying tension to the surface smoothed as described above by coating. This is due to the action of reducing the magnetostatic energy when tension is applied in the magnetization direction,
This is because the magnetic domains are subdivided and the eddy current loss is reduced.

【0006】平滑化された鋼板表面に張力コーティング
処理する方法として、従来より、いくつかの方法が提案
されてきた。例えば、上記特公昭52−24499 号公報には
金属薄めっきをしたのち、コーティング剤を塗布、焼付
ける方法が示されている。また特公昭56−4150号公報
(鉄損の極めて低い一方向性けい素鋼板の製造方法)に
はセラミックス薄膜を蒸着、スパッタリングあるいは溶
射等によって形成する方法が、さらに特公昭63−54767
号公報(熱安定性、超低鉄損一方向性珪素鋼板の製造方
法)には窒化物や炭化物の被膜をイオンプレーティング
またはイオンインプランテーションによって形成する方
法が開示されている。加えて、特開平2−243770号公報
(低鉄損一方向性珪素鋼板の製造方法)には、いわゆる
ゾル・ゲル法によってセラミックス被膜を形成する方法
が開示されている。
Several methods have conventionally been proposed as a method for performing tension coating treatment on a smoothed steel plate surface. For example, JP-B-52-24499 discloses a method of applying a coating agent and baking after performing thin metal plating. Further, Japanese Patent Publication No. 56-4150 (method for producing unidirectional silicon steel sheet with extremely low iron loss) discloses a method of forming a ceramic thin film by vapor deposition, sputtering or thermal spraying.
Japanese Unexamined Patent Publication (Heat Stability, Method of Manufacturing Ultra Low Iron Loss Unidirectional Silicon Steel Sheet) discloses a method of forming a nitride or carbide coating by ion plating or ion implantation. In addition, Japanese Patent Application Laid-Open No. 2-243770 (method for producing low iron loss unidirectional silicon steel sheet) discloses a method for forming a ceramic coating by a so-called sol-gel method.

【0007】これらの方法は平滑化された表面を有する
鋼板に張力を付与する方法として確かに有効なものであ
るが、いくつかの問題を内包するものであった。すなわ
ち、金属薄めっきを下地とし、その上に塗布、焼付け型
のコーティング処理する方法では、被膜の密着性が十分
ではなかった。また、蒸着、スパッタリング溶射、イオ
ンプレーティング、イオンプランテーションあるいはゾ
ル・ゲル法によるセラミックス被膜の形成は高コストで
あったり、大面積を大量処理する際の均一性確保が困難
であるなど、工業生産上の問題があった。
These methods are certainly effective as a method for applying tension to a steel sheet having a smoothed surface, but have some problems. That is, the adhesion of the coating was not sufficient by the method of applying the thin metal plating as the base and applying the coating on it and baking the coating. In addition, the formation of a ceramic film by vapor deposition, sputtering spraying, ion plating, ion plantation, or the sol-gel method is expensive, and it is difficult to ensure uniformity when processing a large area in large quantities. There was a problem.

【0008】なお、現在、フォルステライト被膜を有す
る方向性けい素鋼板に適用されている張力コーティング
は、リン酸塩、コロイダルシリカおよび無水クロム酸の
混合処理液またはクロム酸塩を主成分とした処理液を塗
布、焼付けすることによって形成されているものが多
い。この方法で形成するガラス質被膜は低熱膨張率のた
め、鋼板に対し効果的に張力を付加するものであり、例
えば、特公昭53−28375号公報(方向性珪素鋼板の絶縁
被膜形成方法)および特公昭56−52117 号公報(方向性
珪素鋼板の絶縁被膜を形成する方法)等にその形成方法
が開示されている。
The tension coating currently applied to the grain-oriented silicon steel sheet having a forsterite coating is a mixed treatment liquid of phosphate, colloidal silica and chromic anhydride or a treatment mainly containing chromate. Many are formed by applying and baking a liquid. The vitreous coating formed by this method has a low coefficient of thermal expansion and therefore effectively applies tension to the steel sheet. For example, JP-B-53-28375 (method for forming an insulating coating on a grain-oriented silicon steel sheet) and Japanese Patent Publication No. 56-52117 (method of forming an insulating coating on a grain-oriented silicon steel sheet) discloses a method of forming the same.

【0009】これらの方法はコスト的にも優れ、均一処
理も容易であり、工業的にも優れた方法である。しかし
ながら平滑化した鋼板表面に直接、このコーティング処
理すると被膜の密着性が不十分であり、歪取り焼鈍や曲
げ加工、あるいは剪断や打抜き加工時に被膜が剥離する
という問題点があった。
These methods are excellent in cost, easy to perform uniform treatment, and industrially excellent. However, if this coating treatment is performed directly on the smoothed steel plate surface, the adhesion of the coating film is insufficient, and there is a problem that the coating film peels off during strain relief annealing, bending, shearing or punching.

【0010】[0010]

【発明が解決しようとする課題】この発明は、前記した
問題点を有利に解決し、密着性に優れる張力コーティン
グを有する鉄損の低い方向性けい素鋼板およびその製造
方法を提案することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, and to propose a grain-oriented silicon steel sheet having a low iron loss and having a tension coating having excellent adhesion and a method for producing the same. And

【0011】[0011]

【課題を解決するための手段】この発明は、発明者ら
が、平滑化された表面を有する方向性けい素鋼板に、り
ん酸塩・コロイダルシリカ・クロム酸系の張力コーティ
ングを形成させる場合の鋼板と張力コーティングとの強
力なバインダーとなる下地処理について、種々実験・検
討を行った結果、達成するに至ったものである。すなわ
ち、この発明の要旨とするところは以下のとおりであ
る。
SUMMARY OF THE INVENTION The present invention provides a method for forming a phosphate / colloidal silica / chromic acid tension coating on a grain-oriented silicon steel sheet having a smoothed surface. As a result of various experiments and examinations, the base treatment that serves as a strong binder between the steel sheet and the tension coating has been achieved. That is, the gist of the present invention is as follows.

【0012】張力コーティングと方向性けい素鋼板表
面との間に、酸化物粒子を分散させた複合金属めっき層
を有してなる鉄損の低い方向性けい素鋼板である(第1
発明)。
A grain-oriented silicon steel sheet having a low iron loss, which has a composite metal plating layer in which oxide particles are dispersed between the tension coating and the surface of the grain-oriented silicon steel sheet (No. 1).
invention).

【0013】第1発明における酸化物粒子を、SiO2,
Al2O3, Cr2O3, Fe2O3, TiO2, ZrO2,Sb2O5, SnO2および
MgOのうちから選ばれる1種または2種以上とするもの
である(第2発明)。
[0013] The oxide particles in the first invention, SiO 2,
Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , TiO 2 , ZrO 2 , Sb 2 O 5 , SnO 2 and
It is one or more selected from MgO (second invention).

【0014】第1発明または第2発明における張力コ
ーティングが、りん酸塩、コロイダルシリカおよびクロ
ム酸からなる混合処理液を主成分とする処理液をめっき
鋼板表面に塗布後、焼付けたものである(第3発明)。
The tension coating in the first invention or the second invention is obtained by applying a treatment liquid containing a mixed treatment liquid containing a phosphate, colloidal silica and chromic acid as a main component to the surface of a plated steel sheet and then baking it ( Third invention).

【0015】酸化物被膜の無い、かつ磁気的に平滑な
表面を有する仕上げ焼鈍済みの方向性電磁鋼板に、酸化
物粒子を分散させた複合金属めっきを施したのち、張力
コーティング処理を施すことを特徴とする鉄損の低い方
向性けい素鋼板の製造方法である(第4発明)。
A finish-annealed grain-oriented electrical steel sheet having no oxide film and having a magnetically smooth surface is subjected to composite metal plating in which oxide particles are dispersed, and then subjected to tension coating treatment. It is a characteristic method for producing a grain-oriented silicon steel sheet having a low iron loss (fourth invention).

【0016】ここで磁気的に平滑な表面とは鋼板の磁化
過程で磁壁移動の妨げとなるピンニングサイトを減少で
きる表面のことをいう。
Here, the magnetically smooth surface means a surface which can reduce pinning sites which hinder the domain wall movement in the magnetization process of the steel sheet.

【0017】[0017]

【作用】この発明の作用について以下に詳細に説明す
る。この発明に供する鋼板は表面が磁気的に平滑な状態
にされた、仕上げ焼鈍済みの方向性けい素鋼板である。
このような鋼板は以下のようにして製造することができ
る。
The function of the present invention will be described in detail below. The steel sheet used in the present invention is a grain-finished grain-oriented silicon steel sheet whose surface is magnetically smooth.
Such a steel plate can be manufactured as follows.

【0018】すなわち、Si:4%以下を含みかつMnS, M
nSe および/または AlN等のインヒビターを含むけい素
鋼スラブを熱間圧延後、必要に応じて焼鈍したのち1回
ないしは中間焼鈍を挟む、2回以上の冷間圧延によって
最終製品板厚まで圧延する。次に脱炭と一次再結晶のた
めの焼鈍を施し、さらに焼鈍分離剤を塗布して乾燥し、
ついでコイル状に巻取ってから最終仕上げ焼鈍を行う。
このとき焼鈍分離剤の主成分としてMgO を使用すると、
脱炭焼鈍時に生成したSiO2と反応し、表面にフォルステ
ライト(Mg2SiO4) を主体とした酸化物が形成される。こ
のような場合は、仕上げ焼鈍後酸洗または機械的研摩に
よってこの生成物を除去することになる。
That is, Si: contains 4% or less, and MnS, M
After hot rolling a silicon steel slab containing inhibitors such as nSe and / or AlN, it is annealed if necessary and then rolled once or twice by intermediate rolling to the final product sheet thickness by cold rolling. . Next, decarburization and annealing for primary recrystallization are performed, and then an annealing separator is applied and dried,
Then, it is wound into a coil and then subjected to final finish annealing.
At this time, if MgO is used as the main component of the annealing separator,
By reacting with SiO 2 generated during decarburization annealing, an oxide mainly composed of forsterite (Mg 2 SiO 4 ) is formed on the surface. In such cases, this product would be removed by pickling or mechanical polishing after finish annealing.

【0019】しかし焼鈍分離剤中に、Na, K等のアルカ
リ金属、あるいは塩化物などのフォルステライト被膜の
形成を阻害するような添加物を加えるか、もしくは分離
剤主成分をAl2O3 のようなSiO2と反応しにくい酸化物と
することによって、仕上げ焼鈍後の鋼板表面の酸化物の
生成を大幅に減少することができる。このような場合は
酸化物除去のための酸洗や機械的研磨は行わずに、直接
表面の平滑化を行なうことが可能となる。
However, an additive such as an alkali metal such as Na or K or a chloride such as chloride which inhibits the formation of a forsterite film is added to the annealing separator, or the main component of the separator is Al 2 O 3 . By using such an oxide that hardly reacts with SiO 2 , it is possible to significantly reduce the generation of oxides on the surface of the steel sheet after finish annealing. In such a case, the surface can be directly smoothed without performing pickling or mechanical polishing for removing oxides.

【0020】この平滑化とは磁気的な意味での平滑化で
あり、単なる鏡面化や表面粗さの減少のみを意味しな
い。すなわち鋼板の磁化過程で磁壁移動の妨げとなるピ
ンニングサイトを減少した表面は、たとえ表面粗さが大
きくても磁気的に平滑であるとする。このことは鋼板の
鉄損(ヒステリシス損失)を測定することによって容易
に判定できる。
This smoothing is a smoothing in a magnetic sense, and does not mean merely a mirror finish or a reduction in surface roughness. That is, the surface of which the number of pinning sites that hinder the domain wall movement during the magnetization process of the steel sheet is reduced is magnetically smooth even if the surface roughness is large. This can be easily determined by measuring the iron loss (hysteresis loss) of the steel sheet.

【0021】このような表面を得るには、従来から知ら
れているようにりん酸系、硫酸系、りん酸・硫酸系ある
いは過塩素酸系等の浴による電解研磨、あるいはHF−H2
O2やH3PO4 −H2O2等による化学研磨が適用できる。また
ハロゲン化物水溶液中での陽極電解もこの目的にかなっ
た方法である。さらに微粒の研磨剤を用いる歪の少ない
機械的研磨をこれらと組合せることも可能である。一
方、1000℃以上の還元性雰囲気中でサーマルエッチング
することによってもこのような表面を得ることが可能で
ある。
To obtain such a surface, electrolytic polishing using a bath of phosphoric acid type, sulfuric acid type, phosphoric acid / sulfuric acid type or perchloric acid type, or HF-H 2 is conventionally known.
Chemical polishing with O 2 or H 3 PO 4 —H 2 O 2 can be applied. Further, anodic electrolysis in a halide aqueous solution is also a method that meets this purpose. It is also possible to combine these with mechanical polishing with less distortion using fine-grained abrasives. On the other hand, such a surface can be obtained by thermal etching in a reducing atmosphere at 1000 ° C. or higher.

【0022】次いで、このようにして得られた、磁気的
に平滑な表面を有する方向性けい素鋼板に、酸化物微粒
子を分散させた複合金属めっきを施す。このめっき層は
鋼板に対し、電気めっき特有の強い密着性を持つととも
にめっき層中に酸化物微粒子を含有することから、その
あと、めっき層上に形成される張力コーティングに対し
ても強い親和性を発揮し、張力コーティングの密着性は
非常に強固なものとなる。この効果によって鋼板を曲げ
加工や剪断、打抜き加工あるいは歪取り焼鈍等に供して
も、コーティングの張力付与効果や表面被覆効果は劣化
することはない。
Next, the thus-obtained grain-oriented silicon steel sheet having a magnetically smooth surface is subjected to composite metal plating in which oxide fine particles are dispersed. This plating layer has strong adhesion to steel sheets, which is characteristic of electroplating, and since it contains oxide fine particles, it also has a strong affinity for the tension coating formed on the plating layer. And the adhesion of the tension coating becomes very strong. Due to this effect, even if the steel sheet is subjected to bending, shearing, punching, strain relief annealing, etc., the tension imparting effect of the coating and the surface coating effect do not deteriorate.

【0023】その複合金属めっきは酸化物の微粒子(コ
ロイド粒子)を分散させためっき浴中で、鋼板を電気め
っきすることによって形成される。このめっきのマトリ
ックス金属としては、Ni, Co, Fe, Zn, Cu, CrおよびSn
等が単独または複合ないしは合金めっきとして用いるこ
とができる。また酸化物としてはSiO2, Al2O3, Cr2O3,
Fe2O3, TiO2, ZrO2, Sb2O5,SnO2および MgOのうちの1
種または2種以上を用いることができ、さらに、これら
の酸化物が複合した形態の微粒子も使用可能である。な
お、めっき浴中または析出しためっき層中の粒子の形態
が水酸化物の形態になっていても、張力コーティング処
理液塗布後の焼付け時には分解して、酸化物になるの
で、この場合もこの発明に適合する。
The composite metal plating is formed by electroplating a steel sheet in a plating bath in which fine oxide particles (colloidal particles) are dispersed. The matrix metal for this plating is Ni, Co, Fe, Zn, Cu, Cr and Sn.
Etc. can be used alone or as composite or alloy plating. As oxides, SiO 2 , Al 2 O 3 , Cr 2 O 3 ,
Fe 2 O 3 , TiO 2 , ZrO 2 , Sb 2 O 5 , SnO 2 and MgO 1
One kind or two or more kinds can be used, and fine particles in the form of a composite of these oxides can also be used. Even if the form of particles in the plating bath or in the deposited plating layer is in the form of hydroxide, it decomposes during baking after application of the tension coating treatment solution and becomes an oxide. Fits the invention.

【0024】酸化物の粒子の大きさとしてはおよそ50 m
μm 以下のサイズが、均一な電析層が得られ、かつ張力
コーティングの密着性改善効果も優れているので好適で
ある。また、酸化物の含有量としては、めっき層全体の
0.5 〜50%程度が好適である。これが少なすぎると張力
コーティングの密着性が十分ではなく、また多すぎる場
合は鋼板に対するめっき層の密着性が劣化するので好ま
しくない。めっき層の厚みは0.1 〜5μm の範囲が好適
である。薄すぎると張力コーティングの密着性が十分で
なく、また厚すぎるとけい素鋼板としての占積率が低下
するので好ましくない。めっき条件は浴の種類によって
種々変化するのでいちがいには言えないが、電流密度は
およそ1〜100A/dm2の範囲で目的のめっき層を形成する
のに適している。
The particle size of the oxide is about 50 m
A size of not more than μm is preferable because a uniform electrodeposition layer can be obtained and the effect of improving the adhesion of the tension coating is excellent. In addition, as the content of the oxide,
0.5 to 50% is suitable. If it is too small, the adhesion of the tension coating will be insufficient, and if it is too large, the adhesion of the plating layer to the steel sheet will deteriorate, which is not preferable. The thickness of the plated layer is preferably in the range of 0.1 to 5 μm. If it is too thin, the adhesion of the tension coating will be insufficient, and if it is too thick, the space factor of the silicon steel sheet will decrease, which is not preferable. The plating conditions vary depending on the type of bath, so it cannot be said in any way, but the current density is suitable for forming the target plating layer in the range of approximately 1 to 100 A / dm 2 .

【0025】この酸化物粒子を含有した複合金属めっき
層の上に張力コーティングを形成させる。張力コーティ
ングの種類としては、従来からフォルステライト被膜を
有する方向性けい素鋼板に用いられている、りん酸塩・
コロイダルシリカ・クロム酸系のコーティングがその効
果およびコスト、均一処理性等の点から好適である。
A tension coating is formed on the composite metal plating layer containing the oxide particles. As for the type of tension coating, phosphate, which is conventionally used for grain-oriented silicon steel sheets with forsterite coating,
Colloidal silica / chromic acid type coating is preferable from the viewpoints of its effect, cost, uniform processability, and the like.

【0026】この張力コーティングは鋼板よりも低い熱
膨張係数によって、鋼板に効果的に張力を付与し、その
結果、鉄損(渦流損失)を減少せしめるものである。処
理液としてはりん酸アルミニウム、りん酸マグネシウム
あるいはりん酸カルシウム等のりん酸塩とコロイダルシ
リカ、さらには無水クロム酸またはクロム酸塩を主成分
として配合した水性液を用いる。これらを鋼板表面に塗
布したのち、500 〜900 ℃の温度範囲で焼付けることに
よってガラス質の被膜を形成する。被膜の厚みとして
は、張力付与効果や占積率、被膜密着性等の点から0.3
〜5μm 程度の範囲が好ましい。また、張力コーティン
グとして、これ以外にも特開平6−65754号公報、特開
平6−65755 号公報、特開平6−299366号公報などで提
案されているAl2O3 −B2O3等の酸化物系被膜を適用する
ことも可能である。
This tension coating effectively imparts tension to the steel sheet due to the coefficient of thermal expansion lower than that of the steel sheet, and as a result, reduces iron loss (eddy current loss). As the treatment liquid, an aqueous liquid prepared by mixing a phosphate such as aluminum phosphate, magnesium phosphate or calcium phosphate with colloidal silica, and chromic anhydride or a chromate as a main component is used. These are applied to the surface of the steel sheet and then baked in a temperature range of 500 to 900 ° C to form a glassy film. The thickness of the coating is 0.3 from the viewpoint of tension application effect, space factor, coating adhesion, etc.
The range of about 5 μm is preferable. Besides, as the tension coating, Al 2 O 3 -B 2 O 3 and the like proposed in JP-A-6-65754, JP-A-6-65755, JP-A-6-299366 and the like are also used. It is also possible to apply an oxide coating.

【0027】なお、このようにして得られた鋼板に、さ
らなる鉄損低減を目的としてレーザーあるいはプラズマ
炎等を照射して磁区の細分化を行うことは、張力コーテ
ィングの密着性が強化されているため何ら問題はない。
また、この発明の方向性けい素鋼板の製造工程の任意の
段階で磁区細分化のため表面にエッチングや歯形ロール
で一定間隔の溝を形成することも、いっそう鉄損の低下
をはかる手段として、有効である。
The steel sheet thus obtained is irradiated with a laser or a plasma flame to subdivide the magnetic domains for the purpose of further reducing the iron loss, whereby the adhesion of the tension coating is enhanced. So there is no problem.
Further, at any stage of the production process of the grain-oriented silicon steel sheet of the present invention, to form grooves at a constant interval by etching or tooth profile rolls for magnetic domain subdivision, as a means for further reducing iron loss, It is valid.

【0028】[0028]

【実施例】【Example】

実施例1 C:0.040 %、Si:3.40%、Mn:0.07%、Mo:0.012
%、S:0.004 %、Se:0.021 %およびSb:0.025 %を
含有するけい素鋼熱延板を、900 ℃、3分間の均一化焼
鈍後、950 ℃の中間焼鈍をはさむ2回の冷間圧延によ
り、最終板厚0.23mmの冷延板とした。次いで湿水素雰囲
気中で820 ℃、2分間の脱炭、一次再結晶焼鈍を施し、
その後、焼鈍分離剤としてSrSO4 とTiO2を各々1%づつ
添加したMgOを水スラリーの状態で塗布し乾燥した。さ
らにその後、N2中860 ℃、50時間の2次再結晶過程と、
それに続くH2中、1180℃、10時間の純化過程とを含む、
最終仕上げ焼鈍を施した。この鋼板をN2+H2中、820
℃、1分間の平坦化焼鈍(コイルの巻ぐせ除去)を行っ
たのち、10%、80℃のH2SO4 中で酸洗し、表面のフォル
ステライト被膜を除去した。次いでH3PO4 −CrO3浴中
で、70℃、100A/dm2の条件で電解研摩を行ない、表面を
磁気的に平滑化した。このようにして得られた鋼板に表
1に示す複合電気めっきを施した。
Example 1 C: 0.040%, Si: 3.40%, Mn: 0.07%, Mo: 0.012
%, S: 0.004%, Se: 0.021% and Sb: 0.025%, hot-rolled silicon steel sheet was homogenized at 900 ° C for 3 minutes and then an intermediate anneal at 950 ° C was performed. By rolling, a cold rolled sheet having a final sheet thickness of 0.23 mm was obtained. Then, perform decarburization and primary recrystallization annealing at 820 ° C for 2 minutes in a wet hydrogen atmosphere,
Then, MgO containing 1% each of SrSO 4 and TiO 2 as an annealing separator was applied in a water slurry state and dried. After that, a secondary recrystallization process was performed in N 2 at 860 ° C. for 50 hours,
Followed by a purification process in H 2 at 1180 ° C. for 10 hours,
Final finish annealing was performed. This steel plate in N 2 + H 2 in 820
After performing a flattening annealing (removal of coil winding) for 1 minute at 80 ° C., the forsterite film on the surface was removed by pickling in H 2 SO 4 at 10% and 80 ° C. Next, electrolytic polishing was performed in a H 3 PO 4 —CrO 3 bath at 70 ° C. and 100 A / dm 2 to magnetically smooth the surface. The steel sheet thus obtained was subjected to the composite electroplating shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】このめっきは、マトリックス金属イオンを
含有するめっき浴中に、酸化物コロイド粒子を分散させ
た電解浴中で、鋼板を陰極電解することによって行っ
た。なお、表中に示すように、比較のため、酸化物を含
有させないめっきも行なった。その後、張力コーティン
グとしてりん酸マグネシウム、コロイダルシリカおよび
無水クロム酸を主成分とする水性処理液を塗布し、800
℃で焼付け、約2.0 μmの厚さの被膜を形成させた。
This plating was carried out by cathodic electrolysis of the steel sheet in an electrolytic bath in which colloidal oxide particles were dispersed in a plating bath containing matrix metal ions. As shown in the table, for comparison, plating containing no oxide was also performed. After that, an aqueous treatment liquid containing magnesium phosphate, colloidal silica and chromic anhydride as main components was applied as a tension coating,
Baking was performed at 0 ° C. to form a film having a thickness of about 2.0 μm.

【0031】このようにして得られた鋼板の磁束密度
(B8)、鉄損 (W17/50)を測定し、さらに被膜密着性を
評価した。被膜の密着性は種々の径をもつ丸棒に試料を
巻き付け、被膜が剥離しない最少径(mm)で評価した。こ
れらの結果を表1にまとめて併記した。
Magnetic flux density of the steel sheet thus obtained
(B 8 ) and iron loss (W 17/50 ) were measured, and the film adhesion was evaluated. The adhesion of the coating film was evaluated by measuring the minimum diameter (mm) where the coating film was not peeled off by winding a sample around a round bar having various diameters. These results are collectively shown in Table 1.

【0032】表1から明らかなように、めっきを行わな
かった比較例の試料No.17 は鉄損、被膜密着性ともに不
良である。また、酸化物を含有しないめっきをした比較
例の試料No.12 〜16も、試料No.17 にくらべれば、鉄
損、被膜密着性とも向上はしているが、十分なレベルに
はない。こられに対し、この発明に適合する適合例の試
料No. 1〜11は優れた鉄損・被膜密着性を示している。
As is clear from Table 1, sample No. 17 of the comparative example, which was not plated, has poor core loss and poor coating adhesion. Further, the sample Nos. 12 to 16 of the comparative example plated with no oxide also have improved iron loss and coating adhesion as compared with sample No. 17, but they are not at a sufficient level. On the other hand, the sample Nos. 1 to 11 of the conforming examples conforming to the present invention exhibit excellent iron loss and coating adhesion.

【0033】実施例2 C:0.062 %、Si:3.12%、Mn:0.076 %、Se:0.022
%、S:0.003 %、Al:0.025 %、N:0.0085%および
Sb:0.028 %を含有する方向性けい素鋼熱延板を、1050
℃、2分間加熱後、ミスト噴射によって急冷し、次いで
冷間圧延を施して板厚0.23mmの冷延板とした。次いで湿
水素雰囲気中で830 ℃、3分間の脱炭、一次再結晶焼鈍
を施したのち、焼鈍分離剤としてAl2O3 粉末:60%、Ca
SiO3粉末:30%、MgO 粉末:10%の比率で配合した水ス
ラリーを塗布し、乾燥した。その後、H2中1200℃、10分
間の仕上げ焼鈍を行なった。この鋼板をN2+H2中で820
℃、1分間の平坦化焼鈍に供したのち、5%、40℃のHC
l 中で軽酸洗し、表面の酸化物を除去した。次いでHF−
H2O2浴中で化学研摩を行ない、表面を磁気的に平滑化し
た。このようにして得られた鋼板に、表2に示す複合電
気めっきを施した。
Example 2 C: 0.062%, Si: 3.12%, Mn: 0.076%, Se: 0.022
%, S: 0.003%, Al: 0.025%, N: 0.0085% and
Sb: Grain-oriented silicon steel hot-rolled sheet containing 0.028%, 1050
After heating at ℃ for 2 minutes, it was rapidly cooled by mist injection and then cold-rolled to obtain a cold-rolled sheet having a sheet thickness of 0.23 mm. Then, after decarburization and primary recrystallization annealing at 830 ° C for 3 minutes in a wet hydrogen atmosphere, Al 2 O 3 powder as an annealing separator: 60%, Ca
A water slurry mixed at a ratio of SiO 3 powder: 30% and MgO powder: 10% was applied and dried. After that, finish annealing was performed in H 2 at 1200 ° C. for 10 minutes. 820 this steel sheet in N 2 + H 2
After subjecting to flattening annealing at ℃ for 1 minute, HC at 5%, 40 ℃
The surface oxide was removed by lightly pickling in 1 l. Then HF-
Chemical polishing was performed in a H 2 O 2 bath to magnetically smooth the surface. The steel sheet thus obtained was subjected to the composite electroplating shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】めっきは実施例1と同様にして行なった。
なお、比較のため、酸化物を含有させないめっきも行な
った。その後、張力コーティングとしてりん酸アルミニ
ウム、コロイダルシリカおよび無水クロム酸を主成分と
する水性処理液を塗布し、800 ℃で焼付け約1.2 μm の
厚さの被膜を形成させた。かくして得られた方向性けい
素鋼板について、実施例1と同様にして磁気特性と被膜
密着性を評価した。これらの結果を表2にまとめて併記
した。
Plating was performed in the same manner as in Example 1.
For comparison, plating containing no oxide was also performed. Then, an aqueous treatment liquid containing aluminum phosphate, colloidal silica and chromic anhydride as main components was applied as a tension coating, and baked at 800 ° C. to form a film having a thickness of about 1.2 μm. With respect to the grain-oriented silicon steel sheet thus obtained, magnetic properties and coating adhesion were evaluated in the same manner as in Example 1. These results are collectively shown in Table 2.

【0036】表2から明らかなように、めっきを行わな
かった比較例の試料No.10 は鉄損、被膜密着性ともに不
良である。また酸化物を含有しないめっきをした比較例
の試料No. 7〜9も、No.10 にくらべれば改善されては
いるものの、鉄損、被膜密着性ともに未だ十分ではな
い。これらに対し、この発明に適合する適合例の試料N
o. 1〜6は鉄損、被膜密着性ともきわめて良好であ
る。
As is clear from Table 2, sample No. 10 of the comparative example, which was not plated, has poor iron loss and coating adhesion. In addition, the samples Nos. 7 to 9 of the comparative examples plated with no oxide are also improved as compared with the sample No. 10, but the iron loss and coating adhesion are still insufficient. On the other hand, sample N of the conforming example that conforms to the present invention
o.1 to 6 have very good iron loss and coating adhesion.

【0037】実施例3 最終板厚0.23mmの実施例1と同じ冷延板を実施例1と同
条件で、脱炭、一次再結晶焼鈍したのち、Al2O3 :55
%、CaSiO3:25%、MgO :20%の比率で配合した焼鈍分
離剤を水スラリーとして塗布し、乾燥した。次いで実施
例1と同条件で最終仕上げ焼鈍および平坦化焼鈍を行な
ったのち、5%40℃のHCl 中で軽酸洗し、表面の酸化物
を除去した。次いでポリエチレングリコールを含むNaCl
水溶液中で電流密度70A/dm2 の陽極電解を行ない、表面
を磁気的に平滑化した。その後、表3に示す複合電気め
っきを施した。
Example 3 The same cold-rolled sheet having the final sheet thickness of 0.23 mm as in Example 1 was decarburized and subjected to primary recrystallization annealing under the same conditions as in Example 1, and then Al 2 O 3 : 55.
%, CaSiO 3 : 25%, MgO: 20%, and the annealing separator was applied as a water slurry and dried. Next, final finishing annealing and flattening annealing were performed under the same conditions as in Example 1, and then light pickling was performed in 5% 40 ° C. HCl to remove surface oxides. Then NaCl containing polyethylene glycol
Anodic electrolysis with a current density of 70 A / dm 2 was performed in an aqueous solution to magnetically smooth the surface. Then, the composite electroplating shown in Table 3 was performed.

【0038】[0038]

【表3】 [Table 3]

【0039】めっきは実施例1と同様にして行ない、比
較のため、酸化物を含有させないめっきも行なった。そ
の後、張力コーティングとしてりん酸カルシウム、コロ
イダルシリカおよびクロム酸マグネシウムを主成分とす
る水性処理液を塗布し、800 ℃で焼付け、約1.7 μm の
厚さの被膜を形成させた。このあと、さらにN2中で800
℃、3時間の歪取り焼鈍を実施した。かくして得られた
方向性けい素鋼板について、実施例1と同様にして磁気
特性と被膜密着を評価した。これらの結果を表3にまと
めて併記した。
Plating was carried out in the same manner as in Example 1, and for comparison, plating containing no oxide was also carried out. After that, an aqueous treatment liquid containing calcium phosphate, colloidal silica and magnesium chromate as main components was applied as a tension coating and baked at 800 ° C. to form a film having a thickness of about 1.7 μm. After this, 800 more in N 2
Strain relief annealing was performed at 3 ° C. for 3 hours. With respect to the grain-oriented silicon steel sheet thus obtained, magnetic properties and coating adhesion were evaluated in the same manner as in Example 1. These results are collectively shown in Table 3.

【0040】表3から明らかなように、めっきを行わな
かった比較例の試料No. 9は鉄損、被膜密着性ともに不
良である。また、酸化物を含有しないめっきを施した比
較例の試料No. 7および8も同様によくない。これらに
対し、この発明に適合する適合例の試料No. 1〜6は歪
取り焼鈍後であってもやはり優れた鉄損と被膜密着性を
示している。
As is clear from Table 3, the sample No. 9 of the comparative example, which was not plated, is poor in both iron loss and coating adhesion. Similarly, sample Nos. 7 and 8 of the comparative examples plated with no oxide are not good. On the other hand, the sample Nos. 1 to 6 of the conforming examples conforming to the present invention still show excellent iron loss and coating adhesion even after the strain relief annealing.

【0041】[0041]

【発明の効果】この発明は、張力コーティングと平滑化
された方向性けい素鋼板表面との間に、バインダーとし
て酸化物粒子を分散させた複合金属めっき層を有してな
る方向性けい素鋼板とその製造方法であって、この発明
によれば、張力コーティングの被膜密着性に優れる鉄損
の極めて低い方向性けい素鋼板が得られ、省エネルギー
の見地から変圧器などの電気機器の鉄心として有利に使
用できる。
INDUSTRIAL APPLICABILITY The present invention is a grain-oriented silicon steel sheet having a composite metal plating layer in which oxide particles are dispersed as a binder, between a tension coating and a smoothed grain-oriented silicon steel sheet surface. According to the present invention, it is possible to obtain a grain-oriented silicon steel sheet having an extremely low iron loss, which is excellent in film adhesion of the tension coating, and is advantageous as an iron core of electric equipment such as a transformer from the viewpoint of energy saving. Can be used for

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C21D 9/46 501 H01F 1/16 B ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C21D 9/46 501 H01F 1/16 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 張力コーティングと方向性けい素鋼板表
面との間に、酸化物粒子を分散させた複合金属めっき層
を有してなる鉄損の低い方向性けい素鋼板。
1. A grain-oriented silicon steel sheet having a low iron loss, which comprises a composite metal plating layer in which oxide particles are dispersed between the tension coating and the surface of the grain-oriented silicon steel sheet.
【請求項2】 酸化物微粒子が、SiO2, Al2O3, Cr2O3,
Fe2O3, TiO2, ZrO2,Sb2O5, SnO2および MgOのうちから
選ばれる1種または2種以上である請求項1に記載の鉄
損の低い方向性けい素鋼板。
2. The oxide fine particles are SiO 2 , Al 2 O 3 , Cr 2 O 3 ,
The grain-oriented silicon steel sheet with low iron loss according to claim 1, which is one or more selected from Fe 2 O 3 , TiO 2 , ZrO 2 , Sb 2 O 5 , SnO 2 and MgO.
【請求項3】 張力コーティングが、りん酸塩、コロイ
ダルシリカおよびクロム酸からなる混合処理液を主成分
とする処理液をめっき鋼板表面に塗布後焼付けたもので
ある請求項1または2に記載の鉄損の低い方向性けい素
鋼板。
3. The tension coating according to claim 1, wherein the surface of the plated steel sheet is coated with a treatment liquid containing a mixed treatment liquid containing phosphate, colloidal silica and chromic acid as a main component and then baked. Grain-oriented silicon steel sheet with low iron loss.
【請求項4】 酸化物被膜の無い、かつ磁気的に平滑な
表面を有する仕上げ焼鈍済みの方向性電磁鋼板に、酸化
物粒子を分散させた複合金属めっきを施したのち、張力
コーティング処理を施すことを特徴とする鉄損の低い方
向性けい素鋼板の製造方法。
4. A finish-annealed grain-oriented electrical steel sheet having no oxide film and having a magnetically smooth surface is subjected to composite metal plating in which oxide particles are dispersed, and then subjected to tension coating treatment. A method for producing a grain-oriented silicon steel sheet having a low iron loss.
JP7023993A 1995-02-13 1995-02-13 Grain oriented silicon steel plate of low core loss and its manufacture Pending JPH08222423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7023993A JPH08222423A (en) 1995-02-13 1995-02-13 Grain oriented silicon steel plate of low core loss and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7023993A JPH08222423A (en) 1995-02-13 1995-02-13 Grain oriented silicon steel plate of low core loss and its manufacture

Publications (1)

Publication Number Publication Date
JPH08222423A true JPH08222423A (en) 1996-08-30

Family

ID=12126110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7023993A Pending JPH08222423A (en) 1995-02-13 1995-02-13 Grain oriented silicon steel plate of low core loss and its manufacture

Country Status (1)

Country Link
JP (1) JPH08222423A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088244A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
WO1999034377A1 (en) * 1997-12-24 1999-07-08 Kawasaki Steel Corporation Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same
JP2005171387A (en) * 2004-12-22 2005-06-30 Jfe Steel Kk MANUFACTURING METHOD OF MgO FOR ANNEALING SEPARATING AGENT
JP2006135061A (en) * 2004-11-05 2006-05-25 Nippon Steel Corp Electromagnetic steel plate having small relative permeability in board thickness direction
JP2007162095A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Grain oriented electromagnetic steel sheet with ferrite film
CN103305788A (en) * 2013-06-07 2013-09-18 和顺银圣化工有限公司 Preparation method of antimony assistant for oriented silicon steel
WO2015170755A1 (en) * 2014-05-09 2015-11-12 新日鐵住金株式会社 Low magnetorestriction oriented electromagnetic steel sheet with low iron loss
CN111118455A (en) * 2020-01-03 2020-05-08 北京金轮坤天特种机械有限公司 High-temperature-resistant anti-radiation silicon steel sheet and preparation method and application thereof
WO2020149336A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149337A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
CN115072812A (en) * 2021-03-16 2022-09-20 宝山钢铁股份有限公司 Silicon steel magnesium oxide wastewater recycling treatment method and treatment system
CN115851004A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 Coating liquid for heat-resistant notch-type oriented silicon steel coating, oriented silicon steel plate and manufacturing method thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088244A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
WO1999034377A1 (en) * 1997-12-24 1999-07-08 Kawasaki Steel Corporation Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same
JP2006135061A (en) * 2004-11-05 2006-05-25 Nippon Steel Corp Electromagnetic steel plate having small relative permeability in board thickness direction
JP2005171387A (en) * 2004-12-22 2005-06-30 Jfe Steel Kk MANUFACTURING METHOD OF MgO FOR ANNEALING SEPARATING AGENT
JP2007162095A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Grain oriented electromagnetic steel sheet with ferrite film
CN103305788A (en) * 2013-06-07 2013-09-18 和顺银圣化工有限公司 Preparation method of antimony assistant for oriented silicon steel
WO2015170755A1 (en) * 2014-05-09 2015-11-12 新日鐵住金株式会社 Low magnetorestriction oriented electromagnetic steel sheet with low iron loss
KR20160145654A (en) * 2014-05-09 2016-12-20 신닛테츠스미킨 카부시키카이샤 Low magnetorestriction oriented electromagnetic steel sheet with low iron loss
JPWO2015170755A1 (en) * 2014-05-09 2017-04-20 新日鐵住金株式会社 Oriented electrical steel sheet with low iron loss and low magnetostriction
US10610964B2 (en) 2014-05-09 2020-04-07 Nippon Steel Corporation Grain-oriented electrical steel sheet causing low core loss and low magnetostriction
WO2020149337A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
RU2768900C1 (en) * 2019-01-16 2022-03-25 Ниппон Стил Корпорейшн Method of producing electrical steel sheet with oriented grain structure
EP3913091A4 (en) * 2019-01-16 2022-10-12 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
EP3913081A4 (en) * 2019-01-16 2022-10-05 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
CN113272454A (en) * 2019-01-16 2021-08-17 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
JPWO2020149337A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149336A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
WO2020149336A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
CN111118455B (en) * 2020-01-03 2020-11-06 北京金轮坤天特种机械有限公司 High-temperature-resistant anti-radiation silicon steel sheet and preparation method and application thereof
CN111118455A (en) * 2020-01-03 2020-05-08 北京金轮坤天特种机械有限公司 High-temperature-resistant anti-radiation silicon steel sheet and preparation method and application thereof
CN115072812A (en) * 2021-03-16 2022-09-20 宝山钢铁股份有限公司 Silicon steel magnesium oxide wastewater recycling treatment method and treatment system
CN115072812B (en) * 2021-03-16 2023-07-11 宝山钢铁股份有限公司 Silicon steel magnesium oxide wastewater recycling treatment method and treatment system
CN115851004A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 Coating liquid for heat-resistant notch-type oriented silicon steel coating, oriented silicon steel plate and manufacturing method thereof
CN115851004B (en) * 2021-09-24 2023-12-12 宝山钢铁股份有限公司 Coating liquid for heat-resistant notch type oriented silicon steel coating, oriented silicon steel plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2020149321A1 (en) Method for manufacturing grain-oriented electrical steel sheet
KR100447048B1 (en) Grain-oriented electrical steel sheet in film adhesion and extremely low in core loss and its production method
JP2020111814A (en) Grain oriented electromagnetic steel sheet and method for manufacturing the same
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH05311453A (en) Production of ultralow iron loss grain-oriented electrical steel sheet
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
WO2020149337A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2683036B2 (en) Annealing agent
WO2020149327A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JPH0663036B2 (en) Method for producing grain-oriented electrical steel sheet having metallic luster
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JPH0754155A (en) Production of ultralow core loss grain-oriented silicon steel sheet
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149336A1 (en) Method for manufacturing grain-oriented electrical steel sheet
RU2768905C1 (en) Method of producing electrotechnical steel sheet with oriented grain structure
WO2023195517A1 (en) Grain-oriented electrical steel sheet and formation method for insulating coating film
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
JP3274409B2 (en) Grain-oriented electrical steel sheet with excellent coating adhesion and extremely low iron loss, and method for producing the same
JPH1180909A (en) Low iron loss grain-oriented silicon steel sheet good in adhesion of tension-applied type coating