JP2671084B2 - High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same - Google Patents

High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same

Info

Publication number
JP2671084B2
JP2671084B2 JP4220500A JP22050092A JP2671084B2 JP 2671084 B2 JP2671084 B2 JP 2671084B2 JP 4220500 A JP4220500 A JP 4220500A JP 22050092 A JP22050092 A JP 22050092A JP 2671084 B2 JP2671084 B2 JP 2671084B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
oriented electrical
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4220500A
Other languages
Japanese (ja)
Other versions
JPH0665753A (en
Inventor
収 田中
浩昭 増井
穂高 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4220500A priority Critical patent/JP2671084B2/en
Priority to KR93012299A priority patent/KR960009170B1/en
Priority to EP93110517A priority patent/EP0577124B1/en
Priority to DE69332394T priority patent/DE69332394T2/en
Publication of JPH0665753A publication Critical patent/JPH0665753A/en
Priority to US08/257,765 priority patent/US5507883A/en
Application granted granted Critical
Publication of JP2671084B2 publication Critical patent/JP2671084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/145Calcium sulfate hemi-hydrate with a specific crystal form
    • C04B28/147Calcium sulfate hemi-hydrate with a specific crystal form beta-hemihydrate

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はグラス皮膜(フォルステ
ライト、スピネル系皮膜)を有しない方向性電磁鋼板及
びその製造方法に関わり、特に切断性、打抜き性等の加
工性が優れると共に、低鉄損で且つ高磁束密度の方向性
電磁鋼板及びその安価な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having no glass coating (forsterite or spinel coating) and a method for producing the same, and is particularly excellent in workability such as cutting property and punching property, and is low in iron content. The present invention relates to a grain-oriented electrical steel sheet having a loss and a high magnetic flux density, and an inexpensive manufacturing method thereof.

【0002】[0002]

【従来の技術】方向性電磁鋼板は一般に軟磁性材料とし
て、主としてトランスその他の電気機器として使用され
るもので、磁気特性として励磁特性と鉄損特性の良好な
ものが要求される。良好な磁気特性を得るためには、磁
化容易軸である<001>軸を圧延方向に高度に揃える
ことが重要である。また、板厚、結晶粒度、固有抵抗、
皮膜特性も磁気特性に大きい影響を与えるため重要であ
る。
2. Description of the Related Art Grain-oriented electrical steel sheets are generally used as a soft magnetic material, mainly for transformers and other electric equipment, and are required to have good magnetic characteristics such as excitation characteristics and iron loss characteristics. In order to obtain good magnetic properties, it is important that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction. Also, plate thickness, grain size, specific resistance,
The coating properties are also important because they have a great influence on the magnetic properties.

【0003】結晶の方向性については、AlNをインヒ
ビターとして利用した高圧下最終冷延を特徴とする方法
により大幅に向上し、現在では磁束密度が理論値に近い
ものまで製造できるようになっている。一方、方向性電
磁鋼板の需要家における使用時に磁気特性と共に重要な
のは皮膜特性と加工性である。通常、方向性電磁鋼板は
最終仕上焼鈍時に形成するグラス皮膜と絶縁皮膜によっ
て表面処理がなされている。
The crystal orientation has been significantly improved by a method characterized by final cold rolling under high pressure using AlN as an inhibitor, and it is now possible to manufacture magnetic flux density close to the theoretical value. . On the other hand, when the grain-oriented electrical steel sheet is used in a consumer, what is important together with the magnetic characteristic are the coating characteristic and the workability. In general, grain-oriented electrical steel sheets are surface-treated with a glass film and an insulating film formed during final annealing.

【0004】グラス皮膜は焼鈍分離剤のMgOと脱炭焼
鈍時に形成する酸化膜のSiO2 との反応物であるフォ
ルステライト(Mg2 SiO4 )を主成分とし、インヒ
ビターとして用いられるAlNの分解により生じるAl
2 3 とSiO2 、MgO等によるスピネル系化合物よ
りなる皮膜である。このグラス皮膜は硬質で耐磨耗性が
強く、トランス鉄心加工時におけるスリット切断、打抜
き等の際の工具類の耐久性に著しい影響を及ぼす。例え
ば、グラス皮膜を有する方向性電磁鋼板の打抜き加工を
行う場合には、金型の磨耗が生じ、数千回程度の打抜き
によって打ち抜いたシートの返りが大きくなって使用時
に問題を生じる程になる。このため金型の再研磨、新品
との取換え等が必要になる。これは、需要家における鉄
心加工時の作業能率の低下やコストアップを招く結果に
なる。同様にしてスリット性、切断性等についてもグラ
ス皮膜による悪影響が問題である。
The glass film is mainly composed of forsterite (Mg 2 SiO 4 ) which is a reaction product of MgO which is an annealing separator and SiO 2 which is an oxide film formed during decarburization annealing. Resulting Al
It is a film made of a spinel compound of 2 O 3 , SiO 2 , MgO and the like. This glass film is hard and has strong abrasion resistance, and has a significant effect on the durability of tools such as slit cutting and punching when processing a transformer core. For example, when punching a grain-oriented electrical steel sheet having a glass coating, the die wears and the return of the punched sheet becomes large after several thousand punches, which causes a problem during use. . For this reason, it is necessary to re-polish the mold and replace it with a new one. This results in a decrease in work efficiency and an increase in cost at the time of processing the iron core in the customer. Similarly, with respect to slitting property, cutting property, etc., the adverse effect of the glass film is a problem.

【0005】このグラス皮膜は方向性電磁鋼板の磁気特
性についてはその皮膜張力によって鉄損の改善が得ら
れ、磁束密度が高い素材の場合には、この効果が著し
く、皮膜のない場合に比較し、20%近い鉄損の改善効
果が得られる。しかし、その形成状態、特に皮膜厚みの
増加や内部皮膜層の存在によって磁束密度の低下や磁区
細分化に際しての鉄損改善効果に悪影響を及ぼす。
With respect to the magnetic properties of grain-oriented electrical steel sheets, this glass coating improves iron loss due to the coating tension. In the case of a material having a high magnetic flux density, this effect is remarkable, and compared with the case without a coating. , An effect of improving iron loss of nearly 20% is obtained. However, the formation state thereof, particularly the increase of the film thickness and the presence of the inner film layer, adversely affect the decrease of the magnetic flux density and the iron loss improving effect at the time of domain segmentation.

【0006】とりわけ近年では、高張力絶縁皮膜の処理
技術の発達があり、また機械的、光学的、化学的等の手
段による磁区細分化技術が発達し、グラス皮膜の張力効
果なしでも鉄損の改善がはかれるようになった。このた
め、グラス皮膜による磁束密度の低下や、磁区細分化技
術により低鉄損化を行う場合に、内部酸化物の凹凸によ
る鉄損改善に弊害のない表面状態が求められるようにな
ってきた。このようなことからグラス皮膜を持たない高
磁束密度方向性電磁鋼板の方が、高磁束密度化と超低鉄
損化のために脚光を浴びるようになってきた。
In particular, in recent years, there have been developments in processing technology for high-strength insulating coatings, and developments in magnetic domain subdivision technology by means of mechanical, optical, chemical, etc. Improvements have been made. For this reason, when the magnetic flux density is reduced by the glass film and the iron loss is reduced by the magnetic domain refinement technique, a surface state that does not adversely affect the iron loss improvement due to the unevenness of the internal oxide has been demanded. For this reason, high magnetic flux density grain-oriented electrical steel sheets without a glass coating have come into the limelight due to their higher magnetic flux density and ultra-low iron loss.

【0007】グラス皮膜を有しない方向性電磁鋼板の製
造法としては、例えば特開昭53−22113号公報に
開示のものがある。これは脱炭焼鈍において酸化膜の厚
みを3μm以下として、焼鈍分離剤として含水珪酸塩鉱
物粉末を5〜40%含有する微粒子のアルミナを用い、
これを鋼板に塗布し、仕上焼鈍を行う方法である。これ
によると酸化膜を薄くし、さらに含水珪酸塩鉱物の配合
によって剥離しやすいグラス皮膜が形成され、金属光沢
を有するものが得られるとされている。
A method for producing a grain-oriented electrical steel sheet having no glass film is disclosed, for example, in JP-A-53-22113. This uses fine particles of alumina containing 5 to 40% of hydrous silicate mineral powder as an annealing separator, with the thickness of the oxide film being 3 μm or less in decarburizing annealing.
This is a method of applying this to a steel plate and performing finish annealing. According to this method, it is said that the oxide film is thinned, and a glass film that is easily peeled off is formed by blending a hydrous silicate mineral, and a glass having a metallic luster is obtained.

【0008】また、焼鈍分離剤によりグラス皮膜の形成
を抑制する方法として、特開昭56−65983号公報
に、水酸化アルミニウムに不純物除去用添加物20重量
部、抑制物質10重量部を配合した焼鈍分離剤を鋼板に
塗布し、0.5μm以下の薄いグラス皮膜を形成する方
法が開示されている。また、特開昭59−96278号
公報には、脱炭焼鈍で形成した酸化層のSiO2 と反応
性が弱いAl2 3 と、1300℃以上の高温で焼成
し、活性を低下させたMgOとからなる焼鈍分離剤が開
示されている。この焼鈍分離剤によるとフォルステライ
トの形成が抑制されるというものである。
Further, as a method for suppressing the formation of a glass film by an annealing separator, in JP-A-56-65983, 20 parts by weight of an additive for removing impurities and 10 parts by weight of an inhibitory substance were mixed with aluminum hydroxide. A method of applying an annealing separator to a steel sheet to form a thin glass film of 0.5 μm or less is disclosed. Further, in Japanese Patent Laid-Open No. 59-96278, Al 2 O 3 having a weak reactivity with SiO 2 of an oxide layer formed by decarburization annealing and MgO having a reduced activity by firing at a high temperature of 1300 ° C. or higher. An annealing separator composed of and is disclosed. The use of this annealing separator suppresses the formation of forsterite.

【0009】これらの先行技術はいずれも通常のオリエ
ントコアと呼ばれる方向性電磁鋼板で、磁束密度1.8
8Tesla未満と低い低級な方向性電磁鋼板をベース
とするものであり、グラス皮膜を有さない点では本発明
と類似の効果は得られるかもしれないが、本発明のよう
に高磁束密度、超低鉄損の高級な方向性電磁鋼板の開発
技術を得るまでに至っていない。
Each of these prior arts is a grain-oriented electrical steel sheet called a normal orient core, and has a magnetic flux density of 1.8.
It is based on a low-grade grain-oriented electrical steel sheet having a low value of less than 8 Tesla, and may have an effect similar to that of the present invention in that it does not have a glass film. We have not yet acquired the technology to develop high-grade grain-oriented electrical steel sheets with low iron loss.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、従来
インヒビターコントロールの面で実現が困難とされてい
たグラス皮膜を有さない低鉄損の高磁束密度方向性電磁
鋼板を工業的に安価に製造する方法を提供することにあ
る。さらにこの鋼板に高張力絶縁皮膜や表面形状効果や
歪みを利用した磁区細分化技術を適用することにより、
従来のグラス皮膜形成の技術に比較して飛躍的な超低鉄
損材を得ることを目的とするものである。また、グラス
皮膜形成をほぼ完全に抑制することにより、同時に打抜
き、切断、スリット等の加工性の優れた製品を得ること
を目的とする。
DISCLOSURE OF THE INVENTION An object of the present invention is to industrially produce a high magnetic flux density grain-oriented electrical steel sheet having a low iron loss and having no glass coating, which has been conventionally difficult to realize in terms of inhibitor control. To provide a manufacturing method. Furthermore, by applying a magnetic domain subdivision technology utilizing high-strength insulating film and surface shape effect and strain to this steel plate,
The purpose of the invention is to obtain a material with ultra-low iron loss, which is dramatically superior to the conventional glass film forming technology. It is another object of the present invention to obtain a product having excellent workability such as punching, cutting, slitting, and the like by suppressing glass film formation almost completely.

【0011】[0011]

【課題を解決するための手段】本発明の製品を得るに
は、出発材として、鋼成分として重量比でC:0.02
1〜0.075%、Si:2.5〜4.5%、酸可溶A
l:0.010〜0.040%、N:0.0030〜
0.0130%、S≦0.014%、Mn:0.05〜
0.45%を含有し、残部Fe及び不可避的不純物から
なる電磁鋼スラブを用い、このスラブを1280℃未満
の温度に加熱後、熱延し、1回または中間焼鈍を挟む2
回以上の冷延を行い、最終板厚とした後、次いで脱炭焼
鈍し、窒化処理をし、焼鈍分離剤を塗布した後、高温仕
上焼鈍し、ヒートフラットニングの前または後で磁区細
分化処理を施し、絶縁皮膜剤の塗布焼付を行うことから
なる製造方法による。
In order to obtain the product of the present invention, as a starting material, C: 0.02 as a steel component in a weight ratio.
1 to 0.075%, Si: 2.5 to 4.5%, acid-soluble A
l: 0.010-0.040%, N: 0.0030-
0.0130%, S ≦ 0.014%, Mn: 0.05 to
An electromagnetic steel slab containing 0.45% and the balance of Fe and unavoidable impurities is used, and the slab is heated to a temperature of less than 1280 ° C. and then hot rolled and sandwiched once or with intermediate annealing.
After cold rolling more than one time to obtain the final plate thickness, then decarburization annealing, nitriding treatment, applying an annealing separator, high temperature finish annealing, and before or after heat flattening, magnetic domain refinement According to a manufacturing method, which comprises applying a treatment and coating and baking an insulating film agent.

【0012】即ち、本発明ではスラブ加熱段階ではイン
ヒビター元素、例えばAl、N、Mn、S等の鋼中への
溶解を行わず、脱炭焼鈍後、材料を強還元雰囲気中で窒
化処理を行うことにより、(Al、Si)Nを主成分と
するインヒビターを形成させ、仕上焼鈍過程で良好な二
次再結晶を発達させた後、磁区細分化することを基本工
程とする。
That is, in the present invention, the inhibitor elements such as Al, N, Mn, and S are not dissolved in the steel during the slab heating step, and after decarburization annealing, the material is nitrided in a strong reducing atmosphere. As a result, the basic step is to form an inhibitor containing (Al, Si) N as a main component, develop good secondary recrystallization in the finish annealing process, and then subdivide the magnetic domains.

【0013】このような成分と工程による、本発明のグ
ラス皮膜を有さない超低鉄損の方向性電磁鋼板の製造方
法においては焼鈍分離剤塗布〜仕上焼鈍〜絶縁皮膜塗布
の過程での表面処理方法に特徴がある。最終冷延された
素材は連続ラインにおいて脱炭焼鈍される。この脱炭焼
鈍により、鋼中のCの除去と一次再結晶が行われ、同時
に鋼板表面にSiO2 を主成分とする酸化膜の形成が行
われる。脱炭焼鈍は800〜875℃で、雰囲気をN2
+H2 とし、露点をコントロールして行われる。
In the method for producing an ultra-low iron loss grain-oriented electrical steel sheet having no glass coating according to the above components and steps, the surface in the process of applying an annealing separator, finishing annealing, and insulating film application. There is a feature in the processing method. The final cold rolled material is decarburized and annealed in a continuous line. By this decarburizing annealing, removal of C in the steel and primary recrystallization are performed, and at the same time, an oxide film mainly composed of SiO 2 is formed on the surface of the steel sheet. Decarburization annealing is performed at 800 to 875 ° C. in an atmosphere of N 2
+ H 2 and dew point is controlled.

【0014】次いで脱炭焼鈍の後半或いは終了後に同一
ライン或いは別ラインで窒化処理が行われる。この際の
窒化量は150ppm以上、好ましくは150〜300
ppmとして処理される。この後、焼鈍分離剤を塗布
し、乾燥して巻き取り、最終仕上焼鈍される。この際の
焼鈍分離剤としてはMgO:100重量部に対し、L
i、Na、K、Ba、Ca、Mg、Zn、Fe、Zr、
Sn、Sr、Al等の少なくともCl化合物をClとし
て1重量部以上含み、且つCl化合物、S化合物の1種
または2種以上をClとSの合計量で1〜15重量部添
加したものを用いる。
Next, nitriding is performed in the same line or another line after the latter half or after the end of the decarburization annealing. The nitriding amount at this time is 150 ppm or more, preferably 150 to 300.
Treated as ppm. After that, an annealing separator is applied, dried, wound, and finally finish annealed. At this time, as an annealing separator, MgO: 100 parts by weight, L
i, Na, K, Ba, Ca, Mg, Zn, Fe, Zr,
Use is made of at least 1 part by weight of Cl compound such as Sn, Sr and Al as Cl, and 1 to 15 parts by weight of the total amount of Cl and S of 1 or 2 or more of Cl compound and S compound. .

【0015】本発明において焼鈍分離剤と共に重要なの
は第2の要素技術である仕上焼鈍条件である。本発明者
等は本発明のように脱炭焼鈍後に窒化処理を行い、(A
l、Si)Nを主体とするインヒビターを形成し、焼鈍
分離材と仕上焼鈍によってグラス皮膜の形成抑制と分解
反応を同時に行い、グラス皮膜のない鋼板を得ようとす
る場合においては、最終焼鈍での雰囲気と加熱条件が二
次再結晶の安定化と高磁束密度化に極めて重要であるこ
とをつきとめた。
In the present invention, what is important with the annealing separating agent is the finish annealing condition which is the second elemental technique. The present inventors performed nitriding treatment after decarburization annealing as in the present invention, and
l, Si) N-based inhibitor is formed, and when the glass film formation is suppressed and the decomposition reaction is simultaneously performed by the annealing separator and the finish annealing, the final annealing is performed in the case of obtaining a steel sheet having no glass film. It was found that the atmosphere and the heating conditions are very important for stabilizing the secondary recrystallization and increasing the magnetic flux density.

【0016】即ち、本発明のようにインヒビターとして
MnSをほとんど使用せず、(Al、Si)Nを形成
し、後にAlNへと変化させるプロセスにおいては、二
次再結晶開始温度が1100℃前後で、従来のAlN、
MnS等を同時に利用する高磁束密度材の場合よりも高
い。このため、二次再結晶開始温度領域までグラス皮膜
形成反応の抑制、分解を行いながらインヒビターを安定
に保つ必要がある。これは、本発明のように昇温時に低
温でグラス皮膜の若干の形成と反応の抑制を行い、高温
側で分解反応を生じさせる工程においては、グラス皮膜
層の形成時期の雰囲気ガスからの窒化によるNの増加
や、グラス皮膜分解時期における表面からのインヒビタ
ーの分解が生じてしまうからである。このため、本発明
のような特別な昇温条件を用いないと高磁束密度が得ら
れないばかりか二次再結晶不良を引き起こす。
That is, in the process of using (MnS) as an inhibitor and forming (Al, Si) N and then changing to AlN as in the present invention, the secondary recrystallization starting temperature is around 1100 ° C. , Conventional AlN,
It is higher than in the case of a high magnetic flux density material that simultaneously uses MnS and the like. Therefore, it is necessary to keep the inhibitor stable while suppressing and decomposing the glass film forming reaction up to the temperature range where the secondary recrystallization starts. This is because, as in the present invention, in the step of slightly forming the glass film and suppressing the reaction at a low temperature at the time of temperature rise, and causing the decomposition reaction on the high temperature side, nitriding from the atmospheric gas at the time of forming the glass film layer is performed. The reason for this is that N increases due to the reaction and decomposition of the inhibitor from the surface occurs at the time of decomposition of the glass film. Therefore, unless a special temperature rising condition as in the present invention is used, not only a high magnetic flux density can be obtained but also secondary recrystallization failure occurs.

【0017】この仕上焼鈍条件としては、グラス皮膜の
形成分解が進行する昇温時をN2 30%以上とし、昇温
速度は20℃/Hr以下で加熱する。これにより、(A
l、Mn)Nや、高温側でのAlNの安定化が保たれ、
良好な二次再結晶が得られる。このように処理されたグ
ラス皮膜を有さない高磁束密度材は形状矯正と歪取焼鈍
をかねて連続ラインにおいて絶縁皮膜剤塗布とヒートフ
ラットニングが行われる。この際、張力付与が行われる
絶縁処理が重要で、低熱膨張率の皮膜剤の塗布、メッ
キ、蒸着等の手段を用いて鋼板に張力が与えられる。こ
の際の絶縁皮膜剤としては、高張力を得るため、コロイ
ド状物質としてSiO2 、ZrO2 、SnO2 、Al2
3 等を固形分として100重量部に対し、Al、M
g、Ca等の第一リン酸塩の1種または2種以上を13
0〜200重量部、クロム酸またはクロム酸塩の1種ま
たは2種以上をクロム酸として12〜40重量部配合し
たものが用いられる。この際の皮膜の塗布厚みは2〜6
μmである。
As the finish annealing conditions, N 2 is 30% or more when the temperature is raised to promote the formation and decomposition of the glass film, and the heating rate is 20 ° C./hr or less. As a result, (A
l, Mn) N and AlN stabilization on the high temperature side are maintained,
Good secondary recrystallization is obtained. The thus treated high magnetic flux density material having no glass film is subjected to shape correction and strain relief annealing, and is applied with an insulating film agent and heat flattened in a continuous line. At this time, the insulating treatment for applying tension is important, and tension is applied to the steel sheet by means of application of a coating agent having a low coefficient of thermal expansion, plating, vapor deposition, or the like. In order to obtain high tension, the insulating film agent at this time is made of SiO 2 , ZrO 2 , SnO 2 , Al 2 as a colloidal substance.
Al, M for 100 parts by weight of O 3 etc. as a solid content
1 or 2 or more primary phosphates such as g and Ca 13
A mixture of 0 to 200 parts by weight and 12 to 40 parts by weight of chromic acid or one or more chromates as chromic acid is used. At this time, the coating thickness of the film is 2 to 6
μm.

【0018】このような条件で絶縁皮膜を処理すると、
鋼板に付与される皮膜張力は0.5〜2.0kg/mm
2 が得られる。この一連の製造工程において、冷延後、
脱炭焼鈍後、最終仕上焼鈍後、絶縁皮膜処理後等のいず
れか1ケ所または2ケ所以上でプレス、歯形ロール、ケ
ガキ、レーザー、エッチング等により圧延方向に対し4
0〜90度の方向に、線状または点状の凹み又は歪が、
間隔1〜15mm、深さ1〜25μm、幅500μm以
下で付与される。これらの磁区細分化後、必要に応じて
絶縁皮膜剤の処理や熱処理を施して製品にされる。
When the insulating film is treated under such conditions,
The film tension applied to the steel sheet is 0.5 to 2.0 kg / mm
2 is obtained. In this series of manufacturing process, after cold rolling,
After decarburization annealing, after final finishing annealing, after insulating film treatment, etc., at any one place or at two or more places, 4 in the rolling direction by pressing, tooth profile roll, marking, laser, etching, etc.
In the direction of 0 to 90 degrees, linear or dot-shaped depressions or strains
The interval is 1 to 15 mm, the depth is 1 to 25 μm, and the width is 500 μm or less. After subdividing these magnetic domains, an insulating film agent is treated or heat-treated as necessary to obtain a product.

【0019】次に、本発明における構成要件の限定理由
について述べる。まず出発材として使用する素材スラブ
の成分組成の限定理由は次の通りである。Cはその含有
量が0.021%未満では二次再結晶が不安定となり、
二次再結晶した場合にも製品の磁束密度がB8 で1.8
0Tesla程度と低いものになる。一方、0.075
%超になると、脱炭焼鈍工程で長時間を要するため、生
産性を阻害する。
Next, the reasons for limiting the constituents of the present invention will be described. First, the reasons for limiting the component composition of the material slab used as the starting material are as follows. If the content of C is less than 0.021%, secondary recrystallization becomes unstable,
1.8 the magnetic flux density of the product even when the secondary recrystallization at B 8
It will be as low as 0 Tesla. On the other hand, 0.075
If it exceeds%, the decarburization annealing process requires a long time, which hinders the productivity.

【0020】Siはその含有量によって固有抵抗が変化
する。2.5%未満では良好な鉄損値が得られない。一
方、4.5%超と多くなりすぎると冷延時に材料の割
れ、破断が多発し、安定した冷延作業を不可能にする。
本発明の出発材の成分系における特徴の1つは、Sを
0.0140%以下とすることにある。従来の公知技
術、例えば特公昭47−25220号公報に開示されて
いる技術においては、SはMnSとして二次再結晶を生
起させるのに必要な析出物を形成する元素で、前記公知
技術においてSが最も効果を発現する含有範囲があり、
それは熱延に先立って行われるスラブ加熱段階でMnS
を固溶できる量として規定されていた。
The specific resistance of Si changes depending on its content. If it is less than 2.5%, a good iron loss value cannot be obtained. On the other hand, if it exceeds 4.5%, the material frequently cracks and breaks during cold rolling, making stable cold rolling impossible.
One of the characteristics of the component system of the starting material of the present invention is that S is 0.0140% or less. In the conventional known technique, for example, the technique disclosed in Japanese Examined Patent Publication No. 47-25220, S is an element that forms a precipitate necessary for causing secondary recrystallization as MnS. There is a content range in which is most effective,
It is a slab heating step that is carried out prior to hot rolling.
Was defined as an amount capable of forming a solid solution.

【0021】しかし、近年の研究において、二次再結晶
に必要な析出物として(Al、Si)Nを用いる一方向
性電磁鋼板の製造プロセスにおいては、素材中のSi量
の多いスラブを低温でスラブ加熱して熱延する場合、S
は二次再結晶不良を助長することが見出された。素材中
のSi量が4.5%以下の場合、Sは0.014%以
下、好ましくは0.0070%以下であれば二次再結晶
不良の発生は全く生じない。
However, in recent research, in a manufacturing process of a grain-oriented electrical steel sheet using (Al, Si) N as a precipitate required for secondary recrystallization, a slab containing a large amount of Si in a material is kept at a low temperature. When slab heating and hot rolling, S
Was found to promote secondary recrystallization failure. When the amount of Si in the material is 4.5% or less, if S is 0.014% or less, preferably 0.0070% or less, occurrence of secondary recrystallization failure does not occur at all.

【0022】本発明では二次再結晶に必要な析出物とし
て(Al、Si)Nを用いる。従って必要最低限のAl
Nを確保するためには酸可溶Alは0.010%以上、
Nは0.0030%以上必要である。しかしながら、酸
可溶Alが0.040%を超えると熱延中のAlNが不
適切となり、二次再結晶が不安定となるため、0.01
0〜0.040%に制限される。
In the present invention, (Al, Si) N is used as a precipitate necessary for secondary recrystallization. Therefore, the minimum required Al
To secure N, acid-soluble Al is 0.010% or more,
N needs to be 0.0030% or more. However, if the acid-soluble Al content exceeds 0.040%, AlN during hot rolling becomes inappropriate, and secondary recrystallization becomes unstable.
Limited to 0-0.040%.

【0023】一方、Nの含有量は0.0130%を超え
るとブリスターと呼ばれる鋼板表面の割れが発生し、ま
た一次再結晶の粒径が調整できないため、0.0030
〜0.0130%に限定する。Mnは0.05%未満で
は二次再結晶が不安定になる。しかし多くなるとB8
は高くなるが、一定量以上の添加はコスト面で不利とな
る。このため、0.05〜0.45%に制限される。
On the other hand, if the content of N exceeds 0.0130%, cracks called blister on the surface of the steel sheet occur, and the grain size of primary recrystallization cannot be adjusted.
To 0.0130%. If Mn is less than 0.05%, secondary recrystallization becomes unstable. But although the higher number becomes the B 8 value, the addition of a certain amount or more it is disadvantageous in cost. Therefore, it is limited to 0.05 to 0.45%.

【0024】焼鈍分離剤としてはMgO:100重量部
に対し、Li、K、Na、Ba、Ca、Mg、Zn、F
e、Zr、Sr、Sn、Al等の中から選ばれる少なく
ともCl化合物をClとして1重量部以上含ませ、且つ
Cl化合物、S化合物の1種または2種以上をCl及び
Sの合計量として1〜15重量部配合する。Cl化合物
がClとして少なくとも1重量部以上必要なのは、仕上
焼鈍昇温過程でのグラス皮膜の形成抑制と分解のために
重要だからである。特にグラス皮膜の分解反応において
は、Clは皮膜層中のFeのエッチングを行い、皮膜層
中のSiO2 、スピネル等を地鉄表層から遊離させ、表
面の焼鈍分離剤中へ吸収反応させるために必要である。
As the annealing separating agent, Li, K, Na, Ba, Ca, Mg, Zn, F is added to 100 parts by weight of MgO.
At least 1 part by weight of Cl compound selected from e, Zr, Sr, Sn, Al and the like is contained as Cl, and 1 or 2 or more of Cl compound and S compound is contained as the total amount of Cl and S. -15 parts by weight are blended. The reason why the Cl compound is required to be at least 1 part by weight or more as Cl is that it is important for suppressing formation and decomposition of the glass film during the finish annealing temperature raising process. In particular, in the decomposition reaction of the glass film, Cl is used to etch Fe in the film layer to release SiO 2 , spinel, etc. in the film layer from the surface layer of the base metal, and to absorb the reaction into the annealing separator on the surface. is necessary.

【0025】Cl、Sの合計量が1重量部未満ではコイ
ル全面に均一にグラス皮膜を持たない製品が得られ難
く、本発明で主眼とするフォルステライト及びスピネル
化合物の合計量を0.6g/m2 以下に制御することが
困難になる。一方、Cl、Sの合計量が15重量部超で
は添加物の成分元素が鋼中に拡散してインヒビターに悪
影響を与えたり、余剰のCl、S等による粒界や粒内エ
ッチングが生じて表面状態を悪くしたり、後の純化の際
に悪影響を及ぼすため好ましくない。
If the total amount of Cl and S is less than 1 part by weight, it is difficult to obtain a product without a glass film uniformly on the entire surface of the coil, and the total amount of the forsterite and spinel compounds, which is the main object of the present invention, is 0.6 g / It becomes difficult to control to m 2 or less. On the other hand, if the total amount of Cl and S exceeds 15 parts by weight, the constituent elements of the additive diffuse into the steel and adversely affect the inhibitor, or grain boundaries and intragranular etching due to excess Cl and S occur to cause surface It is not preferable because it may worsen the condition or may have an adverse effect on the subsequent purification.

【0026】これらの添加物により、まず仕上焼鈍昇温
段階でMgO表面が低融点化し、地鉄中に発達したSi
2 主体のラーメン状に発達した酸化層に拡散し、早期
にフォルステライト主体のグラス皮膜層を形成する。こ
れにより鋼中への追加窒化や追加酸化が抑制される。昇
温時後段ではラーメン状に発達した酸化膜中のFe部分
がClやSによりエッチングを受け、皮膜層の分解が生
じる。この後、さらに高温での皮膜分解反応が進行する
と皮膜のない表面はサーマルエッチングを受けて、滑ら
かな鏡面的な表面が得られるものである。
With these additives, the MgO surface firstly has a low melting point in the finish annealing temperature raising stage, and the Si
It diffuses into the oxide layer developed in the form of a ramen mainly composed of O 2, and forms a glass film layer mainly composed of forsterite at an early stage. This suppresses additional nitriding and additional oxidation into the steel. In the latter stage at the time of temperature rise, the Fe portion in the oxide film that has developed into a rigid frame is etched by Cl or S, and the film layer is decomposed. After that, when the film decomposition reaction proceeds at a higher temperature, the film-free surface is subjected to thermal etching to obtain a smooth mirror-like surface.

【0027】本発明のように最終仕上焼鈍過程で前述の
ようなグラス皮膜の適度な形成と分解反応を行う工程に
おいては、仕上焼鈍の雰囲気のコントロールなしでは良
好磁性が得られない。仕上焼鈍における昇温時の雰囲気
ガスがN2 30%未満のような条件では、グラス皮膜の
分解、消失反応により(Al、Si)N、AlN等の弱
体化が生じ、二次再結晶が不良になったり、磁束密度の
低下が生じる。特にN2 20%以下の条件では著しい二
次再結晶不良を起こす。一方、N2 100%の場合に
は、焼鈍分離剤のMgO物性値によっては鋼板間が極端
な酸化性となって鋼板表面を酸化し、表面にムラを生じ
易い。最も好ましい範囲は、N2 :50〜80%の条件
である。
In the process of appropriately forming and decomposing the glass film as described above in the final finishing annealing process as in the present invention, good magnetism cannot be obtained without controlling the atmosphere of the finishing annealing. Under conditions such that the atmospheric gas at the time of temperature increase during finish annealing is less than 30% N 2 , the decomposition and disappearance reaction of the glass film causes weakening of (Al, Si) N, AlN, etc., resulting in poor secondary recrystallization. Or a decrease in magnetic flux density occurs. Particularly, under the condition of N 2 of 20% or less, remarkable secondary recrystallization failure occurs. On the other hand, when N 2 is 100%, depending on the MgO physical property value of the annealing separator, the space between the steel sheets becomes extremely oxidative and the surface of the steel sheet is oxidized, and unevenness is likely to occur on the surface. The most preferable range is N 2 : 50 to 80%.

【0028】また、昇温時の加熱速度は20℃/Hr以
下に制限される。これを超える急速な加熱では昇温過程
のグラス形成抑制、分解反応と、脱インヒビター速度、
粒成長等に於けるバランスが崩れて良好な二次再結晶が
得られなくなるからである。均熱時の条件は特に特定す
るものではないが、本発明においては1150〜120
0℃にするのが有利である。本発明の方法では、均熱温
度に到達した段階ではグラス皮膜の分解反応がほぼ完了
しており、この後の均熱段階では純化反応と共にサーマ
ルエッチングが生じて、さらに鋼板の鏡面化が得られ
る。この際の純化反応はグラス皮膜がないために非常に
円滑に生起し、通常のグラス皮膜形成工程処理を施した
ものに比較して高純度化される利点がある。これによ
り、さらに鉄損低減の効果が得られる。
The heating rate at the time of heating is limited to 20 ° C./Hr or less. In rapid heating exceeding this, suppression of glass formation in the temperature rising process, decomposition reaction, deinhibitor speed,
This is because the balance in grain growth and the like is lost and good secondary recrystallization cannot be obtained. The conditions for soaking are not particularly specified, but in the present invention, 1150 to 120
Preference is given to 0 ° C. In the method of the present invention, the decomposition reaction of the glass film is almost completed at the stage where the soaking temperature is reached, and in the subsequent soaking stage, thermal etching occurs together with the purification reaction, and further the mirror finish of the steel sheet is obtained. . The purification reaction at this time occurs very smoothly because there is no glass film, and there is an advantage that the purification reaction is higher than that in the case where the ordinary glass film forming process is applied. Thereby, the effect of further reducing iron loss can be obtained.

【0029】このようにして得られた鋼板は絶縁皮膜剤
を塗布してヒートフラットニングするか、ヒートフラッ
トニングの後に絶縁皮膜剤を処理して鋼板に張力付与が
行われる。処理条件としては低熱膨張率の絶縁皮膜剤を
塗布し、焼付処理するか、メッキ、蒸着等の手段で鋼板
に張力を付与してもよい。絶縁皮膜剤を塗布し、焼付け
する場合にはSiO2 、ZrO2 、SnO2 、Al2
3 等のコロイド状物質を固形分で100重量部に対し、
Al、Mg、Ca等の中から選ばれる第一リン酸塩の1
種または2種以上130〜200重量部、クロム酸また
はクロム酸塩の1種または2種以上をCrO3 として1
2〜40重量部が用いられる。
The steel sheet thus obtained is applied with an insulating film agent and subjected to heat flattening, or after the heat flattening, the insulating film agent is treated to impart tension to the steel sheet. As the treatment conditions, an insulating film agent having a low coefficient of thermal expansion may be applied and baked, or tension may be applied to the steel sheet by means such as plating and vapor deposition. When applying an insulating film agent and baking, SiO 2 , ZrO 2 , SnO 2 , Al 2 O
Colloidal substances such as 3 to 100 parts by weight of solid content,
1 of primary phosphates selected from Al, Mg, Ca, etc.
130 to 200 parts by weight of one kind or two or more kinds, and one or more kinds of chromic acid or chromate as CrO 3 1
2 to 40 parts by weight are used.

【0030】SiO2 ZrO2 等のコロイド状物質は
非晶質の皮膜を形成するため重要で、これによりリン酸
塩との結合による張力効果が生じる。リン酸塩は前記コ
ロイド状物質と反応し、鋼板に密着させるためのバイン
ダーとして作用するが、特定の配合比率の場合に張力効
果を生じる。コロイド状物質100重量部に対し130
重量部未満では張力効果が低下するため好ましくない。
一方、200重量部超では同様に張力効果が低下し、ま
た歪取焼鈍時の焼付きが著しくなるため好ましくない。
SiO 2 , Colloidal substances such as ZrO 2 are important because they form an amorphous film, which creates a tension effect due to binding with phosphate. The phosphate reacts with the colloidal substance and acts as a binder for adhering to the steel sheet, but produces a tension effect in the case of a specific blending ratio. 130 for 100 parts by weight of colloidal substance
If it is less than part by weight, the effect of tension decreases, which is not preferable.
On the other hand, if it exceeds 200 parts by weight, the tension effect is similarly reduced, and seizure during stress relief annealing becomes remarkable, which is not preferable.

【0031】クロム酸、クロム酸塩はCrO3 として1
2〜40重量部が配合される。12重量部未満ではリン
酸或いはフリーリン酸によるベタツキを防止するための
十分な効果が得られない。40重量部超では逆に過剰の
CrO3 によるベタツキが発生したり、皮膜外観が劣化
するので制限される。このような張力付与絶縁皮膜技術
においては皮膜の厚みは2〜6μmに制限される。この
場合には、皮膜の張力として0.5〜2.0kg/mm
2 が得られる。2μm未満の皮膜厚みでは鉄損改善のた
めの十分な効果が得られない。6μm超では張力による
鉄損改善効果が飽和状態に近ずき、また皮膜厚みによる
占積率の低下が生じて張力効果以上の問題が生じるため
好ましくない。
Chromic acid and chromate are 1 as CrO 3.
2 to 40 parts by weight are blended. If it is less than 12 parts by weight, a sufficient effect for preventing stickiness due to phosphoric acid or free phosphoric acid cannot be obtained. On the other hand, if the amount exceeds 40 parts by weight, excessive CrO 3 may cause stickiness and the film appearance may be deteriorated. In such tension imparting insulating coating technology, the thickness of the coating is limited to 2 to 6 μm. In this case, the film tension is 0.5 to 2.0 kg / mm.
2 is obtained. If the film thickness is less than 2 μm, a sufficient effect for improving iron loss cannot be obtained. When it exceeds 6 μm, the effect of improving iron loss due to tension approaches a saturated state, and the space factor decreases due to the film thickness, which causes problems beyond the effect of tension, which is not preferable.

【0032】これらの冷延〜絶縁皮膜剤処理までの一連
の工程の中でプレス、歯形ロール、ケガキ、レーザー、
局部エッチング等の機械的、光学的、化学的等の手段で
線状、点状等の凹み、歪み等を付与して磁区細分化が図
られる。これらの付与条件としては、圧延方向に対し4
5〜90度、間隔2〜15mm、深さ1〜25μmであ
る。
In the series of steps from cold rolling to treatment with insulating film agent, press, tooth profile roll, scribing, laser,
The magnetic domain is subdivided by imparting linear or dot-like depressions, distortions, etc. by means of mechanical, optical, chemical or other means such as local etching. The conditions for imparting these are 4 in the rolling direction.
The angle is 5 to 90 degrees, the interval is 2 to 15 mm, and the depth is 1 to 25 μm.

【0033】この間隔は付与される凹み、歪みの深さ等
の関係によって決まるものであるが、2mmより小さく
なると磁束密度の低下を生じるので好ましくない。15
mm超では逆に十分な磁区細分化効果が得られなくな
る。深さは1〜25μmである。1μm未満では磁区細
分化効果が弱く鉄損の改善が不十分である。25μm超
では磁束密度の低下が大きくなって問題である。
This interval is determined by the relationship between the recesses and the depth of strain applied, but if it is less than 2 mm, the magnetic flux density is lowered, which is not preferable. Fifteen
On the other hand, if it exceeds mm, a sufficient magnetic domain refining effect cannot be obtained. The depth is 1 to 25 μm. If it is less than 1 μm, the effect of subdividing the magnetic domains is weak and the improvement of iron loss is insufficient. If it exceeds 25 μm, the decrease in magnetic flux density becomes large, which is a problem.

【0034】凹み、歪みの幅は500μm以下である。
500μm超では前記諸条件と同様磁束密度の低下や鉄
心加工時における板の滑り性等に影響するため制限され
る。本発明によりグラス皮膜を有しない超低鉄損材が得
られるメカニズムは以下のように考えられる。本発明に
おいては、新規な焼鈍分離剤と脱炭酸化膜との反応によ
り、まず仕上焼鈍の昇温前段で適正量のグラス皮膜が形
成する。これにより鋼板表面に適度なシール効果が生じ
(Al、Si)Nの安定化と鋼板の追加酸化が防止され
る。
The width of the depressions and strains is 500 μm or less.
If it exceeds 500 μm, the magnetic flux density is lowered and the slipperiness of the plate at the time of processing the iron core is affected as in the above-mentioned conditions, so that it is limited. The mechanism by which the present invention provides an ultra-low iron loss material having no glass coating is considered as follows. In the present invention, the reaction between the novel annealing separator and the decarboxylated film forms a proper amount of glass film before the temperature rising of the finish annealing. As a result, an appropriate sealing effect is generated on the surface of the steel sheet, and (Al, Si) N is stabilized and additional oxidation of the steel sheet is prevented.

【0035】次いで仕上焼鈍昇温時後段で添加剤成分に
よりグラス皮膜層をケミカルエッチングして分解し酸化
物中のSiO2 を表面のMgO側に反応させる。この後
さらに仕上焼鈍の高温均熱段階でサーマルエッチング効
果がもたらされる。この段階においては冷延時の表面荒
れ、脱炭焼鈍時の酸化膜の不均一等によって生じた鋼板
地鉄表面の凹凸が平滑化されて鏡面的な表面となる。グ
ラス皮膜が高温で消失することにより、表面の原子移動
が容易になり、表面張力を下げる結果、平滑化がもたら
されるからである。
Then, the glass film layer is chemically etched by the additive component at the latter stage of the temperature increase during the finish annealing to decompose the SiO 2 in the oxide and react with the MgO side of the surface. After this, a thermal etching effect is further brought about in the high temperature soaking step of finish annealing. At this stage, irregularities on the surface of the steel sheet base metal, which are caused by surface roughness during cold rolling and uneven oxide film during decarburization annealing, are smoothed to give a mirror-like surface. This is because the disappearance of the glass film at a high temperature facilitates the movement of atoms on the surface and lowers the surface tension, resulting in smoothing.

【0036】このグラス皮膜分解過程でのインヒビター
(Al、Si)Nの分解を昇温時二次再結晶終了まで安
定化するのに雰囲気のN2 比率が重量でN2 30%以上
の雰囲気にすることにより極めて安定に保たれ、良好な
二次再結晶が得られる。このようにして得られたグラス
皮膜を有しない高磁束密度方向性材料はひきつづき処理
される高張力絶縁皮膜剤や冷延以降の工程で処理される
磁区細分化処理により、磁区細分化が図られ、超低鉄損
化される。これは、鋼板の表面がスムースで、従来のグ
ラス皮膜形成処理材に見られる内部酸化層による悪影響
がないためである。本発明においては、グラス皮膜によ
る非磁性体部の影響がないため、高張力絶縁皮膜剤の厚
みを厚くしても、従来材のように占積率や励磁特性への
影響がないから絶縁皮膜厚みを厚くすることができ、こ
れにより張力効果、絶縁性等における問題を十分に回避
できる。
In order to stabilize the decomposition of the inhibitor (Al, Si) N in the glass film decomposition process until the end of the secondary recrystallization at the time of temperature rise, the atmosphere should have an N 2 ratio of N 2 30% or more by weight. By doing so, it is kept extremely stable, and good secondary recrystallization is obtained. The high-flux-density directional material without a glass film thus obtained is continuously treated by a high-strength insulating film agent or a magnetic domain subdivision process which is processed in the steps after cold rolling. , Ultra low iron loss. This is because the surface of the steel sheet is smooth and there is no adverse effect due to the internal oxide layer found in the conventional glass film forming treatment material. In the present invention, since the non-magnetic material portion is not affected by the glass coating, even if the thickness of the high-strength insulating coating agent is increased, it does not affect the space factor or the excitation characteristic unlike the conventional material. The thickness can be increased, and problems with tension effect, insulation, etc. can be sufficiently avoided.

【0037】[0037]

【実施例】【Example】

実施例1 重量でC;0.054%、Si;3.35%、Mn;
0.10%、酸可溶Al;0.030%、S;0.00
70%、N;0.0070%、残部Feと不可避の不純
物からなる鋼素材を2.0mmに熱延し、1130℃で
2分間焼鈍し、酸洗後、冷延して最終板厚0.225m
mとした。
Example 1 C by weight; 0.054%, Si; 3.35%, Mn;
0.10%, acid-soluble Al; 0.030%, S; 0.00
70%, N: 0.0070%, a steel material consisting of the balance Fe and unavoidable impurities is hot-rolled to 2.0 mm, annealed at 1130 ° C. for 2 minutes, pickled, and cold-rolled to a final plate thickness of 0. 225m
m.

【0038】次いでN2 25%+H2 75%、露点55
℃の雰囲気中で830℃×100秒の脱炭焼鈍を行った
後、750℃×30秒間、N2 25%+H2 75%+N
3Dry雰囲気中で、鋼板〔N〕量が250ppmに
なるように窒化処理をし、供試材とした。この鋼板に表
1に示すような組成の焼鈍分離剤に塗布し、図1
(A)、(B)に示すように雰囲気条件を変更して仕上
焼鈍を行った。この鋼板を2%H2 SO 4 で80℃×1
0秒の軽酸洗を行って表面を活性化した後、絶縁皮膜剤
として20%コロイド状SiO2 80ml、20%コロ
イド状ZrO2 20ml、50%Al(H2 PO4 3
50ml、CrO3 7gよりなる処理剤を塗布膜厚焼付
後厚みで4μmになるように塗布し、830℃×30秒
間焼付処理を行った。この実験における鋼板の表面状
況、皮膜量、磁気特性を表2に示す。
Next, NTwo25% + HTwo75%, dew point 55
Decarburization annealing was performed at 830 ° C for 100 seconds in an atmosphere of ℃
After that, 750 ℃ × 30 seconds, NTwo25% + HTwo75% + N
HThreeSteel sheet [N] amount increased to 250ppm in Dry atmosphere
Nitriding treatment was performed so as to obtain a test material. Table on this steel plate
1 is applied to an annealing separator having a composition as shown in FIG.
Finish by changing the atmospheric conditions as shown in (A) and (B)
It was annealed. This steel plate is 2% HTwoSO FourAt 80 ℃ x 1
After light pickling for 0 seconds to activate the surface, an insulating film agent
20% colloidal SiOTwo80 ml, 20% roll
Id-shaped ZrOTwo20 ml, 50% Al (HTwoPOFour)Three
50 ml, CrOThreeApplying a treatment agent consisting of 7g
Apply it to a thickness of 4 μm, and leave it at 830 ° C for 30 seconds.
A baking process was performed. Surface condition of steel plate in this experiment
Table 2 shows the conditions, coating amount, and magnetic properties.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】この結果、本発明によるものは何れもほぼ
全面的にグラス皮膜を形成せず、良好なグラス皮膜のな
い均一な表面状況が得られた。しかし、磁気特性は、仕
上焼鈍条件が(A)によるものは何れも高磁束密度で、
鉄損値も比較材のグラス皮膜を形成したものに比較して
良好であったのに対し、仕上焼鈍条件(B)によるもの
は、何れも極端に磁束密度が低下し、不良であった。ま
た表面粗度は本発明によるものは何れもグラス皮膜形成
材に比して非常に平滑で、表面性状が改質されているこ
とが確認された。さらに加工性評価としての打抜き性も
本発明では飛躍的な改善が見られた。
As a result, none of the ones according to the present invention formed a glass film on almost the entire surface, and a good surface condition without a glass film was obtained. However, the magnetic characteristics are that the finish annealing condition (A) is high magnetic flux density,
The iron loss value was also better than that of the comparative material with the glass film formed, whereas the finish annealing conditions (B) were all poor because the magnetic flux density was extremely reduced. It was also confirmed that the surface roughness of each of the present invention was much smoother than that of the glass film forming material, and the surface properties were modified. Further, the punchability as a workability evaluation was also dramatically improved in the present invention.

【0042】実施例2 実施例1と同一の素材を同様にして処理して最終板厚
0.225mmに圧延した。この鋼板にレーザーを用い
て圧延方向と直角方向に間隔5mm、深さ5μm、幅1
00μmで線状疵を付与後、830℃×100秒間、N
2 25%+H2 75%の雰囲気中で脱炭焼鈍し、次いで
2 25%+H2 75%+NH3 中で鋼板〔N〕量が2
20ppmになるように窒化処理を行った。その後焼鈍
分離剤として表3に示す組成のものを塗布後、仕上焼鈍
を図1(A)の条件にて行った。この鋼板に20%コロ
イド状SiO2 70cc+20%コロイド状ZrO2
5cc+20%コロイド状SnO2 5cc+50%第一
リン酸Mg50cc+CrO 3 5gからなる絶縁皮膜剤
を塗布膜厚を変えて焼付処理を行った。この実験におけ
る皮膜の状況、磁気特性の結果を表4に示す。
Example 2 The same material as in Example 1 was treated in the same manner to obtain the final plate thickness.
It was rolled to 0.225 mm. Use a laser on this steel plate
5mm, 5μm in depth, 1 in width
After applying linear flaws at 00 μm, N at 830 ° C for 100 seconds
Two25% + HTwoDecarburization anneal in 75% atmosphere, then
NTwo25% + HTwo75% + NHThreeAmong them, the steel plate [N] amount is 2
Nitriding treatment was performed so that the concentration was 20 ppm. Then annealed
After applying the composition shown in Table 3 as a separating agent, finish annealing
Was performed under the conditions shown in FIG. 20% rolling on this steel plate
Id-like SiOTwo70cc + 20% colloidal ZrOTwo2
5cc + 20% colloidal SnOTwo5cc + 50% first
Phosphate Mg50cc + CrO ThreeInsulating film agent consisting of 5g
Baking treatment was performed by changing the coating film thickness. In this experiment
Table 4 shows the state of the coating and the results of the magnetic properties.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】この結果、本発明によるものは何れも全面
的に均一にグラス皮膜を形成せず、金属光沢を呈した。
一方、比較例の焼鈍分離剤によるものは実施例1と同様
に均一なグラス皮膜を形成した。磁気特性も本発明によ
るものは何れも鉄損値が良好で絶縁皮膜の付着量3〜
4.5μmで、特に良好な鉄損値が得られた。一方、比
較例によるものは、鉄損値の到達点が本発明に比較する
と悪い結果となった。
As a result, none of the devices according to the present invention formed a glass film uniformly over the entire surface and exhibited a metallic luster.
On the other hand, with the annealing separator of Comparative Example, a uniform glass film was formed as in Example 1. All of the magnetic properties according to the present invention have a good iron loss value and the amount of the insulating film deposited is 3 to
At 4.5 μm, a particularly good iron loss value was obtained. On the other hand, in the case of the comparative example, the arrival point of the iron loss value was a bad result as compared with the present invention.

【0046】[0046]

【発明の効果】本発明によれば、グラス皮膜を有しない
表面の滑らかな超低鉄損の方向性電磁鋼板を得ることが
できる。
According to the present invention, a grain-oriented electrical steel sheet having an ultra-low iron loss and having a smooth surface without a glass film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本願発明の仕上焼鈍サイクルを示す
図、(B)は比較例の仕上焼鈍サイクルを示す図であ
る。
1A is a diagram showing a finish annealing cycle of the present invention, and FIG. 1B is a diagram showing a finish annealing cycle of a comparative example.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比でSi:2.5〜4.5%を含
み、鋼板表面の酸化物としてMgO、SiO2 、Al2
3 からなるフォルステライト及びスピネル物質の合計
量が0.6g/m2 以下の一次皮膜とさらに絶縁皮膜剤
の厚みが6μm以下で、且つその皮膜剤によって鋼板表
面に生じる面張力が0.5〜2.0kg/mm2 であ
る、B8 ≧1.88(Tesla)の鉄損特性の優れる
高磁束密度方向性電磁鋼板。
1. A weight ratio of Si: 2.5 to 4.5%, MgO, SiO 2 , Al 2 as oxides on the surface of a steel sheet.
The total amount of forsterite and spinel substance composed of O 3 is 0.6 g / m 2 or less, and the thickness of the insulating coating agent is 6 μm or less, and the surface tension generated on the steel sheet surface by the coating agent is 0.5. A high magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics of B 8 ≧ 1.88 (Tesla), which is 2.02.0 kg / mm 2 .
【請求項2】 重量比でC:0.021〜0.075、
Si:2.5〜4.5%、酸可溶Al:0.010〜
0.040%、N:0.0030〜0.0130%、S
≦0.0140%、Mn:0.05〜0.45%、残部
がFeと不可避の不純物からなるスラブを1280℃未
満の温度で加熱した後、熱延し、引き続き必要に応じて
熱延板焼鈍し、1回または焼鈍を挟む2回以上の冷延に
より最終板厚とし、次いで脱炭焼鈍し、窒化処理し、焼
鈍分離剤を塗布し、仕上焼鈍し、絶縁皮膜剤を塗布する
低温スラブ加熱の方向性電磁鋼板の製造方法において、
MgO:100重量部に対し、少なくともCl化合物を
Clとして1重量部以上含み、且つCl化合物、S化合
物の1種または2種以上をCl、Sの合計量で1〜15
重量部含む焼鈍分離剤を塗布し、仕上焼鈍における昇温
時の雰囲気をN2 :30%以上含むN2 +H2 雰囲気中
で、且つ昇温率を20℃/Hr以下で焼鈍し、次いで張
力付与型の絶縁皮膜剤を焼付け後の厚みで2〜6μmと
なるように塗布焼付処理することを特徴とするグラス皮
膜を有しない鉄損特性の優れる高磁束密度方向性電磁鋼
板の製造方法。
2. A weight ratio of C: 0.021 to 0.075,
Si: 2.5-4.5%, acid-soluble Al: 0.010
0.040%, N: 0.0030 to 0.0130%, S
≦ 0.0140%, Mn: 0.05 to 0.45%, the balance consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., then hot rolled, and then hot rolled if necessary. A low temperature slab that is annealed and cold rolled one or more times to sandwich it to a final plate thickness, then decarburized and annealed, nitrided, annealed and coated with an annealing separator, and annealed and annealed. In the method of manufacturing a grain-oriented electrical steel sheet for heating,
MgO: 1 part by weight or more of at least a Cl compound as Cl to 100 parts by weight, and 1 or 2 or more of a Cl compound and an S compound in a total amount of Cl and S of 1 to 15
The annealing separator was applied, including parts, finishing the atmosphere during the temperature increase in annealing N 2: 30% or more comprising N 2 + H 2 atmosphere, and annealing the NoboriAtsushiritsu at 20 ° C. / Hr or less, then the tension A method for producing a high magnetic flux density grain-oriented electrical steel sheet having no glass coating and having excellent iron loss characteristics, which comprises applying and baking an imparting type insulating coating agent so that the thickness after baking is 2 to 6 μm.
【請求項3】 冷延後、脱炭焼鈍後、仕上焼鈍後、絶縁
皮膜処理後のいずれか1工程以上で、プレス、歯形ロー
ル、ケガキ、レーザー、局部エッチング等により鋼板の
圧延方向に対し45〜90度、間隔2〜15mm、凹み
深み1〜25μm、凹み幅500μm以下の線状或いは
点状の凹み、歪みを付与し、磁区細分化を行うことを特
徴とする請求項2記載の鉄損特性の優れる高磁束密度方
向性電磁鋼板の製造方法。
3. Cold rolling, decarburization annealing, finish annealing, and insulating film treatment in any one or more steps, such as press, tooth profile roll, scribe, laser, local etching, etc., with respect to the rolling direction of the steel sheet. 3. The core loss according to claim 2, wherein the magnetic domain is subdivided by applying linear or dot-like dents or distortions of 90 degrees, an interval of 2 to 15 mm, a dent depth of 1 to 25 μm, and a dent width of 500 μm or less. A method of manufacturing a high magnetic flux density grain-oriented electrical steel sheet having excellent characteristics.
JP4220500A 1992-06-26 1992-08-19 High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same Expired - Lifetime JP2671084B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4220500A JP2671084B2 (en) 1992-08-19 1992-08-19 High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
KR93012299A KR960009170B1 (en) 1992-07-02 1993-07-01 Grain oriented electrical steel sheet having high magnetic flux density and ultra iron loss and process for producing the same
EP93110517A EP0577124B1 (en) 1992-07-02 1993-07-01 Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for producing the same
DE69332394T DE69332394T2 (en) 1992-07-02 1993-07-01 Grain-oriented electrical sheet with high flux density and low iron losses and manufacturing processes
US08/257,765 US5507883A (en) 1992-06-26 1994-06-09 Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for production the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4220500A JP2671084B2 (en) 1992-08-19 1992-08-19 High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0665753A JPH0665753A (en) 1994-03-08
JP2671084B2 true JP2671084B2 (en) 1997-10-29

Family

ID=16752018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4220500A Expired - Lifetime JP2671084B2 (en) 1992-06-26 1992-08-19 High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP2671084B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492816B (en) * 2011-12-19 2013-04-03 武汉钢铁(集团)公司 Method for producing high magnetic induction oriented silicon steel strip through batch nitriding
KR101693516B1 (en) 2014-12-24 2017-01-06 주식회사 포스코 Grain-orientied electrical steel sheet and method for manufacturing the smae
JP6881580B2 (en) * 2017-07-13 2021-06-02 日本製鉄株式会社 Directional electrical steel sheet

Also Published As

Publication number Publication date
JPH0665753A (en) 1994-03-08

Similar Documents

Publication Publication Date Title
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
EP0577124B1 (en) Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for producing the same
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149337A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2667082B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet without glass coating and method for producing the same
JP2620171B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet without glass coating
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JP3336555B2 (en) Method for producing grain-oriented electrical steel sheet without glass coating with excellent surface properties
RU2768094C1 (en) Method for producing electrotechnical steel sheet with oriented grain structure
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JP2671088B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties and remarkably excellent iron core workability, and manufacturing method thereof
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JP2603170B2 (en) Method for producing high magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet with excellent workability
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP2738620B2 (en) High magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet with excellent workability and method of manufacturing the same
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JP2671084C (en)
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH05320770A (en) Production of high magnetic flux density grain-oriented silicon steel sheet having no glass film
JPH0327629B2 (en)
JP2667082C (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 16