JPH0327629B2 - - Google Patents

Info

Publication number
JPH0327629B2
JPH0327629B2 JP60292135A JP29213585A JPH0327629B2 JP H0327629 B2 JPH0327629 B2 JP H0327629B2 JP 60292135 A JP60292135 A JP 60292135A JP 29213585 A JP29213585 A JP 29213585A JP H0327629 B2 JPH0327629 B2 JP H0327629B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
steel
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60292135A
Other languages
Japanese (ja)
Other versions
JPS62151521A (en
Inventor
Tosha Wada
Osamu Tanaka
Toshihiko Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29213585A priority Critical patent/JPS62151521A/en
Priority to EP86116964A priority patent/EP0225619B1/en
Priority to US06/938,648 priority patent/US4897131A/en
Priority to DE3689703T priority patent/DE3689703T2/en
Publication of JPS62151521A publication Critical patent/JPS62151521A/en
Priority to US07/427,964 priority patent/US5028279A/en
Publication of JPH0327629B2 publication Critical patent/JPH0327629B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はグラス皮膜特性のすぐれた低鉄損方向
性電磁鋼板の製造方法に関する。 〔従来の技術〕 方向性電磁鋼板は、主としてトランス、発電機
等の電気機器の鉄心として使用されるが、磁気特
性の鉄損特性及び励磁特性が良好であること、お
をびグラス皮膜特性がすぐれていることが重要で
ある。 通常方向性電磁鋼板はSi4%以下を含有する珪
素鋼素材を熱間圧延し必要に応じて熱延板焼鈍し
1回又は2回以上の冷間圧延工程により、最終仕
上厚みの冷延板を得、次に脱炭焼鈍を行つた後、
MgOを主成分とする焼鈍分離剤を塗布し仕上焼
鈍を施してゴス方位をもつた2次再結晶粒を発現
させ更にS,Nなどの不純物を除去するとともに
グラス皮膜を生成させて製造される。さらに必要
に応じて平坦化焼鈍及び絶縁コーテイング処理が
施される。 ところで方向性電磁鋼板の磁気特性なかでも鉄
損特性の改善とともにグラス皮膜が検討されてい
る。例えば鉄損を低くするには方向性電磁鋼板の
板厚を薄くしたり、あるいは結晶粒を小さくする
ことが効果のあることがJ.Appl.Phys.38(1967)、
1104〜1108頁に開示されているように公知であ
る。 板厚の薄手化は鉄損の低下に有効な方法である
が、しかし板厚がある厚さより薄くなるとうず電
流損が急激に増加しかえつて鉄損が増大する。ま
た板厚が薄くなると仕上焼鈍での二次再結晶の発
現が不良になるという問題が生じる。 また方向性電磁鋼板は二次再結晶現象を利用
し、ゴス方位に有する結晶粒の成長を図るととも
に、その集積度を高めることにより、励磁特性を
すぐれたものとし、あわせて鉄損特性を良好とす
るものであるから、結晶粒の細粒化による鉄損の
改善はおのずから限界がある。 グラス皮膜の改善については例えば特開昭50−
71526号公報では、最終板厚に冷間圧延された方
向性電磁鋼帯に対し、脱炭焼鈍を行う前に、その
表面積を3g/m2以上除去するように酸洗して、
表面付着物と地鉄表層部を除去し、脱炭反応及び
酸化物の形成反応をむらなく進行させ、脱炭焼鈍
後に焼鈍分離剤を塗布し仕上焼鈍を施して均一性
と密着性のよいMgO−SiO2系絶縁皮膜を形成す
るのである。 また特開昭57−101673号公報では最終板厚に冷
間圧延された方向性電磁鋼帯を脱炭焼鈍後に
MgO等の焼鈍分離剤を塗布する前に、前記鋼帯
の表面を片面で0.025〜0.5g/m2研削あるいは酸
洗によつて除去して、鋼板表面層の酸化被膜を除
き、次いで焼鈍分離剤を塗布し仕上焼鈍を施し
て、密着性がよく均一な灰色の外観を呈するグラ
ス皮膜を形成することが記載されている。 これらは、鋼板の表面をきれいにし、あるいは
平滑にし、グラス皮膜の特性を良好とするもので
あり、それなりの作用効果が得れるであろう。 〔発明が解決しようとする問題点〕 ところでグラス皮膜の密着性、外観、皮膜張力
などの皮膜特性および磁気特性ともいまだ十分と
は言えず、今後さらに検討し、これらの特性の向
上を図る必要がある。 本発明は密着性がすぐれ、皮膜張力が格段にす
ぐれた鉄損の低い方向性電磁鋼板を得ることを目
的とし、種々の実験と検討の結果なされたもので
ある。 〔問題点を解決するための手段〕 本発明者達は部分的に鋼板地鉄に突き込んだ酸
化物を形成するとアンカー効果などを生じてグラ
ス皮膜の密着性が非常にすぐれた皮膜張力が高く
鉄損の低い方向性電磁鋼板が得られることを見出
した。本発明は係かる鋼板を工業的に製造する方
法を提供するものである。その要旨は珪素鋼スラ
ブを熱間圧延し、焼鈍して1回または中間焼鈍を
はさんで2回以上の冷間圧延し、脱炭焼鈍し、焼
鈍の分離剤を塗布して仕上焼鈍を行う方向性電磁
鋼板の製造法において、脱炭焼鈍の前または後
に、鋼板表面に鋭利で微細な凹凸を鋼板表面積の
35%以上にわたつて形成し、鋼板表面を活性化す
るとともに、歪を間隔をおいて付与し、脱炭焼鈍
あるいは仕上焼鈍で部分的に鋼板地鉄に突き込ん
だ酸化物を形成することを特徴とするグラス皮膜
特性のすぐれた低鉄損方向性電磁鋼板の製造方法
にある。 なお本発明での前記酸化物とはSiO2、SiO2
含む鉄酸化物またはSiO2を含む鉄酸化物と焼鈍
分離剤との反応酸化物など鋼板表面に生成した酸
化物をいう。 以下に本発明を詳細に説明する。 本発明者達は第1図に示すような部分的に鋼板
地鉄に突き込んだ酸化物を形成した方向性電磁鋼
板は、グラス皮膜の密着性が非常にすぐれ、通常
の試験条件の20〜50mmφ曲げよりシビヤーな例え
ば10mmφ曲げても剥離せず、また皮膜張力も非常
に高く鉄損の低下が図られることを見出した。本
発明は係かる鋼板を工業的に製造するもので、次
のようにする。 冷間圧延され脱炭焼鈍する前あるいは後の鋼板
の表面を、ブラシロール、サンドペーパー、グラ
インダー、シヨツト、等で研磨、研削、衝撃など
に機械的加工を行つて鋭利で微細な凹凸を形成す
る。 該凹凸は鋼板の両面あるいは片面に形成する
が、鋼板表面に全面的に35%以上に付与される。
前記の鋭利かつ微細な凹凸を形成した鋼板表面積
が、所定間隔に線状疵を付与して磁区細分化を行
う公知技術のように少ないと、密着性および皮膜
張力のともにすぐれたグラス皮膜を得ることがで
きないので、鋼板表面積の35%以上にわたつて全
面的に前記凹凸を形成する必要がある。凹凸の深
さは2〜15μm程度が望ましく、その凹凸形成方
向は何如なる方向でも構わない。 また脱炭焼鈍する前あるいは後に、鋼板ヘレー
ザー照射、ケガキ、ナイフ、歯形ロール等により
間隔をおいて歪を付与する。この歪の間隔は1〜
20mm程度が好ましく、圧延方向直交方向に対して
30〜90度の向きに施される。このように歪みを付
与すると前記鋭利で微細な凹凸による鋼板表面の
活性化と相まつて鉄損の低下が図られる。 前記の如く鋭利で微細な凹凸が形成され鋼板表
面が活性化されるので、脱炭焼鈍あるいは仕上焼
鈍でSiO2の割合が多い酸化物等が厚く形成され
る。さらに重要なことに酸化物は鋼板地鉄に部分
的に突き込んで形成される。 SiO2主体の酸化物は焼鈍分離剤との反応で生
成されるグラス皮膜を良質とし、また酸化物等が
鋼板地鉄に突き込んでいるのでグラス皮膜の密着
性が極めてすぐれ、さらに皮膜張力が大となる。 本発明が適用される方向性電磁鋼板の鋼成分お
よび冷間圧延されるまでの製造条件は特定する必
要がなく、例えばCが0.04〜0.10%、Siが2.0〜4.0
%、インヒビターとしてAlN、MnS、MnSe、
BN、Cu2S等、適宜なものが用いられ、必要に応
じて、Cu、Sn、Cr、Ni、Mo、Sb等の元素が含
有される。電磁鋼スラブを熱間圧延し、焼鈍して
1回または中間焼鈍をはさんで二回以上の冷間圧
延により所望の最終板厚とされる。 次いで前述のように脱炭焼鈍の前または後に鋼
板表面に鋭利で微細な凹凸を形成するとともに、
歪を間隔をおいて付与する。 脱炭焼鈍は脱炭を行うとともに、SiO2に富む
酸化物を形成するように、雰囲気ガスの露点を高
めて行うことが好ましく、雰囲気ガスのH2O分
圧、H2分圧などを制御して行われる。 脱炭焼鈍後はMgOを主成分としてTiO2B化合
物、SrS、SnS、CuS等の添加物が必要に応じて
1種またに2種以上添加された焼鈍分離剤を塗布
し、乾燥させて仕上焼鈍が施される。 仕上焼鈍により、脱炭焼鈍で形成された部分的
に平均厚みより鋼板地鉄に突き込んだ酸化物をも
つ酸化層と焼鈍分離剤が反応してグラス皮膜が形
成される。 脱炭焼鈍の後に前記鋭利で微細な凹凸が形成さ
れ、また歪が付与された場合には、仕上焼鈍で部
分的に鋼板地鉄に突き込んだ酸化物とともにグラ
ス皮膜が形成される。 なお部分的とは非等間隔または等間隔に、非連
続あるいは連続している状態をいう。 該グラス皮膜は鋼板地鉄に部分的に深く突き込
んだ酸化物に連らなつており、あるいはそれ自体
も部分的に突き込んでいるので、密着性が非常に
すぐれ、皮膜張力は大巾に大となり、また鉄損が
低くなる。 その後に必要に応じて、平坦化焼鈍し、該鋼板
にリン酸や、リン酸アルミニウム、リン酸マグネ
シウム、リン酸亜鉛、リン酸カルシウム等のリン
酸塩、クロム酸やクロム酸マグネシウム、等のク
ロム酸塩、重クロム酸塩、コロイダルシリカなど
の1種または2種以上を含む絶縁被膜溶液を塗布
し350℃以上の温度で焼付して絶縁被膜を形成す
る。 〔実施例〕 次に実施例を示す。 実施例 1 重量%でC:0.078、Si:3.28、Mn:0.065、
Al:0.033、S:0.023、Cu:0.070、Sn:0.10、
残部鉄からなる珪素鋼スラブを公知の方法で熱延
−焼鈍−冷延により0.30mmの最終板厚とした後、
サンドペーパーで研磨部の粗さが3μmで、研磨
部の面積が50%、85%になるよう研磨処理したも
のと、次いで圧延方向に対し直角方向に5mm間隔
でナイフエツヂにより深さ10μmの歪導入処理を
したものと2種類の表面活性化処理をした。これ
らの鋼板を脱炭焼鈍した後焼鈍分離剤を塗布し
1200℃×20hrの最終仕上焼鈍を行つた。その後、
皮膜特性及び磁気特性を測定し、その結果を第1
表に示す。
[Industrial Field of Application] The present invention relates to a method for producing grain-oriented electrical steel sheets with excellent glass film properties and low core loss. [Prior Art] Grain-oriented electrical steel sheets are mainly used as iron cores for electrical equipment such as transformers and generators, but they have good magnetic properties such as iron loss characteristics and excitation characteristics, and good glass coating characteristics. It is important to be excellent. Normally, grain-oriented electrical steel sheets are produced by hot-rolling a silicon steel material containing 4% Si or less, annealing the hot-rolled sheet if necessary, and then performing one or more cold rolling processes to produce a cold-rolled sheet with the final finishing thickness. After decarburizing and annealing,
Manufactured by applying an annealing separator mainly composed of MgO and performing final annealing to develop secondary recrystallized grains with Goss orientation, and then removing impurities such as S and N and forming a glass film. . Furthermore, flattening annealing and insulation coating treatment are performed as necessary. By the way, among the magnetic properties of grain-oriented electrical steel sheets, glass coatings are being studied in addition to improving core loss properties. For example, J.Appl.Phys.38 (1967) found that reducing the thickness of grain-oriented electrical steel sheets or reducing the grain size is effective in reducing iron loss.
It is known as disclosed on pages 1104-1108. Making the plate thinner is an effective method for reducing iron loss, but when the plate thickness becomes thinner than a certain value, eddy current loss increases rapidly and iron loss increases. Further, when the plate thickness becomes thinner, a problem arises in that secondary recrystallization occurs poorly during final annealing. In addition, grain-oriented electrical steel sheets use the secondary recrystallization phenomenon to grow grains in the Goss orientation and increase their degree of integration, resulting in excellent excitation characteristics and good iron loss characteristics. Therefore, there is naturally a limit to the improvement of iron loss by making the crystal grains finer. Regarding the improvement of glass coatings, for example, see Japanese Patent Application Laid-Open No.
In Publication No. 71526, before performing decarburization annealing on a grain-oriented electrical steel strip that has been cold rolled to the final thickness, pickling is performed to remove 3 g/m 2 or more of its surface area.
Surface deposits and the surface layer of the steel are removed, decarburization reaction and oxide formation reaction proceed evenly, and after decarburization annealing, an annealing separator is applied and finish annealing is performed to produce MgO with good uniformity and adhesion. -It forms an SiO 2 -based insulating film. Furthermore, in Japanese Patent Application Laid-Open No. 57-101673, a grain-oriented electrical steel strip cold-rolled to the final thickness is decarburized and annealed.
Before applying an annealing separator such as MgO, the surface of the steel strip is removed by grinding or pickling at 0.025 to 0.5 g/ m2 on one side to remove the oxide film on the surface layer of the steel sheet, and then annealing separation is performed. It is described that a glass film with good adhesion and a uniform gray appearance is formed by applying a coating agent and subjecting it to final annealing. These make the surface of the steel plate clean or smooth and improve the properties of the glass film, and will provide certain effects. [Problems to be solved by the invention] However, the film properties such as adhesion, appearance, film tension, and magnetic properties of the glass film are still not satisfactory, and it is necessary to further study and improve these properties in the future. be. The present invention was made as a result of various experiments and studies, with the aim of obtaining a grain-oriented electrical steel sheet with excellent adhesion, excellent film tension, and low iron loss. [Means for Solving the Problems] The present inventors have discovered that by forming oxides partially penetrated into the steel plate substrate, an anchor effect occurs, resulting in very good adhesion of the glass film and a high film tension. It was discovered that grain-oriented electrical steel sheets with low iron loss can be obtained. The present invention provides a method for industrially manufacturing such a steel plate. The gist is that a silicon steel slab is hot rolled, annealed and cold rolled once or twice or more with intermediate annealing, decarburized annealed, coated with an annealing separating agent, and final annealed. In the manufacturing method of grain-oriented electrical steel sheets, sharp and fine irregularities are created on the surface of the steel sheet before or after decarburization annealing.
35% or more, activates the surface of the steel sheet, applies strain at intervals, and forms oxides that partially penetrate the base steel of the steel sheet during decarburization annealing or finish annealing. The present invention provides a method for manufacturing grain-oriented electrical steel sheets with low core loss and excellent glass film characteristics. In the present invention, the oxide refers to an oxide generated on the surface of a steel sheet, such as SiO 2 , an iron oxide containing SiO 2 , or a reaction oxide of an iron oxide containing SiO 2 and an annealing separator. The present invention will be explained in detail below. The inventors of the present invention have found that a grain-oriented electrical steel sheet with an oxide partially penetrated into the steel sheet substrate as shown in Fig. 1 has very good adhesion of the glass film, and that It has been found that even when bent more severely than 50 mmφ, for example, by 10 mmφ, the film does not peel off, and the film tension is also very high, reducing iron loss. The present invention is to industrially manufacture such a steel plate as follows. The surface of a steel plate before or after cold rolling and decarburization annealing is polished, ground, or impacted mechanically using a brush roll, sandpaper, grinder, shot, etc. to form sharp, fine irregularities. . The unevenness is formed on both sides or one side of the steel plate, and is applied to 35% or more of the entire surface of the steel plate.
When the surface area of the steel sheet on which the sharp and fine irregularities are formed is small as in the known technique of dividing the magnetic domains by adding linear flaws at predetermined intervals, a glass film with excellent adhesion and film tension can be obtained. Therefore, it is necessary to form the above-mentioned unevenness entirely over 35% or more of the surface area of the steel plate. The depth of the unevenness is desirably about 2 to 15 μm, and the unevenness may be formed in any direction. In addition, before or after decarburization annealing, strain is applied to the steel plate at intervals by laser irradiation, scribing, knife, toothed roll, etc. The interval of this distortion is 1~
Approximately 20 mm is preferable, with respect to the direction perpendicular to the rolling direction.
It is applied at an angle of 30 to 90 degrees. Applying strain in this manner activates the surface of the steel sheet due to the sharp and fine irregularities, and together with this, the iron loss is reduced. As described above, sharp and fine irregularities are formed and the surface of the steel sheet is activated, so that oxides with a high proportion of SiO 2 are formed thickly during decarburization annealing or finish annealing. More importantly, the oxide is formed by partially penetrating the steel substrate. The SiO 2 -based oxide makes the glass film produced by the reaction with the annealing separator of high quality, and since the oxide penetrates into the steel plate base, the adhesion of the glass film is extremely good, and the film tension is Becomes large. There is no need to specify the steel composition and manufacturing conditions of the grain-oriented electrical steel sheet to which the present invention is applied until it is cold rolled; for example, C is 0.04 to 0.10%, Si is 2.0 to 4.0%.
%, AlN, MnS, MnSe as inhibitors,
Appropriate materials such as BN and Cu 2 S are used, and elements such as Cu, Sn, Cr, Ni, Mo, and Sb are contained as necessary. An electromagnetic steel slab is hot rolled, annealed, and then cold rolled once or twice or more with intermediate annealing to achieve a desired final thickness. Next, as described above, sharp and fine irregularities are formed on the surface of the steel sheet before or after decarburization annealing, and
Apply strain at intervals. Decarburization annealing is preferably performed by increasing the dew point of the atmospheric gas so as to decarburize and form SiO 2 -rich oxides, and the H 2 O partial pressure, H 2 partial pressure, etc. of the atmospheric gas are controlled. It is done as follows. After decarburization annealing, apply an annealing separator containing MgO as the main component and one or more additives such as TiO 2 B compound, SrS, SnS, CuS, etc. as necessary, and dry to finish. Annealing is performed. During the final annealing, the annealing separator reacts with the oxidized layer formed during the decarburization annealing, which has an oxide partially penetrating into the steel plate substrate from an average thickness, and forms a glass film. After decarburization annealing, the sharp and fine irregularities are formed, and if strain is applied, a glass film is formed together with the oxides partially penetrated into the steel base steel during final annealing. Note that "partially" refers to a state of being discontinuous or continuous at non-uniform or equal intervals. The glass film is connected to the oxide that is partially deeply penetrated into the steel base steel, or it is also partially penetrated, so the adhesion is very good and the film tension is very large. It becomes larger and the iron loss becomes lower. After that, if necessary, the steel plate is flattened and annealed, and the steel plate is treated with phosphoric acid, phosphates such as aluminum phosphate, magnesium phosphate, zinc phosphate, and calcium phosphate, and chromates such as chromic acid and magnesium chromate. An insulating coating solution containing one or more of dichromate, colloidal silica, etc. is applied and baked at a temperature of 350° C. or higher to form an insulating coating. [Example] Next, an example will be shown. Example 1 C: 0.078, Si: 3.28, Mn: 0.065 in weight%
Al: 0.033, S: 0.023, Cu: 0.070, Sn: 0.10,
After hot rolling, annealing, and cold rolling a silicon steel slab consisting of the remainder iron to a final thickness of 0.30 mm,
The roughness of the polished part was 3 μm with sandpaper, and the area of the polished part was polished to 50% and 85%, and then strain was introduced to a depth of 10 μm using a knife edge at 5 mm intervals in the direction perpendicular to the rolling direction. Two types of surface activation treatments were applied. After decarburizing and annealing these steel plates, an annealing separator is applied.
Final annealing was performed at 1200°C for 20 hours. after that,
Measure the film properties and magnetic properties, and submit the results to the first
Shown in the table.

【表】 研磨処理を施し、表面に鋭利で微細な凹凸を形
成したサンプルは何れも皮膜特性、磁気特性とも
優れた結果が得られた。またナイフによる歪導入
を併用したものは、これよりも更に鉄損特性の改
善が見られた。 実施例 2 重量%でC:0.073、Si:3.20、Mn:0.065、
Al:0.030、S:0.024、Cu:0.075、Sn:0.11、
残部鉄からなる珪素鋼スラブを公知の方法で熱延
−焼鈍−冷延により0.225mmの最終板厚とした。 この鋼板にブラシロールにより研磨部の粗さが
3μmで処理部の面積が60%と90%になるように
研磨処理を行つた。 次いでN2+H2の湿潤雰囲気中で脱炭焼鈍を行
つた後、ケガキ針により圧延方向と直角方向に5
mm間隔でケガキ、歪導入処理を行つた後焼鈍分離
剤を塗布し、最終仕上焼鈍を行つた。 このときの皮膜特性と磁気特性を測定しその結
果を第2表に示す。
[Table] All of the samples that were subjected to polishing treatment to form sharp, fine irregularities on their surfaces showed excellent results in both film properties and magnetic properties. In addition, the iron loss characteristics were further improved when strain was introduced using a knife. Example 2 C: 0.073, Si: 3.20, Mn: 0.065 in weight%
Al: 0.030, S: 0.024, Cu: 0.075, Sn: 0.11,
A silicon steel slab consisting of balance iron was hot rolled, annealed and cold rolled to a final thickness of 0.225 mm using a known method. This steel plate is brushed with a brush roll to reduce the roughness of the polished area.
Polishing was performed so that the area of the treated portion was 60% and 90% at 3 μm. Next, after decarburizing annealing in a humid atmosphere of N 2 + H 2 , 5
After scribing and strain introduction treatment at mm intervals, an annealing separator was applied and final annealing was performed. The film properties and magnetic properties at this time were measured and the results are shown in Table 2.

【表】 実施例1と同様に研磨を行つたものは皮膜特
性、磁気特性とも非常に優れており又、ナイフに
よる歪導入を併用したものは更に低鉄損材が得ら
れた。 実施例 3 重量%でC:0.068、Si:3.15、Mn:0.070、
Al:0.028、S:0.025、残部鉄からなる珪素鋼ス
ラブを公知の方法で熱延−焼鈍−冷延により0.27
mmの最終板厚とした。 この鋼板にナイフエツヂにより圧延方向と直角
方向に5〜20mm間隔で深さ15μm歪導入処理を行
つた。この鋼板をN2+H2湿潤雰囲気中で脱炭焼
鈍後サンドペーパーにより研磨部の深さ2.5μmで
研磨部の面積率が75%になるよう研磨処理をし、
活性化した後、焼鈍分離剤を塗布し、1200℃×
20hrの最終仕上焼鈍を行つた。このときの皮膜特
性及び磁気特性の測定結果を第3表に示す。
[Table] The material polished in the same manner as in Example 1 had excellent film properties and magnetic properties, and the material with even lower iron loss was obtained when strain was introduced using a knife. Example 3 C: 0.068, Si: 3.15, Mn: 0.070 in weight%
A silicon steel slab consisting of Al: 0.028, S: 0.025, and the balance iron is heated to 0.27 by hot rolling, annealing, and cold rolling by a known method.
The final plate thickness was mm. This steel plate was subjected to strain introduction treatment to a depth of 15 μm at intervals of 5 to 20 mm in the direction perpendicular to the rolling direction using a knife edge. This steel plate was decarburized and annealed in a humid atmosphere of N 2 + H 2 and then polished with sandpaper so that the depth of the polished part was 2.5 μm and the area ratio of the polished part was 75%.
After activation, apply an annealing separator and heat at 1200℃
Final annealing was performed for 20 hours. Table 3 shows the measurement results of the film properties and magnetic properties at this time.

〔発明の効果〕〔Effect of the invention〕

本発明によると以上のようにグラス皮膜は密着
性、皮膜張力、外観ともすぐれ、鉄損の低い方向
性電磁鋼板が得られる。
According to the present invention, as described above, a grain-oriented electrical steel sheet with a glass coating having excellent adhesion, coating tension, and appearance and low core loss can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により鋼板表面層部に形成され
た酸化物の一例を示す金属組織写真である。
FIG. 1 is a photograph of a metallographic structure showing an example of an oxide formed on the surface layer of a steel sheet according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 珪素鋼スラブを熱間圧延し、焼鈍して1回ま
たは中間焼鈍をはさんで2回以上冷間圧延し、脱
炭焼鈍し、焼鈍分離剤を塗布して仕上焼鈍を行う
方向性電磁鋼板の製造方法において、脱炭焼鈍前
または後に、鋼板表面に鋭利で微細な凹凸を鋼板
表面積の35%以上にわたつて形成し鋼板表面を活
性化するとともに、歪を間隔をおいて付与し、脱
炭焼鈍あるいは仕上焼鈍で部分的に鋼板地鉄に突
き込んだ酸化物を形成することを特徴とするグラ
ス皮膜特性のすぐれた低鉄損方向性電磁鋼板の製
造方法。
1 A grain-oriented electrical steel sheet in which a silicon steel slab is hot-rolled, annealed and cold-rolled once or twice or more with intermediate annealing, decarburized annealed, coated with an annealing separator, and final annealed. In this manufacturing method, before or after decarburization annealing, sharp, fine irregularities are formed on the surface of the steel sheet over 35% or more of the surface area of the steel sheet to activate the surface of the steel sheet, and strain is applied at intervals to promote decarburization. A method for producing a grain-oriented electrical steel sheet with low core loss and excellent glass coating properties, which is characterized by forming oxides partially penetrated into the base steel sheet by charcoal annealing or finish annealing.
JP29213585A 1985-12-06 1985-12-26 Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic Granted JPS62151521A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29213585A JPS62151521A (en) 1985-12-26 1985-12-26 Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
EP86116964A EP0225619B1 (en) 1985-12-06 1986-12-05 Grain-oriented electrical steel sheet having improved glass film properties and low watt loss and a process for producing same
US06/938,648 US4897131A (en) 1985-12-06 1986-12-05 Grain-oriented electrical steel sheet having improved glass film properties and low watt loss
DE3689703T DE3689703T2 (en) 1985-12-06 1986-12-05 Grain-oriented electrical steel sheet with glass film properties and low wattage and its production.
US07/427,964 US5028279A (en) 1985-12-06 1989-10-26 Grain oriented electrical steel sheet having improved glass film properties and low watt loss and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29213585A JPS62151521A (en) 1985-12-26 1985-12-26 Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic

Publications (2)

Publication Number Publication Date
JPS62151521A JPS62151521A (en) 1987-07-06
JPH0327629B2 true JPH0327629B2 (en) 1991-04-16

Family

ID=17777986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29213585A Granted JPS62151521A (en) 1985-12-06 1985-12-26 Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic

Country Status (1)

Country Link
JP (1) JPS62151521A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156221A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Production of grain oriented electrical steel having good adhesiveness of glass film and low iron loss
JP4893910B2 (en) * 2005-04-19 2012-03-07 カシオ計算機株式会社 Lamp unit and projector
BR112013002087B1 (en) 2010-07-28 2021-03-23 Nippon Steel Corporation ELECTRIC STEEL SHEET WITH ORIENTED GRAIN AND THE SAME PRODUCTION METHOD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137016A (en) * 1977-05-04 1978-11-30 Nippon Steel Corp Oriented electrical steel sheet of ultra low iron loss
JPS5518566A (en) * 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
JPS57101673A (en) * 1980-12-16 1982-06-24 Kawasaki Steel Corp Formation of uniform undercoating film in directional silicon steel plate
JPS59197520A (en) * 1983-04-20 1984-11-09 Kawasaki Steel Corp Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JPS59215488A (en) * 1983-05-20 1984-12-05 Nippon Steel Corp Protective coating material for annealing grain-oriented electrical steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137016A (en) * 1977-05-04 1978-11-30 Nippon Steel Corp Oriented electrical steel sheet of ultra low iron loss
JPS5518566A (en) * 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
JPS57101673A (en) * 1980-12-16 1982-06-24 Kawasaki Steel Corp Formation of uniform undercoating film in directional silicon steel plate
JPS59197520A (en) * 1983-04-20 1984-11-09 Kawasaki Steel Corp Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JPS59215488A (en) * 1983-05-20 1984-12-05 Nippon Steel Corp Protective coating material for annealing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS62151521A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
US4897131A (en) Grain-oriented electrical steel sheet having improved glass film properties and low watt loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPH0327629B2 (en)
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JPH0327630B2 (en)
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPH0327628B2 (en)
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6396216A (en) Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic
JPH02301571A (en) Production of grain-oriented electrical steel sheet having uniform glassy coating film
JP3277039B2 (en) Method for producing grain-oriented silicon steel sheet having homogeneous forsterite coating
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
KR920004949B1 (en) Making process for the electic steel plate
JPS62151520A (en) Manufacture of low iron loss grain oriented electrical sheet superior in adhesive strength of glass film
JPH10152780A (en) Insulating film for grain oriented silicon steel sheet, and its formation
JPH0615695B2 (en) Method for producing unidirectional electrical steel sheet with excellent iron loss