JPS6396216A - Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic - Google Patents

Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic

Info

Publication number
JPS6396216A
JPS6396216A JP24018286A JP24018286A JPS6396216A JP S6396216 A JPS6396216 A JP S6396216A JP 24018286 A JP24018286 A JP 24018286A JP 24018286 A JP24018286 A JP 24018286A JP S6396216 A JPS6396216 A JP S6396216A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
oriented electrical
electrical steel
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24018286A
Other languages
Japanese (ja)
Inventor
Hiromichi Yasumoto
安元 弘道
Osamu Tanaka
収 田中
Toshihiko Takada
敏彦 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24018286A priority Critical patent/JPS6396216A/en
Priority to EP86116964A priority patent/EP0225619B1/en
Priority to US06/938,648 priority patent/US4897131A/en
Priority to DE3689703T priority patent/DE3689703T2/en
Publication of JPS6396216A publication Critical patent/JPS6396216A/en
Priority to US07/427,964 priority patent/US5028279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a grain oriented electrical steel sheet having high adhesiveness of a glass film and excellent iron loss characteristic by forming ruggedness on the surface of a steel sheet by mechanical means, etc. prior to decarburization annealing in a process for producing the grain oriented electrical steel sheet, subjecting the steel sheet to the decarburization annealing then coating an annealing and finishing agent thereon and subjecting the steel sheet to the final finish annealing. CONSTITUTION:The grain oriented electrical steel sheet is produced by subjecting a silicon steel slab to respective treatments of hot rolling, annealing, cold rolling, decarburization annealing and finish annealing. The sharp and fine ruggedness (about 0.3-5mu surface roughness) is formed over the entire surface of the steel sheet at <=1mm intervals in the direction within 30 deg. with respect to the direction orthogonal with the rolling by mechanical means such as brush roll, buffing, scribing or grinding or/and optical means such as laser projection. The steel sheet is then subjected to the decarburization annealing and after the annealing and separating agent is coated thereon, the steel sheet is subjected to the final finish annealing. The grain oriented electrical steel sheet which has the glass film having large film tension and high adhesiveness and has the low iron loss is thereby produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はすぐれたグラス皮膜特性と磁気特性をあわせも
つ方向性電磁鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing grain-oriented electrical steel sheets having both excellent glass film properties and magnetic properties.

(従来の技術) 方向性電磁鋼板はトランス、発電機等の電気機器の鉄心
として使用されるが、磁気特性の鉄損特性、励磁特性が
良好であること、およびグラス皮膜特性がすぐれている
ことが重要である。
(Prior art) Grain-oriented electrical steel sheets are used as cores for electrical equipment such as transformers and generators, and they have good magnetic properties such as core loss and excitation properties, and excellent glass coating properties. is important.

通常、方向性電磁鋼板はSi:4%以下を含有する珪素
鋼素材を熱間圧延し、必要に応じて熱間圧延板焼鈍し、
1回又は2回の冷間圧延工程により、最終仕上厚みの冷
延板を得、次に脱炭焼鈍を行った後、MgOを主成分と
する焼鈍分離剤を塗布し、最終仕上焼鈍を施してゴス方
位をもった2次再結晶粒を発達させ、更にS、 Nなど
の不純物を除去するとともにグラス皮膜を生成させ、次
いで平坦化応力除去焼鈍と絶縁コーティング処理を行う
工程を経て製造される。
Normally, grain-oriented electrical steel sheets are made by hot rolling a silicon steel material containing Si: 4% or less, and annealing the hot rolled sheet as necessary.
A cold-rolled sheet with the final finish thickness is obtained by one or two cold rolling processes, then decarburized annealed, an annealing separator containing MgO as the main component is applied, and final finish annealed is performed. It is manufactured through a process of developing secondary recrystallized grains with Goss orientation, removing impurities such as S and N, and forming a glass film, followed by flattening stress-relieving annealing and insulation coating treatment. .

方向性電磁鋼板はグラス皮膜および磁気特性の改善が検
討されている。
Improvements in the glass coating and magnetic properties of grain-oriented electrical steel sheets are being considered.

グラス皮膜の改善については例えば特開昭50−715
26号公報には最終板厚に冷間圧延された方向性電磁鋼
板に対し、脱炭焼鈍を行う前に、その表面層を3g/m
以上除去するように酸洗して、表面付着物と地鉄表層部
を除去し、脱炭反応、酸化物の形成反応をむらなく進行
させ、脱炭焼鈍後に焼鈍分離剤を塗布し、仕上焼鈍を施
して均一性と密着性のよいMgO5iOz系絶縁皮膜を
形成することが記載されている。
Regarding the improvement of glass film, for example, Japanese Patent Application Laid-Open No. 50-715
Publication No. 26 discloses that the surface layer of a grain-oriented electrical steel sheet that has been cold-rolled to the final thickness is 3 g/m before decarburization annealing.
Pickling is carried out to remove surface deposits and the surface layer of the steel, allowing the decarburization reaction and oxide formation reaction to proceed evenly, and after decarburization annealing, an annealing separator is applied, and final annealing is performed. It is described that a MgO5iOz-based insulating film with good uniformity and adhesion is formed by applying the following steps.

また特開昭57−101673号公報には最終板厚に冷
間圧延された方向性電磁鋼帯を脱炭焼鈍後に、MgO等
の焼鈍分離剤を塗布する前に、前記鋼帯の表面を片面で
0.025〜0.5 g / m研削あるいは酸洗によ
って除去して、鋼板表面層の酸化被膜を除き、次いで焼
鈍分離剤を塗布し仕上焼鈍を施して、密着性がよく均一
な灰色の外観を呈するグラス皮膜を形成することが記載
されている。
Furthermore, Japanese Patent Application Laid-open No. 57-101673 discloses that after decarburization annealing of a grain-oriented electrical steel strip that has been cold-rolled to the final thickness, one surface of the steel strip is coated with an annealing separator such as MgO. 0.025 to 0.5 g/m by grinding or pickling to remove the oxide film on the surface layer of the steel plate, then apply an annealing separator and finish annealing to create a uniform gray color with good adhesion. It has been described that a glass film having a glass appearance is formed.

さらに特開昭61−96082号公報では、脱炭焼鈍前
の鋼板表面をカーボランダム砥粒、アランダム砥粒を含
む軟質材料からなる研削手段によって、鋼板表面に凹凸
を形成することなく研削して清浄化し、平滑なSiO□
のサブスケールを脱炭焼鈍で生成し、均一で密なグラス
皮膜を仕上焼鈍にて形成することが提案されている。
Furthermore, in JP-A-61-96082, the surface of a steel plate before decarburization annealing is ground by a grinding means made of a soft material containing carborundum abrasive grains and alundum abrasive grains without forming irregularities on the surface of the steel plate. Cleaned and smooth SiO□
It has been proposed to generate subscales by decarburization annealing and to form a uniform and dense glass film by final annealing.

(発明が解決しようとする問題点) これらによって、グラス皮膜の密着性などの皮膜特性の
改善が図られ、また磁気特性についても改善が図られて
いるが、これで十分であるとは言えず、さらに検討する
必要がある。
(Problems to be Solved by the Invention) Through these efforts, improvements have been made in film properties such as adhesion of glass films, and improvements have also been made in magnetic properties, but these are not sufficient. , needs further consideration.

ところで皮膜特性の向上を図るためにグラス皮膜を厚く
しようとする場合、脱炭焼鈍でSt、2主体の酸化層を
厚くするのが効果的であり、この場合は脱炭焼鈍時のP
 HzO/ P Hzを高めたり均熱時間を長くする等
のアクションが必要である。この様な場合には必然的に
Fayalite (Fc43iO4)、 FeO等の
Fe系酸化物の形成量も増してグラス皮膜の質の低下を
もたらしたり、インヒビターへの影響を生じる。又、磁
気特性、なかでも鉄損の低減を図るための高Si材や特
殊成分元素やこれらの化合物をインヒビターとして添加
した材料では、これらの成分元素の表面層への濃化や選
択酸化が生じて脱炭不良が生じたり脱炭酸化膜の形成が
損われる。
By the way, when trying to thicken the glass film in order to improve the film properties, it is effective to thicken the oxide layer consisting mainly of St and 2 during decarburization annealing.
Actions such as increasing the HzO/P Hz and lengthening the soaking time are required. In such a case, the amount of Fe-based oxides such as Fayalite (Fc43iO4) and FeO inevitably increases, leading to a decrease in the quality of the glass film and affecting the inhibitor. Furthermore, in order to reduce magnetic properties, especially iron loss, high-Si materials and materials to which special constituent elements or their compounds are added as inhibitors may cause concentration or selective oxidation of these constituent elements in the surface layer. decarburization may occur or the formation of a decarboxylation film may be impaired.

このため、良質のグラス形成が損われたり、磁性不良が
生じる。
This may impair the formation of a high-quality glass or cause magnetic defects.

本発明は密着性、皮膜張力、外観などの皮膜特性がすぐ
れたグラス皮膜と、それに併せて低鉄損特性を有する方
向性電磁鋼板を得ることを目的とし、さらに従来技術で
は製造困難であった高Si材、特殊元素添加材でも生産
性を損わずにグラス皮膜の密着性が良く鉄損の低い方向
性電磁鋼板を製造するものである。
The purpose of the present invention is to obtain a glass film with excellent film properties such as adhesion, film tension, and appearance, as well as a grain-oriented electrical steel sheet with low core loss properties, which was difficult to manufacture using conventional technology. The purpose is to produce grain-oriented electrical steel sheets with good glass film adhesion and low core loss without impairing productivity even with high Si materials and special element additives.

(問題点を解決するための手段) 本発明者達はさきに部分的に鋼板地鉄側に突き込んだ酸
化物を形成すると、アンカー(錨)効果を生じてグラス
皮膜の密着性が大幅に改善され、かつ皮膜の張力効果も
飛躍的に向上して鉄損の低い方向性電磁鋼板が得られる
ことを見出した。
(Means for Solving the Problem) The inventors of the present invention previously discovered that by forming an oxide partially penetrated into the steel sheet substrate, an anchor effect is produced and the adhesion of the glass film is significantly reduced. It has been found that a grain-oriented electrical steel sheet with low core loss can be obtained by improving the tensile strength of the film and dramatically improving the tensile effect of the film.

さらに検討したところ、脱炭焼鈍前の鋼板表面に圧延直
交方向に対して±30度以内の方向に、間隔1 n+未
満で全面的にブラシロール、バフ研磨、ケガキ、グライ
ンダー等の機械的手段、または/およびレーザー照射等
の光学的手段により鋭利でかつ微細な凹凸を形成し、活
性化して脱炭焼鈍すると、局所的に厚く鋼板地鉄に突込
んだ形で脱炭酸化膜が形成され、グラス皮膜の特性がす
ぐれるとともに、磁区細分化作用も奏せられ鉄損の大幅
な低下が図れることを見出した。
Further investigation revealed that mechanical means such as brush rolls, buffing, scribing, grinding, etc. were applied to the surface of the steel sheet before decarburization annealing at intervals of less than 1 n+ in directions within ±30 degrees to the direction perpendicular to the rolling direction. Or/and by forming sharp and fine irregularities by optical means such as laser irradiation, activating and decarburizing annealing, a locally thick decarboxylated film is formed in the form of protruding into the base steel sheet, It has been discovered that the glass coating has excellent properties, and also has a magnetic domain refining effect, resulting in a significant reduction in iron loss.

本発明はこの知見に基づいて構成されたものであり、以
下に、詳細に説明する。
The present invention was constructed based on this knowledge, and will be explained in detail below.

本発明者達は、先に特願昭60−273421号で提案
した如く、脱炭焼鈍の前または後に、方向性電磁鋼板表
面に鋭利でかつ微細な凹凸を形成し鋼板表面を活性化す
ると、脱炭焼鈍または仕上焼鈍で鋼板地鉄に部分的に突
込んだ内部酸化物が形成され、密着性のすぐれたグラス
皮膜が得られ、鉄損の低下が図られ得ることを見出した
As previously proposed in Japanese Patent Application No. 60-273421, the present inventors have discovered that by forming sharp and fine irregularities on the surface of a grain-oriented electrical steel sheet before or after decarburization annealing to activate the surface of the steel sheet, It has been found that during decarburization annealing or finish annealing, internal oxides are formed that partially protrude into the base steel of the steel sheet, resulting in a glass film with excellent adhesion and a reduction in iron loss.

さらに鉄損の低下とグラス皮膜の改善を図るべく検討し
た。その結果、方向性電磁綱板表面に鋭利で微細な凹凸
を形成する際には、その間隔を1■1未満と極めて狭く
し、併せて圧延直交方向に対して±30度以内の向とす
ることによって鉄損の大幅な低下を達成し得ることを新
たに見出した。
Furthermore, we investigated ways to reduce iron loss and improve the glass coating. As a result, when forming sharp, fine irregularities on the surface of the oriented electromagnetic steel sheet, the interval between them should be extremely narrow, less than 1 x 1, and the direction should be within ±30 degrees with respect to the direction perpendicular to the rolling direction. We have newly discovered that it is possible to achieve a significant reduction in iron loss by doing this.

また、その形成の時期は脱炭焼鈍の終了前がよく、脱炭
焼鈍に入る前または脱炭焼鈍での昇温過程中が好ましい
Further, the timing of its formation is preferably before the end of decarburization annealing, preferably before starting decarburization annealing or during the temperature raising process in decarburization annealing.

鉄損の低下を図るために、従来から、方向性電磁鋼板に
線状疵の如き微小痕を間隔をおいて形成し、磁区を細分
化することは公知である。しかし従来の微小痕の形成間
隔は1m11以上と云われているが実際的には3〜12
mmであり、1■鳳未満の微小な間隔は鉄損をむしろ増
加させるといわれていた。
In order to reduce iron loss, it has been known to form minute marks such as linear flaws at intervals on a grain-oriented electrical steel sheet to subdivide the magnetic domains. However, it is said that the conventional micro-scar formation interval is 1 m11 or more, but in reality it is 3 to 12 m2.
mm, and it was said that a minute spacing of less than 1 inch would actually increase iron loss.

このような従来の磁区細分化技術と違って、本発明のよ
うに、鋼板地鉄に局所的に突込んだ脱炭酸化膜を形成し
、グラス皮膜の改善とあわせて鉄損の低下を図る場合に
は、1mm未満、好ましくは0、5 mm以下の微小間
隔にて鋭利で微細な凹凸を形成すると第1図に示すよう
に効果があり、1mm以上となると鉄損の低下効果が少
なくなり、グラス皮膜の密着性も弱まる。また、その際
凹凸の形成方向は圧延直交方向に対して±30度以内が
よい。
Unlike such conventional magnetic domain refining technology, the present invention forms a locally protruding decarboxylation film on the steel plate base, improving the glass film and reducing iron loss. In some cases, forming sharp and fine irregularities at minute intervals of less than 1 mm, preferably 0.5 mm or less, has an effect as shown in Figure 1, and when it is 1 mm or more, the effect of reducing iron loss is reduced. , the adhesion of the glass film also weakens. Further, in this case, the direction in which the unevenness is formed is preferably within ±30 degrees with respect to the direction perpendicular to the rolling direction.

これを超えると鉄損の低下が小さくなる傾向がある。If this value is exceeded, the decrease in iron loss tends to become smaller.

鋭利で微細な凹凸はブラシロール、バフ研磨、グライン
ダー、ケガキなどの機械的手段あるいはCO□レーザー
、YAG レーザーなどのレーザー照射を用いて光学的
手段により形成される。その凹凸は平均粗さで0.3〜
5μm程度が好ましい。
The sharp and fine irregularities are formed by mechanical means such as a brush roll, buffing, grinder, and scriber, or by optical means using laser irradiation such as a CO□ laser or a YAG laser. The average roughness of the unevenness is 0.3~
The thickness is preferably about 5 μm.

凹凸は鋼板の片面または両面に形成される。その形成の
時期は脱炭焼鈍の終了前であり、冷間圧延の後、あるい
は冷間圧延の途中など脱炭焼鈍する前に形成する。また
は脱炭焼鈍の昇温途中に形成してもよい。
The irregularities are formed on one or both sides of the steel plate. The timing of its formation is before the end of decarburization annealing, and it is formed before decarburization annealing, such as after cold rolling or during cold rolling. Alternatively, it may be formed during heating during decarburization annealing.

このように、1璽1未満の微小な間隔にて鋭利で微細な
凹凸を、圧延直交方向に対して±30度以内の向きに形
成し、脱炭焼鈍を行うと、脱炭焼鈍での鋼板表面のSi
O□形成反応が促進され、局部的に鋼板地鉄に突込んだ
形で厚く、酸化鉄成分が少なく、S10□成分に冨む酸
化膜が形成される。これとともに、その酸化膜は前記凹
凸に沿って形成される。これらの相乗作用により、その
後、仕上焼鈍された方向性電磁鋼板は密着性、外観など
の皮膜特性がすぐれたグラス皮膜が形成されるとともに
、磁区細分化作用も奏せられ鉄損が大幅に低下したもの
が得られる。
In this way, when decarburization annealing is performed by forming sharp and fine irregularities at minute intervals of less than 1 square inch in a direction within ±30 degrees with respect to the orthogonal rolling direction, the steel plate during decarburization annealing is Si on the surface
The O□ formation reaction is promoted, and a thick oxide film is locally formed that protrudes into the steel plate base, has a low iron oxide component, and is rich in S10□ components. At the same time, the oxide film is formed along the unevenness. Due to these synergistic effects, the grain-oriented electrical steel sheet that is then finish annealed forms a glass film with excellent film properties such as adhesion and appearance, and also has a magnetic domain refining effect, which significantly reduces iron loss. You get what you get.

方向性電磁鋼板の鋼成分および冷間圧延されるまでの製
造条件は特定する必要はなく、例えばCが0.04〜0
.10%、Siが2.0〜4.0%、インヒビターとし
てAI!N 、 MnSを主体として適宜なものが用い
られ、必要に応じて、他の元素も含有することができる
。電磁鋼スラブを熱間圧延し、焼鈍して1回または中間
焼鈍をはさんで2回以上の冷間圧延により所望の最終板
厚とされる。
It is not necessary to specify the steel composition of grain-oriented electrical steel sheet and the manufacturing conditions until cold rolling. For example, C is 0.04 to 0.
.. 10%, Si is 2.0-4.0%, and AI as an inhibitor! An appropriate material containing N and MnS as main constituents is used, and other elements may also be contained if necessary. An electromagnetic steel slab is hot rolled, annealed, and then cold rolled once or twice or more with intermediate annealing to achieve a desired final thickness.

次いで、前述のように脱炭焼鈍の前に、鋼板表面に鋭利
で微細な凹凸を微小な間隔にて形成する。
Next, as described above, before decarburization annealing, sharp and fine irregularities are formed at minute intervals on the surface of the steel sheet.

脱炭焼鈍では脱炭とともにSin、に富む酸化膜が形成
されるが、800〜860℃でN2と■2を主成分とす
る雰囲気にて例えばPH20/pH□を0.35〜0.
50として行われる。
In decarburization annealing, a Sin-rich oxide film is formed along with decarburization, but at 800 to 860°C in an atmosphere containing N2 and ■2 as main components, for example, PH20/pH□ is 0.35 to 0.
It is done as 50.

前記凹凸の形成を脱炭焼鈍の昇温途中にて行う場合には
750℃以下の温度にて行うことが、グラス皮膜の密着
性、外観の面および鉄損の低下の両面から好ましい。脱
炭焼鈍の後は、MgOを主成分として、TiO2,B化
合物、 SrS 、 SnS 、 CuS等の添加物が
添加された焼鈍分離剤を塗布し、乾燥させて、仕上焼鈍
が施される。
When the above-mentioned unevenness is formed during the temperature increase during decarburization annealing, it is preferable to perform the formation at a temperature of 750° C. or lower from the viewpoints of adhesion of the glass film, appearance, and reduction in iron loss. After decarburization annealing, an annealing separator containing MgO as a main component and additives such as TiO2, B compounds, SrS, SnS, and CuS is applied, dried, and final annealed.

仕上焼鈍では脱炭焼鈍で形成された酸化膜と焼鈍分離剤
が反応してグラス皮膜が生成される。酸化膜多よ前述の
ように形成されているので、グラス皮膜も局所的に鋼板
地鉄に突き込み、またその間隔および向きも規制性を有
する。これにより、グラス皮膜の張力は大であるととも
に磁区が細分化され鉄損の大幅な低下が図られる。また
グラス皮膜の密着性は極めて良好で例えば10龍φで曲
げても剥離することがない。
In final annealing, the oxide film formed during decarburization annealing reacts with the annealing separator to form a glass film. Since the oxide film is formed as described above, the glass film also penetrates locally into the steel sheet base, and its spacing and orientation are also regulated. As a result, the tension of the glass film is high, and the magnetic domains are subdivided, leading to a significant reduction in iron loss. Furthermore, the adhesion of the glass film is extremely good, and it does not peel off even when it is bent, for example, by 10 mm.

その後に必要に応じて、平坦化焼鈍し、該鋼板にリン酸
や、リン酸アルミニウム、リン酸マグネシウム、リン酸
亜鉛、リン酸カルシウム等のリン酸塩、クロム酸やクロ
ム酸マグネシウム等のクロム酸塩、重クロム酸塩、コロ
イダルシリカなどの1種または2種以上を含む絶縁皮膜
溶液を塗布し350℃以上の温度で焼付して絶縁皮膜を
形成する。
Thereafter, if necessary, flattening annealing is performed, and the steel plate is treated with phosphoric acid, phosphates such as aluminum phosphate, magnesium phosphate, zinc phosphate, calcium phosphate, etc., chromates such as chromic acid and magnesium chromate, etc. An insulating coating solution containing one or more of dichromate, colloidal silica, etc. is applied and baked at a temperature of 350° C. or higher to form an insulating coating.

(実施例) 次に実施例を示す。(Example) Next, examples will be shown.

重量%でC、0,060%、St;2.95%、Mn;
0.070%、八10.029%、 S ;0.025
%、残部鉄からなる珪素鋼スラブを公知の方法で熱延−
焼鈍−冷延を行い板厚0.27龍とし、ブラシロールと
バフ研摩により圧延方向に対し直角方向に間隔0.8n
以下と5龍になるように平均粗さ0.5μm。
C in weight%, 0,060%, St; 2.95%, Mn;
0.070%, 810.029%, S; 0.025
%, the balance being iron, hot-rolled by a known method.
Annealed and cold-rolled to a plate thickness of 0.27mm, and brushed and buffed to a pitch of 0.8n in the direction perpendicular to the rolling direction.
The average roughness is 0.5 μm so that there are 5 dragons.

2.0μmの鋭利で微細な凹凸を形成した。Sharp and fine irregularities of 2.0 μm were formed.

次いで850℃でN2+H,湿潤雰囲気(PIIzO/
PH2’= 0.40 )で120秒間の脱炭焼鈍をし
た後、焼鈍分離剤を塗布し、1200℃X20hrの最
終仕上焼鈍を行った。このときのグラス皮膜特性と磁気
特性を第1表に示す。
Then, at 850°C in N2+H, humid atmosphere (PIIzO/
After performing decarburization annealing for 120 seconds at PH2'=0.40), an annealing separator was applied, and final finish annealing was performed at 1200°C for 20 hours. Table 1 shows the glass film properties and magnetic properties at this time.

以上のように、本発明によると、皮膜張力が大で、密着
性のすぐれたグラス皮膜を有し、鉄損の低い方向性電磁
鋼板が得られる。
As described above, according to the present invention, a grain-oriented electrical steel sheet having a glass film with high film tension and excellent adhesion and low core loss can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄損に及ぼす鋼板表面に形成した凹凸の間隔の
影響を示す図である。
FIG. 1 is a diagram showing the influence of the spacing between concavities and convexities formed on the surface of a steel plate on iron loss.

Claims (1)

【特許請求の範囲】[Claims] 珪素鋼スラブを熱延し、焼鈍して1回または中間焼鈍を
挟んで2回以上の冷延を行い、脱炭焼鈍の後、焼鈍分離
剤を塗布し仕上焼鈍する方向性電磁鋼板の製造方法にお
いて、脱炭焼鈍の前の鋼板表面に、ブラシロール、バフ
研磨、ケガキ、グラインダー等の機械的手段または/お
よびレーザー照射等の光学的手段により、圧延直交方向
に対して±30度以内の方向に間隔1mm未満として全
面的に鋭利で微細な凹凸を形成した後、脱炭焼鈍を行い
、焼鈍分離剤を塗布し、最終仕上焼鈍することを特徴と
するグラス皮膜の密着性がよく、鉄損のすぐれた方向性
電磁鋼板の製造方法。
A method for producing a grain-oriented electrical steel sheet in which a silicon steel slab is hot-rolled, annealed and cold-rolled once or twice or more with intermediate annealing in between, and after decarburization annealing, an annealing separator is applied and finish annealing is performed. , the surface of the steel sheet before decarburization annealing is subjected to mechanical means such as a brush roll, buffing, scribing, grinder, etc., or/and optical means such as laser irradiation, in a direction within ±30 degrees with respect to the orthogonal direction of rolling. After forming sharp and fine irregularities on the entire surface with a spacing of less than 1 mm, decarburization annealing is performed, an annealing separating agent is applied, and final annealing is performed.The glass coating has good adhesion and reduces iron loss. An excellent method for producing grain-oriented electrical steel sheets.
JP24018286A 1985-12-06 1986-10-11 Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic Pending JPS6396216A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24018286A JPS6396216A (en) 1986-10-11 1986-10-11 Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic
EP86116964A EP0225619B1 (en) 1985-12-06 1986-12-05 Grain-oriented electrical steel sheet having improved glass film properties and low watt loss and a process for producing same
US06/938,648 US4897131A (en) 1985-12-06 1986-12-05 Grain-oriented electrical steel sheet having improved glass film properties and low watt loss
DE3689703T DE3689703T2 (en) 1985-12-06 1986-12-05 Grain-oriented electrical steel sheet with glass film properties and low wattage and its production.
US07/427,964 US5028279A (en) 1985-12-06 1989-10-26 Grain oriented electrical steel sheet having improved glass film properties and low watt loss and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24018286A JPS6396216A (en) 1986-10-11 1986-10-11 Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic

Publications (1)

Publication Number Publication Date
JPS6396216A true JPS6396216A (en) 1988-04-27

Family

ID=17055685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24018286A Pending JPS6396216A (en) 1985-12-06 1986-10-11 Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic

Country Status (1)

Country Link
JP (1) JPS6396216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033197A1 (en) * 2010-09-09 2012-03-15 新日本製鐵株式会社 Oriented electromagnetic steel sheet and process for production thereof
WO2020067136A1 (en) * 2018-09-27 2020-04-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033197A1 (en) * 2010-09-09 2012-03-15 新日本製鐵株式会社 Oriented electromagnetic steel sheet and process for production thereof
US8657968B2 (en) 2010-09-09 2014-02-25 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and method of manufacturing the same
WO2020067136A1 (en) * 2018-09-27 2020-04-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
JPWO2020067136A1 (en) * 2018-09-27 2021-01-07 Jfeスチール株式会社 Electrical steel sheet and its manufacturing method
CN112771182A (en) * 2018-09-27 2021-05-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN112771182B (en) * 2018-09-27 2023-03-28 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
US4897131A (en) Grain-oriented electrical steel sheet having improved glass film properties and low watt loss
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
JPS6396216A (en) Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JPH05311353A (en) Ultralow core loss grain-oriented silicon steel sheet without glass coating film and its production
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH0327629B2 (en)
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3040932B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties and surface properties
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH06336616A (en) Production of grain-oriented silicon steel sheet
JPH02301571A (en) Production of grain-oriented electrical steel sheet having uniform glassy coating film
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JPS62133021A (en) Grain oriented electrical steel sheet having good adhesiveness of glass film and low iron loss and production thereof
JPH0327630B2 (en)
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP2786577B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH10152780A (en) Insulating film for grain oriented silicon steel sheet, and its formation
JPS6396217A (en) Production of grain oriented electrical steel sheet having excellent glass film adhesiveness and magnetic characteristic
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet