JPS6396218A - Production of extremely low iron loss grain oriented silicon steel sheet - Google Patents

Production of extremely low iron loss grain oriented silicon steel sheet

Info

Publication number
JPS6396218A
JPS6396218A JP24018986A JP24018986A JPS6396218A JP S6396218 A JPS6396218 A JP S6396218A JP 24018986 A JP24018986 A JP 24018986A JP 24018986 A JP24018986 A JP 24018986A JP S6396218 A JPS6396218 A JP S6396218A
Authority
JP
Japan
Prior art keywords
silicon steel
steel sheet
annealing
iron loss
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24018986A
Other languages
Japanese (ja)
Other versions
JPH0327633B2 (en
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24018986A priority Critical patent/JPS6396218A/en
Priority to US07/095,527 priority patent/US4909864A/en
Priority to DE8787308134T priority patent/DE3785632T2/en
Priority to EP87308134A priority patent/EP0260927B1/en
Publication of JPS6396218A publication Critical patent/JPS6396218A/en
Priority to US07/444,050 priority patent/US4985635A/en
Publication of JPH0327633B2 publication Critical patent/JPH0327633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Abstract

PURPOSE:To produce a grain oriented silicon steel sheet which is extremely decreased in iron loss, by removing the surface oxide of a grain oriented silicon steel sheet subjected to finish annealing, then subjecting the steel sheet to mirror finishing, forming a film by ion plating and subjecting the sheet to EB projection. CONSTITUTION:After the oxide film on the surface of the grain oriented silicon steel sheet subjected to the finish annealing is removed by a strong acid such as sulfuric acid, the surface of the steel sheet is mirror-finished by a known polishing method to <=0.4mu center line average height Ra. The film of about 0.05-5mu thickness consisting of at least one kind among the nitride and/or carbide of Ti, Zr, Hf, V, Nb, Ta, Cr, Mn, Mo, W, Co, Ni, Al, B, Si and the oxide of Al, Ni, Cu, W, Si, Zn is formed by ion plating thereon. The film is further subjected to the EB project at about 3-15mm intervals in the direction crossing the rolling direction (more preferably the direction of about 60-90 deg.). The iron loss is thereby decreased to the level more than enough to offset the increased cost by the mirror finishing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一方向性珪素口板の製造方法に関するもので、
とくに仕上焼鈍後の鏡面仕上げした鋼板表面上に窒化物
、炭化物、酸化物等のイオンプレーティング処理を行な
ったのち、ひきつづき圧延方向を横切る方向にEB照射
を施すことによって超低鉄損を達成しようとするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a unidirectional silicon mouth plate.
In particular, ultra-low iron loss can be achieved by performing ion plating treatment of nitrides, carbides, oxides, etc. on the mirror-finished steel sheet surface after final annealing, and then subsequently applying EB irradiation in a direction transverse to the rolling direction. That is.

一方向性珪素鋼板の電気・磁気的特性の改善、なかでも
鉄損の低減に係わる極限的な要請を満たそうとする近年
来の目覚ましい開発努力は、逐次その実を挙げつつある
Remarkable development efforts in recent years to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme requirements of reducing iron loss, are gradually bearing fruit.

さて一方向性珪素鋼板は、よく知られているとおり製品
の2次再結晶粒を(110) <001> 、すなわち
ゴス方位に、高度に集積させたもので、主として変圧器
その他の電気機器の鉄心として使用され電気磁気的特性
として製品の磁束密度(B、。値で代表される)が高く
、鉄mcH+tIso値で代表される)の低いことが要
求される。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) <001>, or Goss, orientation, and are mainly used in transformers and other electrical equipment. When used as an iron core, the product is required to have a high magnetic flux density (represented by the value B) and a low value (represented by the iron mcH+tIso value) as electromagnetic properties.

この一方向性珪素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までにおびただしい発明改善が加えられ
、今日では板r¥0.30mmの製品の磁気特性がBI
G値1.90T以上、WI?/Soイ直1.0随へg以
下、または板厚0.23mmの製品の磁気特性がB17
1値1.89T以上、1./、。値0.90讐/kg以
下の超低鉄損一方向性珪素鋼板が製造されるようになっ
て来ている。
This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today the magnetic properties of a product with a plate r¥0.30 mm have improved to BI.
G value 1.90T or more, WI? The magnetic properties of products with a straight line of 1.0 g or less or a plate thickness of 0.23 mm are B17.
1 value 1.89T or more, 1. /,. Unidirectional silicon steel sheets with ultra-low core loss of 0.90 core loss/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請求が著しく強まり、欧米では損失の少ない変圧器
を作る場合に鉄損の減少分を金額に換算して変圧器価格
に上積みする「ロス・エバリユエーション」 (鉄損評
価)制度が普及している。
Particularly in recent years, demand for reducing power loss has become much stronger from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性珪素鋼板の仕
上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレー
ザー照射により局部微小ひずみを導入して磁区を細分化
し、もって鉄損を低下させることが提案された(特公昭
57−2252号、特公昭57−53419号、特公昭
58−26405号及び特公昭58−26406号公報
参照)。
(Prior art) Under these circumstances, recently, the surface of a unidirectional silicon steel plate after finish annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce iron loss (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405 and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として巻鉄心トランス材料にあっては、
レーザー照射によって折角に導入された局部微小ひずみ
が焼鈍処理により開放されて磁区幅が広くなるため、レ
ーザー照射効果がなくなるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for laminated core transformers that are not subjected to strain relief annealing, but for material for wound core transformers that are subjected to strain relief annealing,
There is a drawback that the local minute strain introduced by laser irradiation is released by annealing and the magnetic domain width becomes wider, so that the laser irradiation effect disappears.

一方これより先に特公昭52−24499号公報におい
ては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板表面を鏡
面上げするか又はその鏡面仕上げ面上に金属メッキやさ
らにその上に絶縁被膜を塗布焼付けすることによる、超
低鉄損一方向性珪素鋼板の製造方法が提案さている。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel sheet after finish annealing was polished to a mirror finish, or the mirror finish surface was coated with metal plating or an insulating film was applied thereon. A method for manufacturing ultra-low core loss unidirectional silicon steel sheets by baking has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアンプになる割に鉄
損低減への寄与が充分でない上、とくに鏡面仕上後に不
可欠な絶縁被膜を塗布焼付した後の密着性に問題がある
ため、現在の製造工程において採用されるに至ってはい
ない。また特公昭56−4150号公報においても鋼板
表面を鏡面仕上げした後、酸化物系セラミックス薄膜を
蒸着する方法が提案されている。しかしながらこの方法
も600℃以上の高温焼鈍を施すと鋼板とセラミックス
層とが剥離するため、実際の製造工程では採用できない
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not contribute enough to reducing iron loss, although it increases the cost significantly. Due to problems with adhesion, it has not been adopted in current manufacturing processes. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher.

(発明が解決しようとする問題点) 鏡面仕上げによるコスト増の不利を補ってあまりある鉄
損の低減を成就することがこの発明の目的である。
(Problems to be Solved by the Invention) It is an object of the present invention to compensate for the disadvantage of increased cost due to mirror finishing and achieve a significant reduction in iron loss.

(問題点を解決するための手段) この発明は、方向性珪素鋼板の仕上げ焼鈍板表面上の酸
化物を除去し、ついで研磨により中心線平均粗さ0.4
μm以下の鏡面状態に仕上げた後、イオンプレーティン
グにより、Ti、 Zr、 Hf 、V、 Nb。
(Means for Solving the Problems) This invention removes oxides on the surface of a grain-oriented silicon steel plate and then polishes it to a centerline average roughness of 0.4.
After finishing to a mirror surface of μm or less, Ti, Zr, Hf, V, and Nb are coated by ion plating.

Ta、 Crt Mo+ ’A+ Mn+ Co、 N
t、 Al、 BI Siの窒化物及び/又は炭化物並
びにA1. Nt、 Cu、イ、 SiおよびZnの酸
化物のうちから選ばれる少なくとも1種から成りそれら
の地鉄との混合相を介し仕上表面上に強固に被着した極
薄張力被膜を形成した後、鋼板の圧延方向を横切る向き
にEB照射を施す工程を含む超低鉄損一方向性珪素鋼板
の製造方法(第1発明)、またさらに上記のEB照射面
の上に絶縁コーティング被膜を被成する工程を含む超低
鉄損一方向性珪素鋼板の製造方法(第2発明)である。
Ta, Crt Mo+ 'A+ Mn+ Co, N
t, Al, BI Si nitride and/or carbide and A1. After forming an ultra-thin tensile film made of at least one selected from oxides of Nt, Cu, A, Si and Zn and firmly adhered to the finished surface through a mixed phase of these with the base iron, A method for producing an ultra-low iron loss unidirectional silicon steel sheet (first invention) including a step of applying EB irradiation in a direction transverse to the rolling direction of the steel sheet, and further comprising forming an insulating coating on the EB irradiation surface. A method for manufacturing an ultra-low core loss unidirectional silicon steel sheet (second invention) including the steps.

これら発明の成功が導かれた具体的な実験に従って説明
を進める。
The explanation will proceed according to specific experiments that led to the success of these inventions.

C: 0.048重四%(以下単に%で示す) 、Si
:3.48%、 Mn:0.062%、 Se: 0.
022%、 Sb: 0.026%及びMo : O’
、 020%を含有する珪素鋼連鋳スラブを1350℃
で4時間加熱後熱間圧延して2.0mm W−さの熱延
板とした。
C: 0.048% (hereinafter simply expressed as %), Si
: 3.48%, Mn: 0.062%, Se: 0.
022%, Sb: 0.026% and Mo: O'
Continuously cast silicon steel slabs containing 0.020% were heated to 1350℃.
After heating for 4 hours, the sheet was hot-rolled to obtain a hot-rolled sheet with a width of 2.0 mm.

その後900℃で3分間の均−化焼鈍後、950℃で3
分間の中間焼鈍をはさむ2回の冷間圧延を施して0.2
3mm厚の最終冷延板とした。
After that, after equalization annealing at 900℃ for 3 minutes, at 950℃ for 3 minutes.
Cold rolled twice with intermediate annealing for 0.2 min.
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後820℃の湿水素雰囲気中で脱炭・−次回結晶焼
鈍を施した後、鋼板表面に不活性AIZO3(75%)
とMgO(25%)から成る焼鈍分離剤を塗布し、つい
で850℃で50時間の2次再結晶焼鈍と、1200°
Cで5時間飽水素中で純化焼鈍とを施した。
After that, after decarburization and next crystal annealing in a wet hydrogen atmosphere at 820℃, inert AIZO3 (75%) is applied to the steel plate surface.
and MgO (25%), followed by secondary recrystallization annealing at 850°C for 50 hours and 1200°
Purification annealing was performed at C for 5 hours in saturated hydrogen.

かくして得られた仕上焼鈍済みの方向性珪素鋼板コイル
を4区分し、それぞれについて、その後軽く酸洗(10
%のHCJ液中)した後、3%IIPとH2Otの液中
で化学研磨し鋼板表面平均粗さ0.03μmの鏡面状態
に仕上げた。
The final annealed grain-oriented silicon steel sheet coil thus obtained was divided into four sections, and each section was then lightly pickled (10
% HCJ solution) and then chemically polished in a 3% IIP and H2Ot solution to give a mirror-like finish with an average surface roughness of 0.03 μm.

その後上記のように区分した4群の試料をそれぞれ次の
条件で処理した。
Thereafter, the four groups of samples divided as described above were each treated under the following conditions.

(a)  鏡面鋼板の上に連続イオンプレーティング装
置(HCD法)によりTiNの1.0 μm厚の薄膜を
形成させた。
(a) A thin film of TiN with a thickness of 1.0 μm was formed on a mirror-finished steel plate using a continuous ion plating device (HCD method).

fb)  鏡面鋼板の上に連続イオンプレーティング装
置によりTiNの1.0μm厚の薄膜を形成させた後、
ひきつづき真空中で圧延方向に直角方向に10璽曹幅に
エレクトロンビーム照射(EB照射は加速電圧ニア0K
V、加速電流:0.5A、ビーム径0.1鳳■、ビーム
走査間隔:10龍で走査)した。
fb) After forming a 1.0 μm thick TiN film on a mirror steel plate using a continuous ion plating device,
Continuously, electron beam irradiation is performed in a vacuum in a direction perpendicular to the rolling direction to a width of 10 mm (EB irradiation is performed at an accelerating voltage of near 0K).
V, accelerating current: 0.5 A, beam diameter 0.1 x, beam scanning interval: 10 x scanning).

fc)  鏡面鋼板の上に連続イオンプレーティング装
置によりTiNの1.0μm厚の薄膜を形成させた後ひ
きつづき真空中で圧延方向に直角の方向に10mm幅に
エレクトロンビーム照射後、500℃で1分間の低温焼
付絶縁コーティング処理した。
fc) After forming a 1.0 μm thick TiN film on a mirror steel plate using a continuous ion plating device, it was then irradiated with an electron beam in a 10 mm width in a direction perpendicular to the rolling direction in a vacuum, and then heated at 500°C for 1 minute. - Processed with low temperature baking insulation coating.

(dl  鏡面研磨のまま(比較材)とした。(dl) Used as mirror polished (comparison material).

各試料の磁気特性値を表1にまとめて示す。The magnetic property values of each sample are summarized in Table 1.

表   1 表1から明らかなように、この発明による(b)および
(C)の各条件の磁気特性は、B10値が1.92T。
Table 1 As is clear from Table 1, the magnetic properties under each condition (b) and (C) according to the present invention have a B10 value of 1.92T.

WIT/S。値は0.63〜0.60W/kgと超低鉄
損を示すこと力く注目される。
WIT/S. It is noteworthy that the value is 0.63 to 0.60 W/kg, which indicates ultra-low iron loss.

このように一方向性珪素鋼板を鏡面仕上し、その上にT
INの極薄張力コーテング処理後、EB照射によりさら
に微小歪みを導入するときわめて低鉄損を有する製品を
得ることができる。
In this way, the unidirectional silicon steel plate is mirror-finished, and then T
After the IN ultra-thin tension coating treatment, by further introducing micro-strain by EB irradiation, a product with extremely low iron loss can be obtained.

特にこのEB照射はTiNの極薄膜コーテイング後同様
の真空中で処理できるので、一つの連続ラインで二つの
画期的作用を利用することによって超低鉄損の一方向性
珪素鋼板を製造できる利点がある。
In particular, this EB irradiation can be performed in the same vacuum after coating with an ultra-thin TiN film, which has the advantage of producing ultra-low core loss unidirectional silicon steel sheets by utilizing two innovative functions in one continuous line. There is.

(作 用) 上にのべたように鏡面仕上げした鋼板表面に、極薄の張
力被膜を形成させて地鉄との熱膨張の差によって起る強
い弾性張力を利用し、さらに鋼板表面にEB処理によっ
て局所的な微小の塑性歪みを導入することによって超低
鉄損を実現することができる。
(Function) As shown above, an ultra-thin tension film is formed on the surface of the mirror-finished steel plate, utilizing the strong elastic tension caused by the difference in thermal expansion with the base steel, and the surface of the steel plate is then subjected to EB treatment. Ultra-low iron loss can be achieved by introducing local minute plastic strain.

以上の実験結果は、TiNよりなる張力被膜について述
べたが張力被膜はこのほかにもTi、 Zr、 V。
The above experimental results are based on a tension coating made of TiN, but the tension coating can also be made of other materials such as Ti, Zr, and V.

Nb+ Ta+ Cr、Mo、Co、Ni、Mn、AI
、B、Si、W、Hfの窒化物及び/又は炭化物並びに
AI、Ni、Cu、W、Si及びZnの酸化物のうちか
ら選ばれる少なくとも1種よりなる場合にあっても、T
iNについてのべたところとほぼ同様な作用効果をあら
れし、何れもこの発明の目的に適合する。
Nb+ Ta+ Cr, Mo, Co, Ni, Mn, AI
, B, Si, W, Hf nitrides and/or carbides, and AI, Ni, Cu, W, Si and Zn oxides.
Almost the same effects as those described for iN are obtained, and both are suitable for the purpose of the present invention.

次にこの発明による、一方向性珪素鋼板の製造工程につ
いて説明する。
Next, the manufacturing process of a unidirectional silicon steel plate according to the present invention will be explained.

出発素材は従来公知の一方向性珪素鋼素材成分、例えば ■ C: 0.01〜0.050%、 St: 2.5
0〜4.5%、 Mn:0.01〜0.2%、 Mo:
 0.003〜0.1%、 Sb: 0.005〜0.
2%、SあるいはSeの1種あるいは2種合計で、0.
005〜0.05%を含有する組成■ C: 0.01
〜0.08%、 Si: 2.0〜4.0%、S:0.
005〜0.05%、 Al: 0.005〜0.06
%、N: o、ooi〜0.01%、 Sn: 0.0
1〜0.5%、 Cu:0.01〜0.3%。
The starting material is a conventionally known unidirectional silicon steel material, such as ■ C: 0.01 to 0.050%, St: 2.5
0-4.5%, Mn: 0.01-0.2%, Mo:
0.003-0.1%, Sb: 0.005-0.
2%, one or two types of S or Se, 0.
Composition containing 005-0.05%■ C: 0.01
~0.08%, Si: 2.0-4.0%, S: 0.
005-0.05%, Al: 0.005-0.06
%, N: o, ooi~0.01%, Sn: 0.0
1-0.5%, Cu: 0.01-0.3%.

Mn: 0.01〜0.2%を含有する組成■ C: 
0.011〜0.06%、 Si: 2.0〜4.0%
、S:0.005〜0.05%、 B:0.0003〜
0.0040%、 N :0.OO1〜0.01%、 
Mn:0.01〜0.2%を含有する組成の如きにおい
て適用可能である。
Composition containing Mn: 0.01 to 0.2% ■C:
0.011-0.06%, Si: 2.0-4.0%
, S: 0.005~0.05%, B: 0.0003~
0.0040%, N: 0. OO1~0.01%,
It is applicable to compositions containing Mn: 0.01 to 0.2%.

次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050℃の中間焼鈍をはさんでさらに冷
延する2凹冷延法にて、後者の場合最初の圧下率は50
%から80%程度、最終の圧下率は50%から85%程
度で0.15mmから0.35mmの最終冷延板厚とす
る。
Next, the hot-rolled sheet undergoes uniform annealing at 800 to 1100°C.
One-time cold rolling method, in which the final plate thickness is obtained by two cold rolling steps, or two-concave cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, and then further cold rolling is performed.In the latter case, the first rolling rate is 50
% to about 80%, the final rolling reduction is about 50% to 85%, and the final cold rolled plate thickness is from 0.15 mm to 0.35 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750℃から850℃の湿水素中で脱炭・1次再結晶
焼鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is subjected to decarburization and primary recrystallization annealing treatment in wet hydrogen at 750°C to 850°C after surface degreasing.

その後は通常銅板表面にMgOを主成分とする焼鈍分離
材を塗布する。
After that, an annealing separation material containing MgO as a main component is usually applied to the surface of the copper plate.

この際、一般的には仕上げ焼鈍後の形成を不可欠として
いたフォルステライトを特に形成させない方が、その後
の鋼板の鏡面化処理を簡便にするのに有効であるので、
焼鈍分離剤としてAl2O2やZrO□、 Ti0zの
如きを50%以上でMgOに混入した焼鈍分離剤を使用
するのが好ましい。
At this time, it is effective not to form forsterite, which is generally required to be formed after finish annealing, in order to simplify the subsequent mirror polishing treatment of the steel plate.
As the annealing separator, it is preferable to use an annealing separator in which 50% or more of Al2O2, ZrO□, Ti0z, etc. is mixed into MgO.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>  方位の2次再結晶粒を充分発達させる
ために施されるもので、通常箱焼鈍によって直ちに10
00℃以上に昇温し、その温度に保持することによって
行われる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is carried out to sufficiently develop secondary recrystallized grains with the <001> orientation, and is usually performed immediately after box annealing.
This is done by raising the temperature to 00°C or higher and maintaining it at that temperature.

この場合(110) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保定焼鈍する方が有利であり、そのほか
例えば0.5〜b 鈍でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (110) <001> orientation, the
It is more advantageous to carry out retention annealing at a low temperature of 00°C, and in addition, for example, 0.5-b annealing may be used.

2次再結晶焼鈍後の純化焼鈍は飽水素中で1100℃以
上で1〜20時間焼鈍を行って鋼板の純化を達成するこ
とが必要である。
Purification annealing after secondary recrystallization annealing requires annealing in saturated hydrogen at 1100° C. or higher for 1 to 20 hours to achieve purification of the steel sheet.

この純化焼鈍後に鋼板表面の酸化物被膜を硫酸、硝酸又
は弗酸などの強酸によるような酸洗か又は機械的研削、
切削等により除去する。
After this purification annealing, the oxide film on the surface of the steel sheet is pickled with a strong acid such as sulfuric acid, nitric acid or hydrofluoric acid, or mechanically ground.
Remove by cutting etc.

次に化学研磨および/又は電解研磨など従来から既知の
手法により鋼板表面を鏡面状態つまり中心線平均粗さR
aで0.4μm以下に仕上げる。
Next, the surface of the steel plate is polished to a mirror-like state, that is, with a centerline average roughness R, using conventionally known methods such as chemical polishing and/or electrolytic polishing.
A is finished to 0.4 μm or less.

その後イオンプレーテングによりTi、 Zr、 V、
 Nb 。
After that, Ti, Zr, V,
Nb.

Ta、 Cr+ Mo+ W+ Mn+ Co、 Ni
、 AI、 B、 Siの窒化物及び/又は炭化物、八
1. Ni、 Cu、也SiおよびZnの酸化物のうち
から選んだ少なくとも1種から成る0、05〜5μm程
度の種菌被膜を形成させる。
Ta, Cr+ Mo+ W+ Mn+ Co, Ni
, AI, B, Si nitride and/or carbide, 81. A seed coat of about 0.05 to 5 .mu.m consisting of at least one selected from oxides of Ni, Cu, Si, and Zn is formed.

その後この極薄被膜上に圧延方向を横切る方向好適には
60〜90°の方向、3〜15mm程度の間隔でEB照
射を施す。このときのEB照射条件は10〜300KV
の加速電圧、0.005〜IOAの電流、ビーム径は0
.005〜51を用いて点状あるいは線状に施すのが効
果的である。
Thereafter, EB irradiation is applied to this ultra-thin film in a direction transverse to the rolling direction, preferably in a direction of 60 to 90 degrees, at intervals of about 3 to 15 mm. The EB irradiation conditions at this time are 10 to 300 KV.
acceleration voltage, current of 0.005 to IOA, beam diameter of 0
.. It is effective to apply dots or lines using 005 to 51.

さらに本発明のイオンプレーティング後のEB照射は別
々のラインで行なうこともできるが、同一ラインの真空
中で行なうのが効果的である。
Furthermore, although the EB irradiation after ion plating of the present invention can be performed in separate lines, it is effective to perform it in vacuum on the same line.

このようにEB照射した後絶縁性を確保することが必要
であるが、この絶縁被膜処理はER照射効果を生かすた
めに600℃以下の低温で1秒から30分間の短時間の
焼付処理を施すことが効果的である。
In this way, it is necessary to ensure insulation properties after EB irradiation, but in order to take advantage of the ER irradiation effect, this insulation coating treatment requires a short baking process of 1 second to 30 minutes at a low temperature of 600°C or less. This is effective.

上記のように処理された珪素綱板は平たん化熱処理を行
うことができる。
The silicon steel plate treated as described above can be subjected to flattening heat treatment.

(実施例) 1上■−よ C: 0.045%、 Si: 3.40%、 Mn:
 0.066%9局:0.020%、 Se: 0.0
20%、 Sb: 0.025%を含有する熱延板を、
900℃で3分間の均一化焼鈍後、950℃の中間焼鈍
をはさんで2回の冷延圧延を行って0.23mm厚の最
終冷延板とした。
(Example) 1-1C: 0.045%, Si: 3.40%, Mn:
0.066% 9th station: 0.020%, Se: 0.0
20%, Sb: 0.025%,
After uniform annealing at 900° C. for 3 minutes, cold rolling was performed twice with intermediate annealing at 950° C. to obtain a final cold rolled sheet with a thickness of 0.23 mm.

その後820℃の湿水素中で脱炭焼鈍後鋼板表面にAl
2O2(75%)と門go (25%)とを主成分とす
る焼鈍分離剤を塗布した後850℃で50時間の2次再
結晶焼鈍し、1200℃で8時間乾水素中で純化焼鈍を
行った。
Then, after decarburization annealing in wet hydrogen at 820℃, Al
After applying an annealing separator mainly composed of 2O2 (75%) and Go (25%), secondary recrystallization annealing was performed at 850°C for 50 hours, and purification annealing was performed in dry hydrogen at 1200°C for 8 hours. went.

その後酸洗により酸化被膜を除去後、3%IIFとH,
O□液液中化学研磨して鏡面仕上げした。
After that, after removing the oxide film by pickling, 3% IIF and H,
O□ Chemically polished in liquid to a mirror finish.

その後連続イオンプレーティング(IIcD法)装置を
用いてSi3N4の被膜(約1.5μm厚)を形成させ
た。
Thereafter, a Si3N4 film (about 1.5 μm thick) was formed using a continuous ion plating (IIcD method) device.

その後この被膜上に圧延方向にほぼ直角方向に81間隔
で点状にEB照射を行なった。(EB照射条件は加速電
圧: 35KV、電流: 0.5A、スポット直径はQ
、1mm、スポットの間隔l、5++nで行なった。こ
の製品の磁気特性はBoo = 1.92T 、匈、7
7、。・0.62W/kgであった。
Thereafter, EB irradiation was performed on this film in the form of dots at 81 intervals in a direction substantially perpendicular to the rolling direction. (EB irradiation conditions are acceleration voltage: 35KV, current: 0.5A, spot diameter is Q.
, 1 mm, spot spacing l, 5++n. The magnetic properties of this product are Boo = 1.92T, 匈, 7
7. - It was 0.62W/kg.

1施1 C: 0.052%、 Si: 3.46%、 Mn:
 0.077%、AI=0.024%、 S: 0.0
020%、 Cu: 0.1%、 Sn: 0.06%
を含有する熱延板を、1130℃で3分間の均−化焼鈍
後急冷処理を行い、その後300℃の温間圧延を施して
0 、20mm厚の最終冷延板とした。
1 application 1 C: 0.052%, Si: 3.46%, Mn:
0.077%, AI=0.024%, S: 0.0
020%, Cu: 0.1%, Sn: 0.06%
The hot-rolled sheet containing the following was uniformly annealed at 1130°C for 3 minutes and then rapidly cooled, and then warm-rolled at 300°C to obtain a final cold-rolled sheet with a thickness of 0.20 mm.

その後850℃湿水素中で脱炭焼鈍後、表面に八1 Z
O:l (80%)とMg0(15%)とZr0z(5
%)を主成分とする焼鈍分離剤を塗布した後850℃か
ら1150℃まで10℃/hrで昇温して2次再結晶さ
せた後、1200℃で8時間乾水素中で純化焼鈍を行っ
た。
After decarburization annealing in wet hydrogen at 850°C, 81 Z is formed on the surface.
O:l (80%), Mg0 (15%) and Zr0z (5
After applying an annealing separator mainly composed of Ta.

その後酸洗により酸化被膜を除去後、3%HFと820
□液中で化学研磨して鏡面仕上げした後、イオンプレー
ティング(HCD法)により(1)BN、 (21Ti
(CN)。
After that, after removing the oxide film by pickling, add 3% HF and 820
□ After chemically polishing in liquid to give a mirror finish, ion plating (HCD method) is applied to (1) BN, (21Ti
(CN).

(31SiJi、  f41VN、 (51ZrN、 
(61CrzN、 (7)AIN、 (81HfNの如
き窒化物、(91ZrC,αIHfC,QυSiC,Q
3TaC。
(31SiJi, f41VN, (51ZrN,
Nitride such as (61CrzN, (7)AIN, (81HfN), (91ZrC, αIHfC, QυSiC, Q
3TaC.

α31ZrC0α41MnCの如き炭化物およびQS)
ZnO,Q61NiO。
carbides such as α31ZrC0α41MnC and QS)
ZnO, Q61NiO.

αη5iOz、Q8)WO,Q9)Al5O12(20
)CuO(7)酸化物の薄膜(0,5〜1.9μm厚)
を形成させた。その後EB照射により圧延方向に直角方
向に101厘幅で線状に照射した。(EB照射条件:加
速電圧60KV、電流0.3A。
αη5iOz, Q8) WO, Q9) Al5O12 (20
) Thin film of CuO(7) oxide (0.5-1.9 μm thick)
formed. Thereafter, EB irradiation was performed in a linear manner with a width of 101 mm perpendicular to the rolling direction. (EB irradiation conditions: acceleration voltage 60KV, current 0.3A.

ビーム径0.05n+)その後550℃低温絶縁コーテ
ィングを行なった。この製品の磁気特性を第2表に示す
(Beam diameter: 0.05n+) After that, a 550°C low-temperature insulation coating was applied. The magnetic properties of this product are shown in Table 2.

第2表 C: 0.043%、 St: 3.36%、 Mn:
 0.067%、 Se:0.021%、 Sb: 0
.025%、 Mo: 0.18%を含有する熱延板を
、1000℃で1分間の均−化焼鈍後、950°Cで3
分間の中間焼鈍をはさんで2回の冷間圧延を行なって0
.18mm厚の最終冷延板とした。その後820℃湿水
素中で脱炭を兼ねる1次再結晶焼鈍を施した後、鋼板表
面にAh(h(70%)とMgO(30%)とを主成分
とする焼鈍分離剤を塗布した後850℃で50時間2次
再結晶を施した後、1200℃で10時間乾水素中で純
化焼鈍を行った。
Table 2 C: 0.043%, St: 3.36%, Mn:
0.067%, Se: 0.021%, Sb: 0
.. A hot rolled sheet containing 0.025% and Mo: 0.18% was homogenized at 1000°C for 1 minute and then heated at 950°C for 3 minutes.
Cold rolling is carried out twice with an intermediate annealing of 1 minute in between.
.. A final cold-rolled sheet with a thickness of 18 mm was obtained. After that, after performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 820°C, an annealing separator whose main components are Ah (h (70%)) and MgO (30%) is applied to the steel plate surface. After performing secondary recrystallization at 850°C for 50 hours, purification annealing was performed at 1200°C for 10 hours in dry hydrogen.

その後酸洗により酸化被膜を除去後、3%IIFとH,
O□液液中化学研磨して鏡面仕上げした後、イオンプレ
ーティング(IIcD法)により(1)TiN、 (2
1NbN。
After that, after removing the oxide film by pickling, 3% IIF and H,
O□ After chemically polishing in liquid to give a mirror finish, ion plating (IIcD method) was performed to prepare (1) TiN, (2)
1NbN.

(31MozN、 (41W2N、(51CoN、(5
)NiN、(7)TiC,(81NbCj9)MOzC
(31MozN, (41W2N, (51CoN, (5
) NiN, (7) TiC, (81NbCj9)MOzC
.

αωWC,αυCoC,Q3NiC,Q31VC+α4
)CrC,Q5)AICの張力薄膜(目標1.0μ厚)
を形成させた。その後EB照射により圧延方向に直角方
向に811幅で線条に照射した。(EB照射条件:加速
電圧80KV、電流0.5A。
αωWC, αυCoC, Q3NiC, Q31VC+α4
) CrC, Q5) AIC tension thin film (target 1.0μ thickness)
formed. Thereafter, the strip was irradiated with EB irradiation in a direction perpendicular to the rolling direction with a width of 811 mm. (EB irradiation conditions: acceleration voltage 80KV, current 0.5A.

ビーム径0.05龍)その後550℃低温絶縁コーティ
ングを行なった。
(Beam diameter: 0.05 yen) After that, a low temperature insulation coating was applied at 550°C.

この製品の磁気特性を第3表に示す。The magnetic properties of this product are shown in Table 3.

第3表 (発明の効果) 第1発明によれば仕上焼鈍済みの方向性珪素鋼板表面を
鏡面仕上をすることによるコスト増しの難点を償ってあ
まりある鉄損の著しい低減を達成することができる。ま
た第2発明により上記の鉄損低域に加えて、絶縁性の有
効な増強が実現される。
Table 3 (Effects of the Invention) According to the first invention, it is possible to achieve a significant reduction in iron loss by compensating for the disadvantage of increased cost due to mirror finishing of the surface of a grain-oriented silicon steel sheet that has been finish annealed. . Further, according to the second invention, in addition to the above-described low iron loss, effective enhancement of insulation properties is realized.

Claims (1)

【特許請求の範囲】 1、仕上焼鈍を経た一方向性珪素鋼板につき、その表面
酸化物を除去したのち、研磨により鋼板表面を中心線平
均粗さRaで0.4μm以下の鏡面に仕上げついでイオ
ンプレーティングにより、Ti、Zr、Hf、V、Nb
、Ta、Cr、Mn、Mo、W、Co、Ni、Al、B
、Siの窒化物及び/又は炭化物並びにAl、Ni、C
u、W、Si及びZnの酸化物のうちから選ばれた少な
くとも一種よりなる被膜を被成した後、該表面上で圧延
方向を横切る向きにEB照射を施すことを特徴とする超
低鉄損一方向性珪素鋼板の製造方法。 2、仕上焼鈍を経た一方向性珪素鋼板につき、その表面
酸化物を除去したのち、研磨により鋼板表面を中心線平
均粗さRaで0.4μm以下の鏡面に仕上げついでイオ
ンプレーティングにより、Ti、Zr、Hf、V、Nb
、Ta、Cr、Mn、Mo、W、Co、Ni、Al、B
、Siの窒化物及び/又は炭化物並びにAl、Ni、C
u、W、Si及びZnの酸化物のうちから選ばれた少な
くとも一種よりなる被膜を被成した後、該表面上で圧延
方向を横切る向きにEB照射し、ついで低温張力絶縁被
膜を被成することを特徴とする超低鉄損一方向性珪素鋼
板の製造方法。
[Claims] 1. After removing surface oxides from a unidirectional silicon steel plate that has undergone finish annealing, the steel plate surface is polished to a mirror surface with a center line average roughness Ra of 0.4 μm or less, and then ionized. By plating, Ti, Zr, Hf, V, Nb
, Ta, Cr, Mn, Mo, W, Co, Ni, Al, B
, Si nitride and/or carbide, and Al, Ni, C
An ultra-low iron loss characterized in that after forming a coating made of at least one kind selected from oxides of u, W, Si and Zn, EB irradiation is applied on the surface in a direction transverse to the rolling direction. A method for manufacturing unidirectional silicon steel sheet. 2. After removing surface oxides from the unidirectional silicon steel plate that has undergone final annealing, the steel plate surface is polished to a mirror finish with a centerline average roughness Ra of 0.4 μm or less, and then Ti, Zr, Hf, V, Nb
, Ta, Cr, Mn, Mo, W, Co, Ni, Al, B
, Si nitride and/or carbide, and Al, Ni, C
After forming a film made of at least one selected from oxides of u, W, Si, and Zn, EB irradiation is performed on the surface in a direction transverse to the rolling direction, and then a low-temperature tension insulation film is formed. A method for producing an ultra-low core loss unidirectional silicon steel sheet.
JP24018986A 1986-09-16 1986-10-11 Production of extremely low iron loss grain oriented silicon steel sheet Granted JPS6396218A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24018986A JPS6396218A (en) 1986-10-11 1986-10-11 Production of extremely low iron loss grain oriented silicon steel sheet
US07/095,527 US4909864A (en) 1986-09-16 1987-09-10 Method of producing extra-low iron loss grain oriented silicon steel sheets
DE8787308134T DE3785632T2 (en) 1986-09-16 1987-09-15 METHOD FOR PRODUCING CORNORIENTED SILICON STEEL SHEETS WITH VERY LOW ROLL LOSS.
EP87308134A EP0260927B1 (en) 1986-09-16 1987-09-15 Method of producing extra-low iron loss grain oriented silicon steel sheets
US07/444,050 US4985635A (en) 1986-09-16 1989-11-30 Method of producing extra-low iron loss grain oriented silicon steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24018986A JPS6396218A (en) 1986-10-11 1986-10-11 Production of extremely low iron loss grain oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS6396218A true JPS6396218A (en) 1988-04-27
JPH0327633B2 JPH0327633B2 (en) 1991-04-16

Family

ID=17055786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24018986A Granted JPS6396218A (en) 1986-09-16 1986-10-11 Production of extremely low iron loss grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS6396218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122266A (en) * 1989-10-06 1991-05-24 Matsushita Electric Ind Co Ltd Production of thin nitride film
JP2009042165A (en) * 2007-08-10 2009-02-26 Energy Support Corp Gas analyzing apparatus
US9212592B2 (en) 2010-04-15 2015-12-15 Isuzu Motors Limited Exhaust sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122266A (en) * 1989-10-06 1991-05-24 Matsushita Electric Ind Co Ltd Production of thin nitride film
JP2009042165A (en) * 2007-08-10 2009-02-26 Energy Support Corp Gas analyzing apparatus
US9212592B2 (en) 2010-04-15 2015-12-15 Isuzu Motors Limited Exhaust sensor

Also Published As

Publication number Publication date
JPH0327633B2 (en) 1991-04-16

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JP3067164B2 (en) Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet
JPS6354767B2 (en)
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH075973B2 (en) Manufacturing method of ultra-low iron loss unidirectional silicon steel sheet
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPH0335377B2 (en)
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS61246321A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPS62141706A (en) Manufacture of very low iron loss grain oriented silicon steel plate
JPS61235511A (en) Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS62284014A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH11152516A (en) Manufacture of grain oriented silicon steel sheet
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS6222407A (en) Manufacture of ultra-low iron loss unidirectional silicon steel plate
JPH0619115B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees