JPS61235511A - Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability - Google Patents

Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability

Info

Publication number
JPS61235511A
JPS61235511A JP7446185A JP7446185A JPS61235511A JP S61235511 A JPS61235511 A JP S61235511A JP 7446185 A JP7446185 A JP 7446185A JP 7446185 A JP7446185 A JP 7446185A JP S61235511 A JPS61235511 A JP S61235511A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
ultra
unidirectional silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7446185A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Toshihiko Funabashi
敏彦 船橋
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7446185A priority Critical patent/JPS61235511A/en
Priority to PCT/JP1986/000087 priority patent/WO1986004929A1/en
Priority to EP86904726A priority patent/EP0215134B1/en
Priority to DE8686904726T priority patent/DE3673290D1/en
Priority to US06/907,734 priority patent/US4713123A/en
Publication of JPS61235511A publication Critical patent/JPS61235511A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide thermal stability to a grain oriented silicon steel sheet and to decrease the iron loss thereof to an ultra-low level by subjecting said steel sheet to primary annealing then coating a separating agent for annealing consisting of MgO mixed with Al2O3, ZrO2, TiO2, etc., on said steel sheet and subjecting such steel sheet to secondary recrystallization annealing then to purification annealing in a Ti-contg. atmosphere. CONSTITUTION:The grain oriented silicon steel sheet having the prescribed compsn. is subjected to decarburization and primary recrystallization annealing. The separating agent for annealing which consists essentially of MgO and is incorporated therein with >=50wt.%>=1 kinds among Al2O3, ZrO2 and TiO2 is coated thereon and the steel sheet is subjected to the secondary recrystallization annealing. The steel sheet is thereafter subjected to the purification annealing in the gaseous atmosphere contg. Ti or the gaseous atmosphere mixed further with a non-oxidative gas. The extra-thin tensile film consisting of TiN, TiC or Ti(C, N) is formed on the surface of the steel sheet by such treatment. The film has excellent adhesiveness and the grain oriented silicon steel sheet having the excellent thermal stability and magnetic characteristic and the ultra-low iron loss is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性珪素鋼板の電気・磁気的特性の改善、なかでも
、鉄損の低減に係わる極限的な要請を満たそうとする近
年来の目覚ましい開発努力は、逐次その実を挙げつつあ
るが、その実施に伴う重大な弊害として、一方向性珪素
鋼板の使用に当たっての加工、組立てを経たのちいわゆ
るひずみ取り焼鈍がほどこされた場合に、特性劣化の随
伴を不可避に生じて、使途についての制限を受ける不利
が指摘される。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, remarkable efforts have been made to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. Our development efforts are gradually bearing fruit, but one serious problem associated with their implementation is that when using unidirectional silicon steel sheets, when so-called strain relief annealing is applied after processing and assembly, there is a risk of property deterioration. It has been pointed out that there are disadvantages in that it unavoidably involves accompaniment and restrictions on how it can be used.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を拓くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

さて一方向性珪素鋼板は、よく知られているとおり製品
の2次再結晶粒を(110) (001) 、すなわち
ゴス方位に、高度に集積させたもので、主として変圧器
その他の電気機器の鉄心として使用され電気・磁気的特
性として製品の磁束密度(e+。値で代表される)が高
く、鉄損(Wit/S。値で代表される)の低いことが
要求される。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) (001), or Goss, orientation, and are mainly used in transformers and other electrical equipment. When used as an iron core, the product is required to have a high magnetic flux density (represented by the value e+) and a low iron loss (represented by the value Wit/S) as electrical and magnetic properties.

この一方向性珪素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までおびただしい発明改善が加えられ、
今日では板厚0.30mmの製品の磁気特性がB+o1
.90T以上、Ltzsol、 05W/kg以下、ま
た板厚0.23auoの製品の磁気特性がB、。1.8
9T以上、WB7soO,90W/kg以下ノ超低鉄1
1 一方向性珪素鋼板が製造されるようになって来てい
る。
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, and numerous inventions and improvements have been made to date.
Today, the magnetic properties of products with a plate thickness of 0.30 mm are B+o1.
.. The magnetic properties of the product are 90T or more, Ltzsol, 05W/kg or less, and a plate thickness of 0.23auo. 1.8
9T or more, WB7soO, 90W/kg or less ultra-low iron 1
1. Unidirectional silicon steel sheets are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバIJ、ニージョン」 (鉄損評
価)制度が普及している。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "Eva IJ, Nijo" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下にふいて最近、一方向性珪素鋼板の仕
上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレー
ザー照射により局部微小ひずみを導入して磁区を細分化
し、もって鉄損を低下させることが提案されたく特公昭
57−2252号、特公昭57−53419号、特公昭
58−26405号、特公昭58−26406号公報参
照)。
(Prior art) Under these circumstances, recently, a method has been developed to subdivide the magnetic domains by introducing local minute strain to the surface of a unidirectional silicon steel sheet after final annealing by laser irradiation in a direction approximately perpendicular to the rolling direction. (See Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として巻鉄心トランス材料にあっては、
レーザー照射によって折角導入された局部微小ひずみが
焼鈍処理により開放されて磁区幅が広くなるため、レー
ザー照射効果が失われるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for laminated core transformers that are not subjected to strain relief annealing, but for material for wound core transformers that are subjected to strain relief annealing,
There is a drawback that the local minute strain introduced by laser irradiation is released by annealing and the magnetic domain width becomes wider, so that the laser irradiation effect is lost.

一方これより先に特公昭52−24499号公報におい
ては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板表面を鏡
面仕上げするか又はその鏡面仕上げ面上に金属薄めっき
やさらにその上に絶縁被膜を塗布焼付けすることによる
、超低鉄損一方向性珪素鋼板の製造方法が提案されてい
る。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel sheet after finish annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating or an insulating coating was applied thereon. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by coating and baking has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割りに
鉄損低減への寄与が充分でない上にとくに鏡面仕上後に
不可欠な絶縁被膜を塗布焼付した後の密着性に問題があ
るため、現在の製造工程において採用されるに至っては
いない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not make a sufficient contribution to reducing iron loss, despite the significant increase in cost. Due to problems with adhesion, it has not been adopted in current manufacturing processes.

また特公昭56−4150号公報においても鋼板表面を
鏡面仕上げした後、酸化物系セラミックス薄膜を蒸着す
る方法が提案されている。しかしながらこの方法も60
0℃以上の高温焼鈍を施すと鋼板とセラミックス層とが
はく離するため、実際の製造工程では採用できない。
Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method also has 60
If high-temperature annealing is performed at a temperature of 0° C. or higher, the steel sheet and the ceramic layer will separate, so it cannot be used in actual manufacturing processes.

(発明が解決しようとする問題点) 上記した鏡面仕上による鉄損向上は非常なコストアップ
を伴うため、現行の仕上焼鈍過程に工夫を加えることに
よって超低鉄損の一方向性珪素鋼板をより有利に得るこ
とがこの発明の目的である。
(Problems to be Solved by the Invention) Improving iron loss through mirror finishing as described above involves a significant increase in cost. It is an object of the invention to obtain advantageously.

(問題点を解決するための手段) 上記の目的は次の手順にて的確に充足される。(Means for solving problems) The above purpose is precisely fulfilled by the following steps.

一方向性珪素鋼スラブを熱間圧延して得た熱延板に、必
要な熱処理を経て1回の冷間圧延又は、中間焼鈍を挟む
2回の冷間圧延を施して最終板厚とし、次に脱炭・1次
再結晶焼鈍を行い、ついで鋼板表面にMgOを主成分と
する焼鈍分離剤を塗布したのち、2次再結晶焼鈍及び純
化焼鈍を施す一連の一方向性珪素鋼板の製法において、
焼鈍分離剤に、^1□Os、 2r02及びTie、の
うちから選んだ少なくとも1種を50重量%以上で混入
することに加え、2次再結晶焼鈍後Tiを含むガス雰囲
気又は、さらに非酸化性ガスとの混合ガス雰囲気中で純
化焼鈍を行うことにより、鋼板表面上にTiN、 Ti
C又はTi (C,N)から成る、極薄張力被膜を形成
させることを特徴とする、熱安定性、超低鉄損一方向性
珪素鋼板の製法(第1発明)。
A hot-rolled plate obtained by hot-rolling a unidirectional silicon steel slab is subjected to the necessary heat treatment and then cold-rolled once or twice with intermediate annealing to obtain the final plate thickness, Next, decarburization and primary recrystallization annealing are performed, then an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and then secondary recrystallization annealing and purification annealing are performed.A series of manufacturing methods for unidirectional silicon steel sheets. In,
In addition to mixing at least one selected from ^1□Os, 2r02 and Tie into the annealing separator in an amount of 50% by weight or more, a gas atmosphere containing Ti or a non-oxidizing gas atmosphere is added after the secondary recrystallization annealing. By performing purification annealing in a mixed gas atmosphere with a reactive gas, TiN, Ti
A method for producing a thermally stable, ultra-low core loss unidirectional silicon steel sheet (first invention), characterized by forming an ultra-thin tensile coating made of C or Ti (C,N).

一方向性珪素鋼スラブを熱間圧延して得た熱延板に、必
要な熱処理を経て1回の冷間圧延又は、中間焼鈍を挟む
2回の冷間圧延を施して最終板厚とし、次に脱炭・1次
再結晶焼鈍を行い、ついで鋼板表面にMgOを主成分と
する焼鈍分離剤を塗布したのち、2次再結晶焼鈍及び純
化焼鈍を施す一連の一方向性珪素鋼板の製法にふいて、
焼鈍分離剤に、Al2O3,2r02及びTiO□のう
ちから選んだ少なくとも1種を50重量%以上で混入す
ることに加え、2次再結晶焼鈍後Tiを含むガス雰囲気
又は、さらに非酸化性ガスとの混合ガス雰囲気中で純化
焼鈍を行うことにより、鋼板表面上にTiN、 TiC
又はTi (C,N)から成る、極薄張力被膜を形成さ
せ、その後さらに、圧延方向を横切る向きに、レーザー
照射を施して、局所ひずみを導入しついで低温コーティ
ング被膜処理を加えることを特徴とする、熱安定性、超
低鉄損一方向性珪素鋼板の製法(第2発明)。
A hot-rolled plate obtained by hot-rolling a unidirectional silicon steel slab is subjected to the necessary heat treatment and then cold-rolled once or twice with intermediate annealing to obtain the final plate thickness, Next, decarburization and primary recrystallization annealing are performed, then an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and then secondary recrystallization annealing and purification annealing are performed.A series of manufacturing methods for unidirectional silicon steel sheets. Wipe it,
In addition to mixing 50% by weight or more of at least one selected from Al2O3, 2r02 and TiO□ into the annealing separator, a gas atmosphere containing Ti or a non-oxidizing gas is added after the secondary recrystallization annealing. By performing purification annealing in a mixed gas atmosphere of
or Ti (C,N), forming an ultra-thin tension film, and then further applying laser irradiation in a direction transverse to the rolling direction to introduce local strain, and then applying a low-temperature coating film treatment. A method for producing a thermally stable, ultra-low core loss unidirectional silicon steel sheet (second invention).

発明者らは、磁気特性の熱安定性向上の方途を拓くため
の多くの試行実験を行なった。
The inventors conducted many trial experiments to develop ways to improve the thermal stability of magnetic properties.

その結果、一方向性珪素鋼板の脱炭・1次再結晶焼鈍後
に施用する焼鈍分離剤中に、Al2O3,ZrO,。
As a result, Al2O3, ZrO, etc. are included in the annealing separator applied after decarburization and primary recrystallization annealing of unidirectional silicon steel sheets.

Tie2などを50%以上でMgOと混合し、これを鋼
板表面に塗布して2次再結晶焼鈍を施したあと、Tiを
含む反応ガス雰囲気又はさらに非酸化性ガスとの混合ガ
ス雰囲気中で高温の純化焼鈍を行なうことによって、鋼
板表面上に極薄のTiN、 TiCあるいはTi (C
,N)の極薄張力被膜を形成させて熱安定性、超低鉄損
の一方向性珪素鋼板の製造が可能であることを発見した
Tie2 or the like is mixed with MgO at a concentration of 50% or more, applied to the surface of the steel sheet, and subjected to secondary recrystallization annealing, and then heated at high temperature in a reactive gas atmosphere containing Ti or in a mixed gas atmosphere with a non-oxidizing gas. By performing purification annealing, an extremely thin layer of TiN, TiC or Ti (C
, N), it has been discovered that it is possible to produce a unidirectional silicon steel sheet with thermal stability and ultra-low core loss.

ここでTiを含む反応ガスというのはTiclsを典型
例として、上記の熱処理条件下での熱処理環境において
或いは方向性珪素鋼板の鋼中N及び/又はCと反応し、
TiN、 TiCない、しはTi (C,N) よりな
る絶縁被膜を形成するのに役立つ成分のガスを意味し、
上記のTiCl4のほかTiC1,、TiCl2なども
含まれる。
Here, the reactive gas containing Ti, with Ticls as a typical example, reacts with N and/or C in the heat treatment environment under the above heat treatment conditions or in the steel of grain-oriented silicon steel sheet,
TiN, TiC, or Ti (C,N) refers to a gas that is a component useful in forming an insulating film,
In addition to the above-mentioned TiCl4, TiCl, TiCl2, etc. are also included.

また非酸化性ガスはCL、 N2.82などを代表例と
して上記の反応を少なくとも阻害しない限りAr。
In addition, non-oxidizing gases include CL, N2.82, etc., and Ar as long as it does not inhibit the above reaction at least.

NH3およびCOガスなども適合する。NH3 and CO gas are also suitable.

上記各発明の成功が導かれた具体的な実験に従って説明
を進める。
The explanation will proceed according to specific experiments that led to the success of each of the above inventions.

C0,048重量%(以下単に%で示す) 、Si 3
.38%、Mn 0.062%、Se O,022%、
Sb O,025%及びM。
C0,048% by weight (hereinafter simply expressed as %), Si 3
.. 38%, Mn 0.062%, SeO, 022%,
SbO, 025% and M.

O,025%を含有する珪素鋼連鋳スラブを、1340
℃で4時間加熱後熱間圧延して2.0mm厚の熱延板と
した。
Continuously cast silicon steel slab containing 25% O, 1340
After heating at ℃ for 4 hours, it was hot rolled to obtain a hot rolled sheet with a thickness of 2.0 mm.

その後900℃で3分間の均一化焼鈍後、950℃で3
分間の中間焼鈍をはさむ2回の冷間圧延を施して0.2
3mm厚の最終冷延板とした。
After that, after homogenization annealing at 900℃ for 3 minutes, at 950℃ for 3 minutes.
Cold rolled twice with intermediate annealing for 0.2 min.
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後820℃の湿水素雰囲気中で脱炭・1次再結晶焼
鈍を施した後、鋼板表面に不活性A1203(80%)
とMgO(20%)から成る焼鈍分離剤を塗布し、つい
で850℃で50時間の2次再結晶焼鈍と、1200℃
で5時間の純化焼鈍とを施した。
After that, after decarburization and primary recrystallization annealing in a wet hydrogen atmosphere at 820°C, the surface of the steel plate is coated with inert A1203 (80%).
and MgO (20%), followed by secondary recrystallization annealing at 850°C for 50 hours and 1200°C.
Purification annealing was performed for 5 hours.

この2次再結晶焼鈍後の純化焼鈍を、 ■’l’1c14ガスとN2の雰囲気中、■TlC14
ガスとN2とN3の雰囲気中、■TlC14ガスとCH
,とN2の雰囲気中、■TiCl4ガスとN2とC)1
4 とN2の雰囲気中でそれぞれ熱処理を施したところ
、鋼板表面上に膜厚的0.3.umでTiN、 Tic
又はTi(C,N) よりなる極薄の張力被膜層が形成
された。
Purification annealing after this secondary recrystallization annealing is performed in an atmosphere of ■'l'1c14 gas and N2, ■TlC14
In an atmosphere of gas, N2 and N3, ■TlC14 gas and CH
, in an atmosphere of N2, ■TiCl4 gas, N2 and C)1
When heat treatment was performed in an atmosphere of 4 and N2, a film thickness of 0.3. um TiN, Tic
Alternatively, an ultra-thin tensile coating layer made of Ti(C,N) was formed.

その後、何れもりん酸塩とコロイダルシリカとを主成分
とするコーテイング液でコーディング処理を行った。
Thereafter, each was coated with a coating liquid containing phosphate and colloidal silica as main components.

またこれらに対する比較のために従来の公知技術に従い
、 ■上記したところと同一組成の焼鈍分離剤を使用し、1
200℃で5時間吃水素中で純化焼鈍を施した後、やは
りりん酸塩とコロイダルシリカとを主成分とするコーテ
イング液でコーティング処理を行った。さらに ■従来のMgOを主成分とする焼鈍分離剤を使用し、従
来法である1200℃で5時間吃水素中での純化焼鈍を
施した後、やはりりん酸塩とコロイダルシリカとを主成
分とするコーテイング液でコーティング処理を行った。
In addition, for comparison with these, according to the conventional known technology, 1.
After performing purification annealing at 200° C. for 5 hours in hydrogen hydroxide, coating treatment was also performed with a coating liquid containing phosphate and colloidal silica as main components. Furthermore, after using a conventional annealing separator mainly composed of MgO and performing purification annealing in a hydrogen atmosphere at 1200°C for 5 hours, the main components were also phosphate and colloidal silica. Coating treatment was performed using a coating solution.

かくして得られた製品の磁気特性及び密着性の実験結果
をまとめて表1に示す。
Table 1 summarizes the experimental results of the magnetic properties and adhesion of the product thus obtained.

脩 表1から明らかなように、この発明に基づく分離剤の純
化焼鈍雰囲気での処理例■〜■の場合の製品の磁気特性
すなわちB1゜が1.91〜1.92T。
As is clear from Table 1, the magnetic properties, that is, B1°, of the products in the cases of Examples (1) to (2) in which the separation agent according to the present invention was treated in a purified annealing atmosphere were 1.91 to 1.92T.

Lt7s。が0.83〜0.87W/kgと良好で、密
着性もすぐれていることが注目される。
Lt7s. It is noteworthy that the resistance is as good as 0.83 to 0.87 W/kg, and that the adhesion is also excellent.

これに対して■の条件では磁気特性が■〜■の条件より
も悪く、且つ密着性も極端に劣っている。
On the other hand, under the condition (2), the magnetic properties are worse than the conditions (2) to (3), and the adhesion is also extremely poor.

また■の条件では密着性は■の条件よりも良いが、磁気
特性が■〜■の条件のうち最も悪い。
Further, under the condition (■), the adhesion is better than the condition (■), but the magnetic properties are the worst among the conditions (■) to (■).

上記のようにこの発明によって鉄損をきわめて有効に低
下させることができると同時に密着性の優れた製品が得
られる とくにこの発明では純化焼鈍をTiを含む反応ガス雰囲
気中で行う際に、鋼中のC,NがTiと優先的に反応を
生じるため純化が促進され、ひいては鉄損を低下させる
ことができると同時に、鋼板表面上に極薄のTiN、 
TiCあるいはTi (C,N)の張力被膜が形成され
るためにさらに鉄損低下に効果的である。
As described above, the present invention makes it possible to very effectively reduce iron loss and at the same time provide a product with excellent adhesion. Because C and N react preferentially with Ti, purification is promoted and iron loss can be reduced.At the same time, ultra-thin TiN,
Since a tension film of TiC or Ti (C,N) is formed, it is further effective in reducing iron loss.

(作 用) 上に述べた磁気特性並びに被膜密着性の向上と鋼板の純
化の促進と鋼板に張力を与える極薄の張力被膜の優先形
成による鉄損向上によってきわめて効果的に超低鉄損が
実現される。
(Function) Ultra-low iron loss is extremely effectively achieved by improving the magnetic properties and film adhesion mentioned above, promoting purification of the steel sheet, and improving iron loss by preferentially forming an ultra-thin tension film that gives tension to the steel sheet. Realized.

特にこの発明では従来の7オルステライト質被膜を優先
形成させないで、代わりにより張力の大きい被膜を構成
するTiN、 TiCないしはTi (C,N)を形成
せしめ、該被膜と鉄との熱処理後の冷却過程における熱
膨張の差によって起こる強い弾性張力は、鋼板表面にレ
ーザー処理によって導入されるような塑憧的な微小ひず
みの働きを利用するわけではないので、熱安定性に何ら
の問題なく、ひずみ取り焼鈍の如齋高温の熱履歴の下で
も電気・磁気的特性に影響されるところがない。
In particular, in this invention, the conventional 7-orsterite coating is not preferentially formed, but TiN, TiC, or Ti (C,N), which constitutes a coating with higher tension, is formed instead, and the coating is cooled after heat treatment with iron. The strong elastic tension caused by the difference in thermal expansion during the process does not utilize the effect of plastic micro-strain, which is introduced into the steel plate surface by laser treatment, so there is no problem with thermal stability and the strain can be reduced. Even under high temperature thermal history during annealing, the electrical and magnetic properties are unaffected.

以上の実験結果は、TiNよりなる張力被膜について自
ら述べた張力被膜はこのほかにもTi、 Zr、 V。
The above experimental results show that the tension coating made of TiN, which he himself described, is also made of Ti, Zr, and V.

Nb、 Ta、 Cr、 Mo、 Co、 Ni、 M
n、 AI、 Bの窒化物及び/又は炭化物並びにAI
、 Ni、 Cr、 W、 Si及びZnの酸化物のう
ちから選ばれる少なくとも1種よりなる場合にあっても
、TiNについてのべたところをほぼ同様な作用効果を
あられし、何れもこの発明の目的に適合する。
Nb, Ta, Cr, Mo, Co, Ni, M
Nitride and/or carbide of n, AI, B and AI
, Ni, Cr, W, Si, and Zn oxides, it has almost the same effect as described for TiN, and both of them meet the purpose of the present invention. Compatible with

次に、一方向性珪素鋼板の製造工程について一般的な説
明を含めてより詳しく述べる。
Next, the manufacturing process of the unidirectional silicon steel sheet will be described in more detail, including a general explanation.

まず出発素材は従来公知の一方向性珪素鋼成分、例えば ■C: 0.04〜0.05%、Si : 2.50〜
4.5%、Mn=0.01〜0.2%、MO: 0.0
03〜0.1%、Sb : 0.005〜0゜0.2X
SSあるいはSeの1種あるいは2種合計で、0、00
5〜0.05%を含有する組成■C:0.04〜0.0
8%、Si:2,0〜4.0%、S+0.005〜0.
05%、N :0.001〜0.01%、Sn : 0
.01〜0.5%、Cu : 0.01〜0.3%、M
n : 0.01〜0.2%を含有する組成 ■C:0.03〜0.06%、Si:0.2〜4.0%
、S:0.005〜0.05%、B :O,0O03〜
0.0040%、N :0.001〜0.01%、Mn
 : 0.01〜0.2%を含有する組成の如きにおい
て適用可能である。
First, the starting material is a conventionally known unidirectional silicon steel composition, such as ■C: 0.04 to 0.05%, Si: 2.50 to
4.5%, Mn=0.01-0.2%, MO: 0.0
03~0.1%, Sb: 0.005~0°0.2X
The total of one or two types of SS or Se is 0,00
Composition containing 5-0.05% ■C: 0.04-0.0
8%, Si: 2.0-4.0%, S+0.005-0.
05%, N: 0.001-0.01%, Sn: 0
.. 01-0.5%, Cu: 0.01-0.3%, M
Composition containing n: 0.01-0.2% ■C: 0.03-0.06%, Si: 0.2-4.0%
, S: 0.005~0.05%, B: O,0O03~
0.0040%, N: 0.001-0.01%, Mn
: Applicable to compositions containing 0.01 to 0.2%.

次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050℃の中間焼鈍をはさんでさらに冷
延する2回冷延法にて、後者の場合最初の圧下率は50
%から80%程度、最終の圧下率は50%から85%程
度で0.15mm+からOJ5mm厚の最終冷延板厚と
する。
Next, the hot-rolled sheet undergoes uniform annealing at 800 to 1100°C.
One-time cold rolling method, in which the final plate thickness is obtained by two cold rolling steps, or two-step cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, and then further cold rolling is performed.In the latter case, the first rolling rate is 50
% to about 80%, the final rolling reduction is about 50% to 85%, and the final cold-rolled plate thickness is from 0.15 mm+ to OJ5 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は表面脱脂後
750℃から850℃の湿水素中で脱炭・1次再結晶焼
鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is surface degreased and then subjected to decarburization and primary recrystallization annealing in wet hydrogen at 750°C to 850°C.

その後は通常、鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布する。この際、この発明は、一般的に仕上げ
焼鈍後の形成を不可欠としていたフォルステライトをと
くに形成させない方がより有利であるので、焼鈍分離剤
としてAl1[1,、Zr[12,TiO2等を50%
以上でMgOに混入して使用することが必要である。
After that, an annealing separator containing MgO as a main component is usually applied to the surface of the steel sheet. At this time, in this invention, it is more advantageous not to form forsterite, which is generally indispensable to be formed after finish annealing, so Al1[1, Zr[12, TiO2, etc. %
In the above manner, it is necessary to use it by mixing it with MgO.

その後2次再結晶焼鈍を行うが、この工程は(100)
 <001>方位の2次再結晶粒を充分発達させるため
に施される。
After that, secondary recrystallization annealing is performed, but this step is (100)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation.

この場合(100) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保定焼鈍する方が有利であり、そのほか
例えば0.5〜b 焼鈍でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (100) <001> orientation, the
It is more advantageous to carry out retention annealing at a low temperature of 0.000C, and in addition, for example, 0.5-b annealing may be used.

2次再結晶焼鈍後の純化焼鈍は、吃水素中で1100℃
以上で1〜20時間焼鈍を行って鋼板の純化を達成する
が、この発明では2次再結晶焼鈍後とくにTiを含むガ
ス雰囲気又はさらに非酸化性ガスとの混合ガス雰囲気中
で焼鈍することを必須条件とする。このような雰囲気焼
鈍を行なうためにはTiCl4. TiCl3あるいは
TiC1aを使用し、また混合ガスとしてH,ガスほか
、N、、 C)I、、 NH,のガスを使用するのが一
般的である。この純化焼鈍処理を行った後、従来公知の
方法によるレーザー処理を行って局所微小ひずみを導入
しても、この発明の効果をさまたげるものではない。し
かしこの場合の絶縁被膜は600℃以下の低温コーティ
ング処理を行うことが必要である。
Purification annealing after secondary recrystallization annealing is performed at 1100℃ in hydrogen
Purification of the steel sheet is achieved by annealing for 1 to 20 hours as described above, but in this invention, after the secondary recrystallization annealing, annealing is performed in a gas atmosphere containing Ti or a mixed gas atmosphere with a non-oxidizing gas. Required condition. In order to perform such atmosphere annealing, TiCl4. It is common to use TiCl3 or TiCla, and to use H, gas, and other gases such as N, C) I, and NH as a mixed gas. After performing this purification annealing treatment, even if a laser treatment is performed using a conventionally known method to introduce local minute strain, the effects of the present invention will not be hindered. However, the insulating film in this case needs to be coated at a low temperature of 600° C. or lower.

さらにこのように生成した極薄の張力被膜上にりん酸塩
とコロイダルシリカを主成分とする絶縁被膜の塗布焼付
を行うことが、100万KV^にも上る大容量トランス
の使途において当然に必要であり、この絶縁性塗布焼付
層の形成の如きは、従来公知の手法をそのまま用いて良
い。
Furthermore, it is necessary to apply and bake an insulating film mainly composed of phosphate and colloidal silica on the ultra-thin tension film produced in this way when using a large-capacity transformer of up to 1 million KV^. For the formation of this insulating coated and baked layer, conventionally known methods may be used as they are.

(実施例) 実施例I C:0.046%、Sl : 3.38%、Mn : 
0.068%MO=0、025%、Se : 0.02
4%、Sb : 0.020%を含有する熱延板を、9
00℃で3分間の均−化焼鈍後、950℃の中間焼鈍を
はさんで2回の冷間圧延を行って0.23mm厚の最終
冷延板とした。
(Example) Example I C: 0.046%, Sl: 3.38%, Mn:
0.068% MO=0, 025%, Se: 0.02
4%, Sb: 0.020%,
After equalization annealing at 00°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C to obtain a final cold rolled sheet with a thickness of 0.23 mm.

その後820℃の湿水素中で脱炭焼鈍後鋼板表面にA1
□03(80%)、MgO(20%)を主成分とする焼
鈍分離剤を塗布した後850℃で50時間の2次再結晶
焼鈍した後、TiC1,とN2とN2の混合ガス雰囲気
中1200℃で8時間の純化焼鈍を行った後、表面にり
ん酸塩とコロイダルシリカを主成分とする絶縁コーティ
ング被膜を形成した。そのときの製品の磁気特性と密着
性は次のようであった。
Then, after decarburization annealing in wet hydrogen at 820℃, A1
□03 (80%), after applying an annealing separator mainly composed of MgO (20%) and performing secondary recrystallization annealing at 850°C for 50 hours, 1200°C in a mixed gas atmosphere of TiCl, N2, and N2. After performing purification annealing at ℃ for 8 hours, an insulating coating film containing phosphate and colloidal silica as main components was formed on the surface. The magnetic properties and adhesion of the product at that time were as follows.

磁気特性 B+o:1.91T 1m+’l/、。:0.86 W/kg密着性、曲げ半
径25絽で180°曲げてもはく離せず密着性は良好で
あった。
Magnetic properties B+o: 1.91T 1m+'l/. : 0.86 W/kg adhesion, and the adhesion was good as it could not be peeled off even when bent by 180 degrees with a bending radius of 25 squares.

実施例2 C:0.058%、Si : 3.39%、Mn : 
0,076%、Al二0、024%、S:0.028%
、N : 0.0068%を含有する熱延板を、115
0℃で3分間の均−化焼鈍後急冷処理を行い、その後3
00℃の温間圧延を施して0.23mm厚の最終冷延板
とした。
Example 2 C: 0.058%, Si: 3.39%, Mn:
0,076%, Al20,024%, S: 0.028%
, N: A hot rolled sheet containing 0.0068% was heated to 115
After equalization annealing for 3 minutes at 0℃, rapid cooling treatment was performed, and then 3 minutes
A final cold-rolled sheet with a thickness of 0.23 mm was obtained by warm rolling at 00°C.

その後850℃の湿水素中で脱炭焼鈍後、表面にAl2
03(60%)、MgO(40%)を主成分とする焼鈍
分離剤を塗布した後850℃から1150℃まで8℃/
hrで昇温して2次再結晶させた後、TiCl4 とN
2とN2の雰囲気中で1200℃で10時間の純化焼鈍
を行った。
After decarburization annealing in wet hydrogen at 850°C, the surface is coated with Al2.
03 (60%), after applying an annealing separator mainly composed of MgO (40%), from 850°C to 1150°C at 8°C/
After secondary recrystallization by heating for hr, TiCl4 and N
Purification annealing was performed at 1200°C for 10 hours in an atmosphere of 2 and N2.

その後りん酸塩とコロイダルシリカを主成分とする絶縁
性被膜を形成させる方法(以下(A)法という)と圧延
方向と直角方向にレーザー処理(レーザー条件:パルス
レーザ−を使用し、スポット当たりのエネルギー3,7
5X10−3J 、スポット直径0.15mm、スポッ
トの中心間隔0.31D[I、レーザー走査痕間隔!=
6鵬)を行った後、500℃の低温コーティング焼付処
理を行う方法(以下(B)法という)とに区別した。
Thereafter, a method of forming an insulating film mainly composed of phosphate and colloidal silica (hereinafter referred to as (A) method) and a laser treatment in a direction perpendicular to the rolling direction (laser conditions: using a pulsed laser, energy 3,7
5X10-3J, spot diameter 0.15mm, spot center spacing 0.31D [I, laser scanning trace spacing! =
6), followed by a low-temperature coating baking treatment at 500°C (hereinafter referred to as method (B)).

このときの(A)及び(B)各方法の製品の磁気特性お
よび密着性は次のとおりであった。
The magnetic properties and adhesion of the products obtained by each method (A) and (B) at this time were as follows.

磁気特性 (^)法:B1゜:1.93T、 W17z
s。:0.85W/kg(B)法: Blo:1.93
T、 W+tzso:0.81W/kg密着性  (A
)法:30mm本 (B)法:3Qmm本
Magnetic properties (^) method: B1°: 1.93T, W17z
s. :0.85W/kg(B) method: Blo:1.93
T, W+tzso: 0.81W/kg adhesion (A
) method: 30mm book (B) method: 3Qmm book

Claims (1)

【特許請求の範囲】 1、一方向性珪素鋼スラブを熱間圧延して得た熱延板に
、必要な熱処理を経て1回の冷間圧延又は、中間焼鈍を
挟む2回の冷間圧延を施して最終板厚とし、次に脱炭・
1次再結晶焼鈍を行い、ついで鋼板表面にMgOを主成
分とする焼鈍分離剤を塗布したのち、2次再結晶焼鈍及
び純化焼鈍を施す一連の一方向性珪素鋼板の製法におい
て、 焼鈍分離剤に、Al_2O_3、ZrO_2及びTiO
_2のうちから選んだ少なくとも1種を50重量%以上
で混入することに加え、2次再結晶焼鈍後Tiを含むガ
ス雰囲気又は、さらに非酸化性ガスとの混合ガス雰囲気
中で純化焼鈍を行うことにより、鋼板表面上にTiN、
TiC又はTi(C,N)から成る、極薄張力被膜を形
成させることを特徴とする、熱安定性、超低鉄損一方向
性珪素鋼板の製法。 2、一方向性珪素鋼スラブを熱間圧延して得た熱延板に
、必要な熱処理を経て1回の冷間圧延又は、中間焼鈍を
挟む2回の冷間圧延を施して最終板厚とし、次に脱炭・
1次再結晶焼鈍を行い、ついで鋼板表面にMgOを主成
分とする焼鈍分離剤を塗布したのち、2次再結晶焼鈍及
び純化焼鈍を施す一連の一方向性珪素鋼板の製法におい
て、 焼鈍分離剤に、Al_2O_3、ZrO_2及びTiO
_2のうちから選んだ少なくとも1種を50重量%以上
で混入することに加え、2次再結晶焼鈍後Tiを含むガ
ス雰囲気又は、さらに非酸化性ガスとの混合ガス雰囲気
中で純化焼鈍を行うことにより、鋼板表面上にTiN、
TiC又はTi(C,N)から成る、極薄張力被膜を形
成させ、その後さらに、圧延方向を横切る向きに、レー
ザー照射を施して、局所ひずみを導入しついで低温コー
ティング被膜処理を加えることを特徴とする、熱安定性
、超低鉄損一方向性珪素鋼板の製法。
[Claims] 1. A hot-rolled plate obtained by hot-rolling a unidirectional silicon steel slab is subjected to necessary heat treatment and then cold-rolled once or cold-rolled twice with intermediate annealing in between. is applied to obtain the final plate thickness, then decarburized and
In a series of manufacturing methods for unidirectional silicon steel sheets, in which primary recrystallization annealing is performed, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, and then secondary recrystallization annealing and purification annealing are performed. , Al_2O_3, ZrO_2 and TiO
In addition to mixing 50% by weight or more of at least one selected from _2, purification annealing is performed in a gas atmosphere containing Ti or in a mixed gas atmosphere with a non-oxidizing gas after secondary recrystallization annealing. By this, TiN,
A method for producing a thermally stable, ultra-low iron loss unidirectional silicon steel sheet, which is characterized by forming an ultra-thin tensile coating made of TiC or Ti(C,N). 2. A hot-rolled plate obtained by hot-rolling a unidirectional silicon steel slab is subjected to the necessary heat treatment and then cold-rolled once or twice with intermediate annealing to obtain the final plate thickness. Then, decarburization and
In a series of manufacturing methods for unidirectional silicon steel sheets in which primary recrystallization annealing is performed, then an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, and secondary recrystallization annealing and purification annealing are performed. , Al_2O_3, ZrO_2 and TiO
In addition to mixing 50% by weight or more of at least one selected from _2, purification annealing is performed in a gas atmosphere containing Ti or in a mixed gas atmosphere with a non-oxidizing gas after secondary recrystallization annealing. By this, TiN,
The method is characterized by forming an ultra-thin tension film made of TiC or Ti(C,N), and then applying laser irradiation in a direction transverse to the rolling direction to introduce local strain, and then applying a low-temperature coating film treatment. A method for producing thermally stable, ultra-low core loss unidirectional silicon steel sheets.
JP7446185A 1985-02-22 1985-04-10 Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability Pending JPS61235511A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7446185A JPS61235511A (en) 1985-04-10 1985-04-10 Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability
PCT/JP1986/000087 WO1986004929A1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
EP86904726A EP0215134B1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
DE8686904726T DE3673290D1 (en) 1985-02-22 1986-02-21 MANUFACTURING METHOD FOR UNIDIRECTIONAL SILICON STEEL PLATE WITH EXCEPTIONAL IRON LOSS.
US06/907,734 US4713123A (en) 1985-02-22 1986-02-21 Method of producing extra-low iron loss grain oriented silicon steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7446185A JPS61235511A (en) 1985-04-10 1985-04-10 Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability

Publications (1)

Publication Number Publication Date
JPS61235511A true JPS61235511A (en) 1986-10-20

Family

ID=13547911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7446185A Pending JPS61235511A (en) 1985-02-22 1985-04-10 Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability

Country Status (1)

Country Link
JP (1) JPS61235511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248291A (en) * 2004-03-08 2005-09-15 Nippon Steel Corp Low core loss grain oriented silicon steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248291A (en) * 2004-03-08 2005-09-15 Nippon Steel Corp Low core loss grain oriented silicon steel sheet
JP4344264B2 (en) * 2004-03-08 2009-10-14 新日本製鐵株式会社 Low iron loss unidirectional electrical steel sheet

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS6332849B2 (en)
JPS61201732A (en) Manufacture of grain oriented silicon steel sheet having thermal stability and ultralow iron loss
JPS61235511A (en) Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability
JPH03240922A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and bendability
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS6354767B2 (en)
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JPH0327631B2 (en)
JPH0374488B2 (en)
JPS62192581A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS61246321A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS63227719A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPS6269502A (en) Manufacture of very low iron loss grain oriented silicon steel plate
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS61246322A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPS6222409A (en) Manufacture of ultra-low iron loss unidirectional silicon steel plate