JP2005248291A - Low core loss grain oriented silicon steel sheet - Google Patents
Low core loss grain oriented silicon steel sheet Download PDFInfo
- Publication number
- JP2005248291A JP2005248291A JP2004063432A JP2004063432A JP2005248291A JP 2005248291 A JP2005248291 A JP 2005248291A JP 2004063432 A JP2004063432 A JP 2004063432A JP 2004063432 A JP2004063432 A JP 2004063432A JP 2005248291 A JP2005248291 A JP 2005248291A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- strain
- rolling direction
- iron loss
- plastic strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
本発明は、トランスの鉄心などに利用される低鉄損一方向性電磁鋼板に関するものである。 The present invention relates to a low iron loss unidirectional electrical steel sheet used for a transformer core and the like.
近年、鋼板の圧延方向に磁化容易軸をもつ一方向性電磁鋼板は、主にトランスなどの電気機器などの用途で実用化されており、エネルギー環境の点からエネルギーロスをさらに低減するための磁気特性改善として鉄損の低減が求められている。 In recent years, unidirectional electrical steel sheets that have an easy axis in the rolling direction of steel sheets have been put to practical use mainly in applications such as electrical equipment such as transformers, and magnetics for further reducing energy loss in terms of energy environment. Reduction of iron loss is required as a characteristic improvement.
一方向性電磁鋼板における鉄損は、一般にヒステリシス損と渦電流損に大きく分けられ、ヒステリシス損は結晶方位、不純物等により、渦電流損は板厚、磁区幅などによりそれぞれ影響を受けることが知られている。ヒステリシス損低減のための結晶方位制御手法には限界があることから、近年、鉄損の大部分を占める渦電流損低減を目的とした磁区幅の減少、つまり磁区細分化技術が多く提案されている。
このような磁区細分化方法の適用により鋼板の断面方向における渦電流及びそれによる熱エネルギーの発生は抑制され、その結果、一方向性電磁鋼板の鉄損は低減できる。
Iron loss in unidirectional electrical steel sheets is generally divided into hysteresis loss and eddy current loss. Hysteresis loss is affected by crystal orientation, impurities, etc., and eddy current loss is affected by plate thickness and magnetic domain width. It has been. Since there are limits to the crystal orientation control method for reducing hysteresis loss, in recent years, many techniques have been proposed to reduce the magnetic domain width, that is, to subdivide the magnetic domain for the purpose of reducing eddy current loss, which accounts for the majority of iron loss. Yes.
Application of such a magnetic domain refinement method suppresses generation of eddy currents in the cross-sectional direction of the steel sheet and thermal energy thereby, and as a result, iron loss of the unidirectional electrical steel sheet can be reduced.
例えば特許文献1などには、鉄損の改善を目的とし、一方向性鋼板表面の圧延方向と直角方向に対して、レーザを、所定のビーム幅、エネルギー密度、照射間隔で照射することにより、鋼板表面に局部的な高転位密度領域、すなわち微小塑性歪を加える(2頁左下欄15行目参照)ことで、磁区の芽を発生させて磁区の細分化を行ない(2頁右下欄18〜20行目参照)、鉄損を低減する一方向性電磁鋼板の製造方法が開示されている。 For example, in Patent Document 1 or the like, for the purpose of improving iron loss, by irradiating a laser at a predetermined beam width, energy density, and irradiation interval with respect to a direction perpendicular to the rolling direction of the unidirectional steel sheet surface, By adding a local high dislocation density region, that is, a small plastic strain to the steel sheet surface (see page 15, left lower column, line 15), magnetic domain buds are generated to subdivide the magnetic domain (page 2, lower right column 18). -20th line), the manufacturing method of the unidirectional electrical steel sheet which reduces an iron loss is disclosed.
また特許文献2などには、鉄損の改善を目的とし、一方向性鋼板表面の圧延方向と直角方向から45°の方向の範囲に、所定荷重を加えて溝を形成した後、所定温度で歪取り燃鈍をすることにより歪導入部に微細結晶粒を生じさせ、この粒と二次再結晶粒との界面から磁区細分化の芽を発生させる(2頁左下欄9〜19行目参照)方法が開示されている。 Further, in Patent Document 2 and the like, for the purpose of improving iron loss, a groove is formed by applying a predetermined load in a range of 45 ° from a direction perpendicular to the rolling direction of the unidirectional steel sheet surface, and then at a predetermined temperature. By carrying out strain relief annealing, fine crystal grains are formed in the strain-introduced part, and buds of magnetic domain subdivision are generated from the interface between the grains and secondary recrystallized grains (see the lower left column, lines 9 to 19 on page 2). ) A method is disclosed.
上記特許文献1及び特許文献2の方法は、手段が異なるものの、いずれも一方向性電磁鋼板表面に局部的な塑性歪領域(高転位密度領域)を生成させ、磁区の芽を生成して磁区の細分化を行なうことを技術思想とする技術であるが、これらの塑性歪を付与する方法で得られる鋼板の鉄損(W17/50 )は0.80〜0.78W/Kg程度が限界であった。なお、前記W17/50 は磁束密度1.7T、周波数50Hzにおける鉄損を示す。
上記鉄損が不充分となる原因は、本発明者らの検討結果によれば、塑性歪付与により磁区幅を低減(磁区細分化)することで鉄損のうちで、渦電流損は低減するものの、逆にヒステリシス損が増加するためであることが判っている。
Although the methods of Patent Document 1 and Patent Document 2 are different from each other, both generate a local plastic strain region (high dislocation density region) on the surface of the unidirectional electrical steel sheet, generate magnetic domain buds, and generate magnetic domains. However, the iron loss (W17 / 50) of the steel sheet obtained by applying these plastic strains is limited to about 0.80 to 0.78 W / Kg. there were. W17 / 50 represents the iron loss at a magnetic flux density of 1.7 T and a frequency of 50 Hz.
The reason why the iron loss becomes insufficient is that, according to the examination results of the present inventors, the eddy current loss is reduced among the iron losses by reducing the magnetic domain width (magnetic domain fragmentation) by applying plastic strain. However, it has been found that the hysteresis loss increases.
一方、従来から非特許文献1などで、一方向性電磁鋼板表面に張力皮膜をコーティングすることにより弾性歪を付与し、鉄損を低下させる方法が提案され、実用化されている。 しかしながら鋼板表面の張力皮膜形成により発生する張力はせいぜい20MPa程度が限度であり、この方法によって得られる鉄損W17/50 は1.03W/Kg程度に過ぎなかった。このような従来技術の現状を踏まえ、さらなる鉄損の改善が望まれている。 On the other hand, Non-Patent Document 1 and the like have proposed and put to practical use a method of applying elastic strain by coating a unidirectional electrical steel sheet surface with a tensile film to reduce iron loss. However, the tension generated by the formation of a tensile film on the steel sheet surface is limited to about 20 MPa at most, and the iron loss W17 / 50 obtained by this method is only about 1.03 W / Kg. Based on the current state of the prior art, further improvement in iron loss is desired.
前述の通り、近年、電気機器などで使用する際のエネルギーロス低減のために一方向性電磁鋼板の更なる鉄損の低減が求められている現状において、一方向性電磁鋼板の鉄損を従来以上に安定して改善する方法が望まれている。
上述の通り、従来技術の一方向性電磁鋼板表面に塑性歪または弾性歪を付与する方法により達成される鉄損値(W17/50 )の向上効果には限界があった。
本発明は、このような従来技術の現状に鑑みて、一方向性電磁鋼板の鉄損をヒステリシス損と渦電流損に分けて、それぞれの観点から塑性歪と弾性歪を適正な条件に制御することにより、従来に比べて鉄損に優れた低鉄損一方向性電磁鋼板を提供することを目的とする。
As described above, there is a limit to the effect of improving the iron loss value (W17 / 50) achieved by the method of imparting plastic strain or elastic strain to the surface of the conventional unidirectional electrical steel sheet.
In view of the current state of the prior art, the present invention divides the iron loss of a unidirectional electrical steel sheet into hysteresis loss and eddy current loss, and controls plastic strain and elastic strain to appropriate conditions from each viewpoint. Accordingly, it is an object of the present invention to provide a low iron loss unidirectional electrical steel sheet that is superior in iron loss as compared with the prior art.
本発明は上記課題を解決するものであり、その要旨とするところは以下の通りである。(1) 鋼板表面に形成された引張弾性応力と塑性歪からなる歪領域のうち、圧延方向の引張残留応力の最大値が70〜150MPaであり、かつ、塑性歪の圧延方向の範囲が0.6mm以下であることを特徴とする低鉄損一方向性電磁鋼板。
(2) 前記歪領域間の圧延方向の間隔が7.0mm以下であることを特徴とする前記 (1)に記載の低鉄損一方向性電磁鋼板。
(3) 前記歪領域は、鋼板の圧延方向に対して60〜120°の方向に連続的または所定間隔で形成されていることを特徴とする前記(1)または(2)に記載の低鉄損一方向性電磁鋼板。
The present invention solves the above-mentioned problems, and the gist thereof is as follows. (1) Of the strain region consisting of tensile elastic stress and plastic strain formed on the steel sheet surface, the maximum value of tensile residual stress in the rolling direction is 70 to 150 MPa, and the range of the plastic strain in the rolling direction is 0. A low iron loss unidirectional electrical steel sheet characterized by being 6 mm or less.
(2) The low iron loss unidirectional electrical steel sheet according to (1), wherein an interval in the rolling direction between the strain regions is 7.0 mm or less.
(3) The low iron according to (1) or (2), wherein the strain region is formed continuously or at a predetermined interval in a direction of 60 to 120 ° with respect to a rolling direction of the steel sheet. Loss-oriented magnetic steel sheet.
本発明によれば、一方向性電磁鋼板の鉄損をヒステリシス損と渦電流損に分けてそれぞれの観点から塑性歪と弾性歪を適正な条件に制御することにより、鉄損(W17/50 )を0.7W/Kg以下に改善でき、従来に比べて鉄損に優れた低鉄損一方向性電磁鋼板を提供することができる。本発明の鉄損に優れた一方向性電磁鋼板を例えばトランスなどの電気機器などに適用することによって、従来に比べてエネルギーロスを大幅に低減することが期待されることから、本発明の産業上の利用価値は非常に高いものである。 According to the present invention, the iron loss of the unidirectional electrical steel sheet is divided into hysteresis loss and eddy current loss, and the plastic strain and elastic strain are controlled to appropriate conditions from the respective viewpoints, thereby reducing the iron loss (W17 / 50). Can be improved to 0.7 W / Kg or less, and a low iron loss unidirectional electrical steel sheet excellent in iron loss as compared with the prior art can be provided. By applying the unidirectional electrical steel sheet excellent in iron loss of the present invention to electrical equipment such as a transformer, it is expected that energy loss will be significantly reduced compared to the conventional case. The above utility value is very high.
以下に、本発明について詳細に説明する。
本発明者らは、特許文献1などで開示された一方向性電磁鋼板表面にレーザを照射して、鋼板表面に局部的な高転位密度領域、すなわち微小塑性歪を形成する方法の確認試験を実施し、鉄損改善に及ぼす効果を詳細に検討した。その結果、レーザを一方向性電磁鋼板表面に照射した場合、その鋼板表面には局所的に熱履歴に起因する塑性歪が形成されると同時に弾性歪である引張残留応力が形成され、両者が鉄損に影響することを確認した。
The present invention is described in detail below.
The present inventors conducted a confirmation test of a method of irradiating a laser on the surface of a unidirectional electrical steel sheet disclosed in Patent Document 1 and the like to form a local high dislocation density region, that is, a microplastic strain, on the steel sheet surface. The effect on iron loss improvement was examined in detail. As a result, when a laser is irradiated on the surface of a unidirectional electrical steel sheet, a plastic strain due to the thermal history is locally formed on the steel sheet surface, and at the same time, a tensile residual stress that is an elastic strain is formed. It was confirmed that the iron loss was affected.
また、弾性歪である引張残留応力は、一方向性電磁鋼板における圧延方向に向いた磁化容易軸方向の磁気異方性を高め、磁区細分化を引き起こす作用により、鉄損の一部である渦電流損、特に異常渦電流損を減少させる効果があるものの、塑性歪はピンニングサイトとして磁壁の移動を妨げる作用により、鉄損の一部であるヒステリシス損を逆に増加させることを見出した。 In addition, the tensile residual stress, which is elastic strain, increases the magnetic anisotropy in the direction of the easy axis of the unidirectional electrical steel sheet in the rolling direction and causes magnetic domain fragmentation, thereby causing vortices that are part of iron loss. Although it has an effect of reducing current loss, particularly abnormal eddy current loss, it has been found that plastic strain increases hysteresis loss as a part of iron loss by acting as a pinning site to prevent the domain wall from moving.
特許文献1及び特許文献2などで提案する従来方法では、一方向性電磁鋼板表面に局部的な塑性歪領域(高転位密度領域)を積極的に生成させることにより、磁区の芽を生成して磁区の細分化を行なうことを技術思想としていた。しかし、以上の検討結果に基づき、本発明者らは、一方向性電磁鋼板の鉄損を低減させるために塑性歪領域の増加は逆効果であり、弾性歪である引張残留応力を形成することが鉄損低減のために効果的であると考えた。 In the conventional methods proposed in Patent Document 1 and Patent Document 2 and the like, magnetic buds are generated by actively generating a local plastic strain region (high dislocation density region) on the surface of the unidirectional electrical steel sheet. The technical idea was to subdivide the magnetic domains. However, based on the above examination results, the present inventors have found that the increase in the plastic strain region is counterproductive to reduce the iron loss of the unidirectional electrical steel sheet, and forms a tensile residual stress that is an elastic strain. Is considered effective for reducing iron loss.
本発明は、一方向性電磁鋼板の鉄損をヒステリシス損と渦電流損に分けて、鋼板表面に形成される塑性歪の領域を制限してヒステリシス損を低減し、鋼板表面に適正な引張残留応力(弾性歪)を形成して渦電流損を低減することにより、従来の一方向性電磁鋼板に比べて大幅に鉄損を低減させることを技術思想とするものである。 The present invention divides the iron loss of a unidirectional electrical steel sheet into hysteresis loss and eddy current loss, limits the plastic strain region formed on the steel sheet surface to reduce the hysteresis loss, and achieves an appropriate tensile residual on the steel sheet surface. The technical idea is to significantly reduce iron loss compared to conventional unidirectional electrical steel sheets by forming stress (elastic strain) and reducing eddy current loss.
本発明の低鉄損一方向性電磁鋼板は、第1に、引張弾性応力と塑性歪からなる歪領域のうち、圧延方向の引張残留応力の最大値が70〜150MPaであり、かつ、塑性歪の圧延方向の範囲が0.6mm以下であること、を特徴とする。 First, the low iron loss unidirectional electrical steel sheet of the present invention has a maximum tensile residual stress in the rolling direction of 70 to 150 MPa in a strain region composed of tensile elastic stress and plastic strain, and plastic strain. The range in the rolling direction is 0.6 mm or less.
本発明において、一方向性電磁鋼板表面に引張残留応力(弾性歪)または塑性歪を形成する方法は特に限定するものではないが、例えば特許文献1などで示されるようなパルスレーザまたは連続レーザ照射方法を用いて照射条件を調整することにより、鋼板表面の引張残留応力(弾性歪)または塑性歪が上記範囲になるように制御することで実現できる。 鋼板表面に上記歪を導入する他の方法としては、イオン注入法、放電加工法、局部メッキ法等が挙げられいずれの手法でも良い。 In the present invention, the method for forming the tensile residual stress (elastic strain) or plastic strain on the surface of the unidirectional electrical steel sheet is not particularly limited. For example, pulse laser or continuous laser irradiation as shown in Patent Document 1 or the like is used. By adjusting the irradiation conditions using the method, it can be realized by controlling the tensile residual stress (elastic strain) or plastic strain on the surface of the steel sheet to be in the above range. Other methods for introducing the strain on the surface of the steel sheet include an ion implantation method, an electric discharge machining method, and a local plating method, and any method may be used.
図1は、一方向性電磁鋼板にパルスレーザを照射した場合に鋼板表面に形成される歪領域を示した模式図である。
図1に示すように、一方向性電磁鋼板にレーザ照射スポット形状1およびレーザ出力を調整したパルスレーザを照射することにより、鋼板表面に引張残留応力(弾性歪)と塑性歪からなる歪領域2が形成される。
FIG. 1 is a schematic view showing a strain region formed on the surface of a steel sheet when a unidirectional electrical steel sheet is irradiated with a pulse laser.
As shown in FIG. 1, a strain region 2 composed of tensile residual stress (elastic strain) and plastic strain is applied to a steel sheet surface by irradiating a unidirectional electrical steel sheet with a pulse laser whose laser irradiation spot shape 1 and laser output are adjusted. Is formed.
鋼板表面に形成される圧延方向の引張残留応力(弾性歪)の最大値は、例えば集光レンズの焦点距離などの光学条件を変えずにレーザ出力を調整することにより制御でき、レーザ出力の増加により圧延方向の引張残留応力(弾性歪)の最大値は増大する。また、鋼板表面に形成される塑性歪の圧延方向の範囲は、例えばレーザ出力を変えずに光学系を調整してレーザスポット面積を一定の条件でスポット形状を長軸が圧延方向(L方向)で短軸が幅方向(C方向)の楕円形状に変化させ、その軸比(L/C)を調整することにより塑性歪の圧延方向の範囲を制御できる。 The maximum value of the tensile residual stress (elastic strain) in the rolling direction formed on the surface of the steel sheet can be controlled by adjusting the laser output without changing the optical conditions such as the focal length of the condenser lens. As a result, the maximum value of the tensile residual stress (elastic strain) in the rolling direction increases. The range of the plastic strain formed on the surface of the steel sheet in the rolling direction is, for example, by adjusting the optical system without changing the laser output, and by adjusting the laser spot area under a certain condition, the major axis is the rolling direction (L direction). By changing the minor axis to an elliptical shape in the width direction (C direction) and adjusting the axial ratio (L / C), the range of the plastic strain in the rolling direction can be controlled.
図2は、レーザ照射により一方向性電磁鋼板表面に形成された圧延方向の引張残留応力の最大値および塑性歪の圧延方向の範囲(最大長さ)と、鉄損(W17/50 )との関係を示す。
ここで、W17/50 は通常の磁気測定装置を用いて周波数50Hzで励磁した時の磁束密度(B)1.7Tの条件で測定した鉄損値を示す。また、一方向性電磁鋼板の板厚は0.23mm、パルスレーザ照射条件は、鋼板の圧延方向(L方向)に5.0mm、鋼板の圧延方向(L方向)に対して直角方向(C方向)に0.3mmの照射間隔(ピッチ)で照射した。
FIG. 2 shows the maximum tensile residual stress in the rolling direction formed on the surface of the unidirectional electrical steel sheet by laser irradiation, the range of the plastic strain in the rolling direction (maximum length), and the iron loss (W17 / 50). Show the relationship.
Here, W17 / 50 represents an iron loss value measured under the condition of magnetic flux density (B) 1.7T when excited at a frequency of 50 Hz using a normal magnetometer. Further, the thickness of the unidirectional electrical steel sheet is 0.23 mm, the pulse laser irradiation conditions are 5.0 mm in the rolling direction (L direction) of the steel sheet, and the direction perpendicular to the rolling direction (L direction) of the steel sheet (C direction). ) At an irradiation interval (pitch) of 0.3 mm.
前述の通り、従来技術により得られる一方向性電磁鋼板の鉄損値(W17/50 )は0.80〜0.78W/Kg程度が限界であり、本発明ではこれらの鉄損値(W17/50 )を下回る低鉄損特性に優れた一方向性電磁鋼板を得ることを目標とする。 As described above, the iron loss value (W17 / 50) of the unidirectional electrical steel sheet obtained by the prior art is limited to about 0.80 to 0.78 W / Kg. In the present invention, these iron loss values (W17 / 50) are limited. The aim is to obtain a unidirectional electrical steel sheet with excellent low iron loss characteristics that is less than 50).
図2から明らかなように、鉄損値(W17/50 )が0.70W/Kg以下の低鉄損特性に優れた一方向性電磁鋼板を得るためには、圧延方向の引張残留応力の最大値を70〜150MPaとすると同時に、塑性歪の圧延方向の範囲を0.6mm以下とする必要がある。 このような理由から、本発明では前記鋼板表面に形成された引張弾性応力と塑性歪からなる歪領域のうち、圧延方向の引張残留応力の最大値を70〜150MPaとし、かつ塑性歪の圧延方向の範囲を0.6mm以下とした。 As is apparent from FIG. 2, in order to obtain a unidirectional electrical steel sheet having an excellent iron loss value (W17 / 50) of 0.70 W / Kg or less, the maximum tensile residual stress in the rolling direction is obtained. At the same time as the value of 70 to 150 MPa, the range of the plastic strain in the rolling direction needs to be 0.6 mm or less. For this reason, in the present invention, the maximum tensile residual stress in the rolling direction is set to 70 to 150 MPa in the strain region consisting of tensile elastic stress and plastic strain formed on the steel sheet surface, and the rolling direction of plastic strain. Was set to 0.6 mm or less.
本発明において前記鋼板表面に形成された圧延方向の引張残留応力の最大値は、例えば単結晶X線応力解析法(例えば須山、大谷、吉岡:材料、48(1999),P.372参照)を用いて圧延方向の残留応力(弾性歪)を測定し、その最大値から求めることができる。また、本発明において前記鋼板表面に形成された塑性歪の圧延方向の範囲(最大長さ)は、例えばマイクロビッカース硬度計を用いて鋼板表面の硬さを測定し、加工硬化による硬度上昇量が5%以上の範囲を塑性歪の範囲と定義し、その塑性歪の圧延方向の範囲(最大長さ)から求められる。 In the present invention, the maximum value of the tensile residual stress in the rolling direction formed on the surface of the steel plate is, for example, a single crystal X-ray stress analysis method (see, for example, Suyama, Otani, Yoshioka: Materials, 48 (1999), p. 372). It can be used to measure the residual stress (elastic strain) in the rolling direction and determine the maximum value. In the present invention, the range (maximum length) in the rolling direction of the plastic strain formed on the surface of the steel sheet is determined by measuring the hardness of the steel sheet surface using, for example, a micro Vickers hardness tester, and the amount of increase in hardness due to work hardening is The range of 5% or more is defined as the range of plastic strain, and is determined from the range (maximum length) of the plastic strain in the rolling direction.
本発明は、上記第1実施形態により、従来に比べ鉄損が低い、低鉄損特性に優れた一方向性電磁鋼板を達成することができるが、これらの発明実施形態に加えてさらに以下の条件を規定することにより、安定して低鉄損特性を改善できるので好ましい。 The present invention can achieve a unidirectional electrical steel sheet having lower iron loss and superior low iron loss characteristics than the conventional ones according to the first embodiment, but in addition to these invention embodiments, the following By defining the conditions, the low iron loss characteristics can be stably improved, which is preferable.
上記発明の第1実施形態において、引張弾性応力および塑性歪からなる歪領域の鋼板幅方向(C方向)の間隔は特に限定する必要はないが、同歪領域の圧延方向(L方向)の間隔は、それぞれの隣り合う歪領域間の相互作用により磁区細分化に影響を及ぼすため、その間隔が大き過ぎる場合は鉄損を低減する効果が減少する。
本発明者らの実験結果によれば、本発明の圧延方向の引張残留応力の最大値および塑性歪の圧延方向の範囲が最適な条件下であっても、前記引張弾性応力および塑性歪からなる歪領域の圧延方向の間隔が7.0mmを超える場合には、鋼板の磁区細分化作用は少なくなり、従来に比べて十分に鉄損値を低減することはできないことを確認した。
In the first embodiment of the present invention, the distance in the steel plate width direction (C direction) of the strain region consisting of tensile elastic stress and plastic strain is not particularly limited, but the interval in the rolling direction (L direction) of the strain region is not limited. Affects the subdivision of the magnetic domain due to the interaction between the adjacent strain regions. Therefore, if the interval is too large, the effect of reducing the iron loss is reduced.
According to the experimental results of the present inventors, even if the maximum value of the tensile residual stress in the rolling direction and the range of the plastic strain in the rolling direction of the present invention are optimal, the tensile elastic stress and the plastic strain are included. When the interval in the rolling direction of the strain region exceeds 7.0 mm, it was confirmed that the magnetic domain refinement action of the steel sheet is reduced and the iron loss value cannot be sufficiently reduced as compared with the conventional case.
このような理由から、本発明では、上記第1実施形態で規定する要件に加えて、第2実施形態として、さらに、引張弾性応力および塑性歪からなる歪領域の圧延方向の間隔を7.0mm以下とすることが好ましい。より好ましくは、引張弾性応力および塑性歪からなる歪領域の圧延方向の間隔は0mm、つまり、前記歪領域を圧延方向に連続に形成するのがより望ましい。 For these reasons, in the present invention, in addition to the requirements defined in the first embodiment, as the second embodiment, the interval in the rolling direction of the strain region composed of tensile elastic stress and plastic strain is further set to 7.0 mm. The following is preferable. More preferably, the interval in the rolling direction between the strain regions including the tensile elastic stress and the plastic strain is 0 mm, that is, it is more desirable to form the strain regions continuously in the rolling direction.
前述した通り、一方向性電磁鋼板は、理想的には鉄損を低減するために、圧延方向(L方向)に磁化容易軸をもった(110)[001]方位の結晶粒で構成された集合組織鋼板であることが望ましい。しかし、実際に工業的に製造し得る一方向性電磁鋼板における磁化容易軸は圧延方向と完全に平行ではなく、磁化容易軸は圧延方向に対してずれ角度が存在する。また、一方向性電磁鋼板の磁区細分化により鉄損を低減するためには、鋼板の磁化方向、つまり、磁化容易軸に対して直角方向に連続的または所定間隔で鋼板表面に引張弾性応力および塑性歪からなる歪領域を形成するのが有効であると考えられる。 As described above, the unidirectional electrical steel sheet is ideally composed of crystal grains with (110) [001] orientation having an easy axis of magnetization in the rolling direction (L direction) in order to reduce iron loss. A textured steel sheet is desirable. However, the easy magnetization axis in a unidirectional electrical steel sheet that can be actually produced industrially is not completely parallel to the rolling direction, and the easy magnetization axis has a deviation angle with respect to the rolling direction. Moreover, in order to reduce iron loss by subdividing the magnetic domain of a unidirectional electrical steel sheet, it is possible to reduce the tensile elastic stress on the steel sheet surface continuously or at a predetermined interval in the magnetization direction of the steel sheet, that is, in the direction perpendicular to the easy axis of magnetization. It is considered effective to form a strain region composed of plastic strain.
本発明者らの実験結果によれば、上記磁化容易軸の圧延方向に対するずれ角度に起因して、圧延方向に対して60〜120°の方向に連続的または所定間隔で鋼板表面に引張弾性応力および塑性歪からなる歪領域を形成する場合に、磁区細分化の効果による鉄損の低減が充分に得られることを確認した。上記の角度範囲は、理想とする磁化容易軸方向、つまり、鋼板の圧延方向(L方向)に対して直角な方向(C方向)からずれ角度で30°以内の範囲に相当し、この角度範囲から外れると、本発明の圧延方向の引張残留応力の最大値および塑性歪の圧延方向の範囲が最適な条件下であっても、鋼板の磁区細分化作用は少なくなり、従来に比べて十分に鉄損値を低減することはできない。 According to the experimental results of the present inventors, due to the deviation angle of the easy axis with respect to the rolling direction, the tensile elastic stress is applied to the surface of the steel sheet continuously or at predetermined intervals in the direction of 60 to 120 ° with respect to the rolling direction. In addition, when forming a strain region composed of plastic strain, it was confirmed that a sufficient reduction in iron loss due to the effect of magnetic domain refinement can be obtained. The above angle range corresponds to an ideal range of easy axis of magnetization, that is, a range within 30 ° in deviation angle from a direction (C direction) perpendicular to the rolling direction (L direction) of the steel sheet. If this is not the case, even if the maximum value of the tensile residual stress in the rolling direction and the range of the plastic strain in the rolling direction of the present invention are under optimum conditions, the magnetic domain refinement action of the steel sheet is reduced, which is sufficiently higher than in the past. The iron loss value cannot be reduced.
したがって本発明は、上記第1実施形態または第2実施形態で規定する要件に加えて、第3実施形態として、さらに、前記引張弾性応力および前記塑性歪からなる歪領域が、鋼板の圧延方向に対して60〜120°の方向に連続的または所定間隔で形成することがより鉄損を低減するため好ましい。
以下、本発明を実施例に基づいて説明する。
Therefore, in addition to the requirements defined in the first embodiment or the second embodiment, the present invention further includes a strain region composed of the tensile elastic stress and the plastic strain in the rolling direction of the steel plate. On the other hand, it is preferable to form continuously or at predetermined intervals in the direction of 60 to 120 ° in order to further reduce iron loss.
Hereinafter, the present invention will be described based on examples.
板厚が0.23mmの一方向性電磁鋼板を用いてこの鋼板表面にパルスレーザを照射することにより、表1に示すような引張残留応力(弾性歪)の最大値、塑性歪の圧延方向の範囲(最大長さ)、歪領域(引張弾性応力および塑性歪からなる歪領域)の方向の圧延方向に対する角度、同歪領域の圧延方向(L方向)の間隔の各一方向性電磁鋼板を製造後、各一方向性電磁鋼板の鉄損(W17/50 )を測定した(表1参照)。 By irradiating the surface of this steel sheet with a pulse laser using a unidirectional electrical steel sheet having a thickness of 0.23 mm, the maximum value of the tensile residual stress (elastic strain) as shown in Table 1 and the plastic strain in the rolling direction are shown. Manufactures unidirectional electrical steel sheets with a range (maximum length), an angle with respect to the rolling direction in the direction of the strain region (strain region consisting of tensile elastic stress and plastic strain), and an interval in the rolling direction (L direction) of the strain region. Thereafter, the iron loss (W17 / 50) of each unidirectional electrical steel sheet was measured (see Table 1).
なお、表1の圧延方向の引張残留応力の最大値は、単結晶X線応力解析法を用いて圧延方向の残留応力(弾性歪)を測定し、その最大値から求めた。また、塑性歪の圧延方向の範囲(最大長さ)は、マイクロビッカース硬度計を用いて鋼板表面の硬さを測定し、加工硬化による硬度上昇量が5%以上の範囲を塑性歪の範囲とし、その塑性歪の圧延方向の範囲(最大長さ)から求めた。 In addition, the maximum value of the tensile residual stress in the rolling direction in Table 1 was determined from the maximum value obtained by measuring the residual stress (elastic strain) in the rolling direction using a single crystal X-ray stress analysis method. The range (maximum length) of the plastic strain in the rolling direction is determined by measuring the hardness of the steel sheet surface using a micro Vickers hardness tester, and setting the range of increase in hardness by work hardening to 5% or more as the range of plastic strain. It was determined from the range (maximum length) in the rolling direction of the plastic strain.
レーザビーム形状は、鋼板表面の照射位置でのスポット形状が直径150μmの円形であり、レーザ出力は、表1に示すように1パルスあたりのエネルギーで1〜10mJまで変化させた。照射方向は、鋼板の圧延方向に対して70°〜135°、照射間隔は、鋼板幅方向(C方向)には0.3mmに固定し、鋼板圧延方向(L方向)には3.0mm〜9.0mmと変化させた。 As for the laser beam shape, the spot shape at the irradiation position on the surface of the steel plate was a circle having a diameter of 150 μm, and the laser output was changed from 1 to 10 mJ with energy per pulse as shown in Table 1. The irradiation direction is 70 ° to 135 ° with respect to the rolling direction of the steel plate, the irradiation interval is fixed to 0.3 mm in the steel plate width direction (C direction), and 3.0 mm to the steel plate rolling direction (L direction). It was changed to 9.0 mm.
表1から明らかなように、試験No.1〜9(本発明例)に示す一方向性電磁鋼板は、何れも圧延方向の引張残留応力の最大値および塑性歪の圧延方向範囲の何れも本発明で規定する範囲内にあるため、低鉄損値(W17/50 )を0.70W/Kg以下まで低減でき、これらの条件が外れる試験No.10〜13(比較例)に比べて低鉄損特性に優れた一方向性電磁鋼板が得られた。 As is apparent from Table 1, test no. In the unidirectional electrical steel sheets shown in 1 to 9 (examples of the present invention), the maximum value of the tensile residual stress in the rolling direction and the range of the plastic strain in the rolling direction are both within the range defined by the present invention. The iron loss value (W17 / 50) can be reduced to 0.70 W / Kg or less, and these conditions are not met. A unidirectional electrical steel sheet excellent in low iron loss characteristics as compared with 10-13 (comparative example) was obtained.
また、上記試験No.1〜9(本発明例)のうちで、圧延方向の引張残留応力の最大値及び塑性歪の圧延方向範囲に加えて、さらに、鋼板の圧延方向に対する歪領域(引張弾性応力および塑性歪からなる歪領域)の方向の角度、同歪領域の圧延方向間隔が好ましい範囲内にある試験No.1〜7(本発明例)は、試験No.8および9(本発明例)に比べてより鉄損を低減することができた。 In addition, the above test No. 1 to 9 (examples of the present invention), in addition to the maximum value of the tensile residual stress in the rolling direction and the range of the plastic strain in the rolling direction, the strain region (tensile elastic stress and plastic strain in the rolling direction of the steel sheet) Test No. in which the angle in the direction of the strain region) and the rolling direction interval of the strain region are within the preferred range. 1 to 7 (examples of the present invention) are test No. Compared with 8 and 9 (examples of the present invention), the iron loss could be further reduced.
板厚が0.23mmの一方向性電磁鋼板を用いてこの鋼板表面にパルスレーザを照射することにより、表2に示すような引張残留応力(弾性歪)の最大値、塑性歪の圧延方向の範囲(最大長さ)の各一方向性電磁鋼板を製造後、各一方向性電磁鋼板の鉄損(W17/50 )を測定(表2参照)した。
レーザ出力は、1パルスあたりのエネルギーで5mJと一定にし、レーザビーム形状については、鋼板表面の照射位置でのスポット形状を楕円形とし、その軸比(L/C、但し、L:圧延方向の長軸長さ、C:幅方向の短軸長さとする。)を表2に示すように0.5〜2.0に変化させた。
By irradiating the surface of this steel sheet with a pulse laser using a unidirectional electrical steel sheet having a thickness of 0.23 mm, the maximum value of the tensile residual stress (elastic strain) as shown in Table 2 and the plastic strain in the rolling direction are shown. After manufacturing each unidirectional electrical steel sheet in the range (maximum length), the iron loss (W17 / 50) of each unidirectional electrical steel sheet was measured (see Table 2).
The laser output is constant at 5 mJ in energy per pulse, and the laser beam shape is an elliptical spot shape at the irradiation position on the steel sheet surface, and its axial ratio (L / C, where L: in the rolling direction) The major axis length, C: the minor axis length in the width direction, was changed from 0.5 to 2.0 as shown in Table 2.
また、鋼板表面に形成した歪領域(引張弾性応力および塑性歪からなる歪領域)の圧延方向(L方向)の間隔は5.0mm、同歪領域の圧延方向(L方向)と直角な鋼板幅方向(C方向)の間隔は0.3mm、同歪領域の方向の圧延方向に対する角度は90°と、それぞれ一定になるようにレーザを照射した。なお、表2の圧延方向の引張残留応力の最大値、および塑性歪の圧延方向の範囲(最大長さ)の測定は、実施例1と同様な方法で行なった。 In addition, the spacing in the rolling direction (L direction) of the strain region (strain region consisting of tensile elastic stress and plastic strain) formed on the steel plate surface is 5.0 mm, and the steel plate width perpendicular to the rolling direction (L direction) of the strain region Laser was irradiated so that the interval between the directions (C direction) was 0.3 mm, and the angle of the strain region direction with respect to the rolling direction was constant at 90 °. The maximum tensile residual stress in the rolling direction and the range of the plastic strain in the rolling direction (maximum length) in Table 2 were measured in the same manner as in Example 1.
試験No.1および2(本発明例)は、鋼板表面に形成された圧延方向の引張残留応力の最大値と、塑性歪の圧延方向範囲の両方の条件が本発明で規定する範囲を満足するため、試験No.3〜5(比較例)に比べてより鉄損を低減できた。 Test No. 1 and 2 (examples of the present invention) were tested because both the maximum tensile residual stress in the rolling direction formed on the steel sheet surface and the range of the plastic strain in the rolling direction range satisfy the range specified in the present invention. No. Compared with 3-5 (comparative example), the iron loss was able to be reduced more.
1:レーザ照射スポット形状
2:歪領域
1: Laser irradiation spot shape 2: Strain area
Claims (3)
3. The low iron loss unidirectional electrical steel sheet according to claim 1, wherein the strain region is formed continuously or at a predetermined interval in a direction of 60 to 120 ° with respect to a rolling direction of the steel sheet. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004063432A JP4344264B2 (en) | 2004-03-08 | 2004-03-08 | Low iron loss unidirectional electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004063432A JP4344264B2 (en) | 2004-03-08 | 2004-03-08 | Low iron loss unidirectional electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005248291A true JP2005248291A (en) | 2005-09-15 |
JP4344264B2 JP4344264B2 (en) | 2009-10-14 |
Family
ID=35029050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004063432A Expired - Lifetime JP4344264B2 (en) | 2004-03-08 | 2004-03-08 | Low iron loss unidirectional electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4344264B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008050700A1 (en) | 2006-10-23 | 2008-05-02 | Nippon Steel Corporation | Unidirectional magnetic steel sheet excellent in iron loss characteristic |
WO2009104521A1 (en) * | 2008-02-19 | 2009-08-27 | 新日本製鐵株式会社 | Low core loss unidirectional electromagnetic steel plate and method of manufacturing the same |
KR101190569B1 (en) * | 2010-03-03 | 2012-10-16 | 국민대학교산학협력단 | Methods of controlling texture of material, and Fe or Fe alloy material formed using the same |
WO2014034128A1 (en) | 2012-08-30 | 2014-03-06 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet for iron core and method for manufacturing same |
RU2509814C1 (en) * | 2010-07-28 | 2014-03-20 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Electric sheet steel with oriented grains and method of its production |
WO2021132378A1 (en) * | 2019-12-25 | 2021-07-01 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and production method therefor |
WO2022113517A1 (en) | 2020-11-27 | 2022-06-02 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and method for manufacturing same |
JPWO2022255014A1 (en) * | 2021-05-31 | 2022-12-08 | ||
WO2022255013A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet |
JP2023508031A (en) * | 2019-12-19 | 2023-02-28 | ポスコホールディングス インコーポレーティッド | Grain-oriented electrical steel sheet and its magnetic domain refinement method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN2014MN01092A (en) | 2011-12-22 | 2015-07-03 | Jfe Steel Corp | |
JP5884165B2 (en) | 2011-12-28 | 2016-03-15 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP6010907B2 (en) | 2011-12-28 | 2016-10-19 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
KR101673829B1 (en) | 2012-10-31 | 2016-11-07 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method for manufacturing the same |
JP2015161024A (en) | 2014-02-28 | 2015-09-07 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet for low-noise transformer, and method for production thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61235511A (en) * | 1985-04-10 | 1986-10-20 | Kawasaki Steel Corp | Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability |
JP2003034822A (en) * | 2001-07-26 | 2003-02-07 | Nippon Steel Corp | Grain-oriented electromagnetic steel sheet superior in magnetic properties |
-
2004
- 2004-03-08 JP JP2004063432A patent/JP4344264B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61235511A (en) * | 1985-04-10 | 1986-10-20 | Kawasaki Steel Corp | Production of ultra-low iron loss grain oriented silicon steel sheet having thermal stability |
JP2003034822A (en) * | 2001-07-26 | 2003-02-07 | Nippon Steel Corp | Grain-oriented electromagnetic steel sheet superior in magnetic properties |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008050700A1 (en) | 2006-10-23 | 2008-05-02 | Nippon Steel Corporation | Unidirectional magnetic steel sheet excellent in iron loss characteristic |
WO2009104521A1 (en) * | 2008-02-19 | 2009-08-27 | 新日本製鐵株式会社 | Low core loss unidirectional electromagnetic steel plate and method of manufacturing the same |
JP4593678B2 (en) * | 2008-02-19 | 2010-12-08 | 新日本製鐵株式会社 | Low iron loss unidirectional electrical steel sheet and manufacturing method thereof |
JPWO2009104521A1 (en) * | 2008-02-19 | 2011-06-23 | 新日本製鐵株式会社 | Low iron loss unidirectional electrical steel sheet and manufacturing method thereof |
US8034196B2 (en) | 2008-02-19 | 2011-10-11 | Nippon Steel Corporation | Low core loss grain-oriented electrical steel plate and method of manufacturing the same |
KR101190569B1 (en) * | 2010-03-03 | 2012-10-16 | 국민대학교산학협력단 | Methods of controlling texture of material, and Fe or Fe alloy material formed using the same |
RU2509814C1 (en) * | 2010-07-28 | 2014-03-20 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Electric sheet steel with oriented grains and method of its production |
WO2014034128A1 (en) | 2012-08-30 | 2014-03-06 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet for iron core and method for manufacturing same |
KR20150036775A (en) | 2012-08-30 | 2015-04-07 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet for iron core and method of manufacturing the same |
US10026533B2 (en) | 2012-08-30 | 2018-07-17 | Jfe Steel Corporation | Grain-oriented electrical steel sheet for iron core and method of manufacturing the same |
JP2023508031A (en) * | 2019-12-19 | 2023-02-28 | ポスコホールディングス インコーポレーティッド | Grain-oriented electrical steel sheet and its magnetic domain refinement method |
JP7440638B2 (en) | 2019-12-19 | 2024-02-28 | ポスコホールディングス インコーポレーティッド | Grain-oriented electrical steel sheet and its magnetic domain refinement method |
WO2021132378A1 (en) * | 2019-12-25 | 2021-07-01 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and production method therefor |
JP7180763B2 (en) | 2019-12-25 | 2022-11-30 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet and manufacturing method thereof |
JPWO2021132378A1 (en) * | 2019-12-25 | 2021-12-23 | Jfeスチール株式会社 | Directional electrical steel sheet and its manufacturing method |
WO2022113517A1 (en) | 2020-11-27 | 2022-06-02 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and method for manufacturing same |
JPWO2022255014A1 (en) * | 2021-05-31 | 2022-12-08 | ||
WO2022255014A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet |
WO2022255013A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet |
JPWO2022255013A1 (en) * | 2021-05-31 | 2022-12-08 | ||
JP7459956B2 (en) | 2021-05-31 | 2024-04-02 | Jfeスチール株式会社 | grain-oriented electrical steel sheet |
JP7459955B2 (en) | 2021-05-31 | 2024-04-02 | Jfeスチール株式会社 | grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP4344264B2 (en) | 2009-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4593678B2 (en) | Low iron loss unidirectional electrical steel sheet and manufacturing method thereof | |
JP5613972B2 (en) | Unidirectional electrical steel sheet with excellent iron loss characteristics | |
JP4344264B2 (en) | Low iron loss unidirectional electrical steel sheet | |
JP4669565B2 (en) | Method for producing grain-oriented electrical steel sheet in which magnetic domain is controlled by laser light irradiation | |
KR101421391B1 (en) | Grain oriented electrical steel sheet | |
US11638971B2 (en) | Grain-oriented silicon steel with low core loss and manufacturing method therefore | |
RU2572636C1 (en) | Sheet of textured electric steel, and method for its production | |
KR20130043232A (en) | Oriented electromagnetic steel sheet and process for production thereof | |
JP7031752B2 (en) | Directional electrical steel sheet and its manufacturing method | |
WO2020158732A1 (en) | Grain-oriented electrical steel sheet, and method of manufacturing same | |
JP2008127632A (en) | Low core loss grain-oriented magnetic steel sheet | |
JP5429213B2 (en) | Method for producing unidirectional electrical steel sheet with excellent iron loss characteristics | |
JP4616623B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2006117964A (en) | Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor | |
JP2000328139A (en) | Production of thick low iron loss grain oriented silicon steel plate | |
JP2002069594A (en) | Silicon steel sheet for low-noise transformer | |
JP4437939B2 (en) | Low iron loss unidirectional electrical steel sheet | |
WO2021132378A1 (en) | Grain-oriented electromagnetic steel sheet and production method therefor | |
EP3846189B1 (en) | Grain-oriented electrical steel sheet and method for refining magnetic domain of same | |
JP4276618B2 (en) | Low iron loss unidirectional electrical steel sheet | |
JP5884168B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2006083416A (en) | Method for thermal-reforming electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080904 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090413 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090710 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
RVTR | Cancellation due to determination of trial for invalidation |