JP4437939B2 - Low iron loss unidirectional electrical steel sheet - Google Patents

Low iron loss unidirectional electrical steel sheet Download PDF

Info

Publication number
JP4437939B2
JP4437939B2 JP2004141956A JP2004141956A JP4437939B2 JP 4437939 B2 JP4437939 B2 JP 4437939B2 JP 2004141956 A JP2004141956 A JP 2004141956A JP 2004141956 A JP2004141956 A JP 2004141956A JP 4437939 B2 JP4437939 B2 JP 4437939B2
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
magnetic
unidirectional electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004141956A
Other languages
Japanese (ja)
Other versions
JP2005327772A (en
Inventor
圭司 岩田
昌浩 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004141956A priority Critical patent/JP4437939B2/en
Publication of JP2005327772A publication Critical patent/JP2005327772A/en
Application granted granted Critical
Publication of JP4437939B2 publication Critical patent/JP4437939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、トランスの鉄心等に利用され、一方向性電磁鋼板の性能、特に低鉄損性に優れた一方向性電磁鋼板に関するものである。   The present invention relates to a unidirectional electrical steel sheet that is used for a transformer core and the like, and is excellent in performance of the unidirectional electrical steel sheet, particularly in low iron loss.

近年、鋼板の圧延方向に磁化容易軸をもつ一方向性電磁鋼板は、主に変圧器やその他の電力変換器の鉄心に用いられているが、エネルギー変換時に生じる損失を小さくするために、鉄心の材料には、低い鉄損特性が強く要求されている。   In recent years, unidirectional electrical steel sheets that have an easy axis in the rolling direction of steel sheets are mainly used in the iron cores of transformers and other power converters. To reduce losses that occur during energy conversion, These materials are strongly required to have low iron loss characteristics.

電磁鋼板の鉄損は、大別してヒステリシス損と渦電流損とからなる。ヒステリシス損は、結晶方位、欠陥、粒界等による影響を受け、渦電流損は、材料の板厚、電気抵抗および180°磁区幅等により決まる。   The iron loss of the electrical steel sheet is roughly divided into hysteresis loss and eddy current loss. Hysteresis loss is affected by crystal orientation, defects, grain boundaries, etc., and eddy current loss is determined by the plate thickness, electrical resistance, 180 ° magnetic domain width, and the like of the material.

従って、これまでは、ヒステリシス損低減の観点から結晶粒組織を(110)[001]方位に高度に揃え、結晶の欠陥を少なくするなどの方法が用いられ、渦電流損低減の観点から板厚を薄くし、Si含有量の増加などにより材料の抵抗値を高めたり、張力被膜の鋼板表面への塗布などにより180°磁区幅を細分化するなどの方法が用いられ、電磁鋼板の低損失化が試みられてきた。   Therefore, until now, from the viewpoint of reducing hysteresis loss, a method of highly aligning the grain structure in the (110) [001] orientation and reducing crystal defects has been used. From the viewpoint of reducing eddy current loss, Reduce the loss of electrical steel sheets by reducing the thickness of the magnetic steel sheet, increasing the resistance value of the material by increasing the Si content, etc., or subdividing the 180 ° magnetic domain width by applying a tensile coating to the steel sheet surface, etc. Has been tried.

また、近年、鉄損を飛躍的に減少させるために、鉄損の大部分を占める渦電流損低減の観点から、上記の鋼板表面への張力付与以外の手段を用いて、人為的に鋼板に磁極を発生させ、180°磁区を細分化させる方法が提案されている。
例えば、レーザを一方向性電磁鋼板表面の圧延方向と直角方向に対して、所定のビーム幅、エネルギー密度、照射間隔で照射することにより鋼板表面に局部的な高転位密度領域、すなわち微小塑性歪を加えることで、磁区の芽を発生させて磁区の細分化を行い、一方向性電磁鋼板の鉄損を低減する方法が開示されている(例えば、特許文献1参照)。
In recent years, in order to dramatically reduce iron loss, from the viewpoint of reducing eddy current loss, which accounts for the majority of iron loss, using means other than the application of tension to the steel sheet surface, artificially applied to the steel sheet. A method of generating magnetic poles and subdividing 180 ° magnetic domains has been proposed.
For example, by irradiating a laser at a predetermined beam width, energy density, and irradiation interval with respect to a direction perpendicular to the rolling direction of the unidirectional electrical steel sheet surface, a local high dislocation density region on the steel sheet surface, that is, a small plastic strain. Has been disclosed to reduce the iron loss of a unidirectional electrical steel sheet by generating magnetic domain buds and subdividing the magnetic domains (see, for example, Patent Document 1).

また、一方向性鋼板表面の所定方向及び所定荷重で溝を形成した後、歪取り燃鈍により歪導入部に微細結晶粒を生じさせ、二次再結晶粒との界面から磁区細分化の芽を発生させる方法が開示されている(例えば、特許文献2参照)。   In addition, after forming grooves in a predetermined direction and a predetermined load on the surface of the unidirectional steel plate, fine crystal grains are generated in the strain-introduced part by strain relief annealing, and buds of magnetic domain fragmentation are generated from the interface with secondary recrystallized grains. Is disclosed (for example, see Patent Document 2).

さらには、焼鈍済みの一方向性電磁鋼板の所定方向に溝付きロールなどにより機械的に所定深さの溝を形成した後、エッチングにより機械的歪により生じた微細粒を除去し溝を深めることで一方向性電磁鋼板の鉄損を低減する方法が開示されている(例えば、特許文献3参照)。   Furthermore, after a groove having a predetermined depth is mechanically formed by a grooved roll or the like in a predetermined direction of an annealed unidirectional electrical steel sheet, the fine grains generated by mechanical strain are removed by etching to deepen the groove. Discloses a method for reducing iron loss of a unidirectional electrical steel sheet (see, for example, Patent Document 3).

上記特許文献1〜3の方法は、一方向性電磁鋼板表面に溝又は局部的塑性歪(高転位密度領域)を形成し、180°磁区幅の細分化を行うことを技術思想とする技術であるが、これらの方法で得られる鋼板の鉄損(W17/50)は0.80〜0.78W/Kg程度が限界であった。なお、前記W17/50は磁束密度1.7T、周波数50Hzにおける鉄損を示す。 The methods of Patent Documents 1 to 3 are technically based on the technical idea of forming grooves or local plastic strain (high dislocation density region) on the surface of the unidirectional electrical steel sheet and subdividing the 180 ° magnetic domain width. However, the iron loss (W 17/50 ) of the steel sheet obtained by these methods was limited to about 0.80 to 0.78 W / Kg. The W 17/50 indicates the iron loss at a magnetic flux density of 1.7 T and a frequency of 50 Hz.

上記方法において鉄損低減効果に限界が生じる理由は、後述するように本発明者らの検討によれば、溝又は塑性歪の形成により180°磁区幅が細分化され、渦電流損は低減するものの、逆にヒステリシス損が増加する結果、鉄損が低減しないためであることを確認している。   The reason why the iron loss reduction effect is limited in the above method is that, as will be described later, according to the study by the present inventors, the 180 ° magnetic domain width is subdivided by the formation of grooves or plastic strain, and eddy current loss is reduced. However, it has been confirmed that the iron loss is not reduced as a result of the increase in the hysteresis loss.

以上の通り、従来技術を用いる限りは、一方向性電磁鋼板の鉄損をさらに改善することは期待できないため、従来に比べて飛躍的に鉄損を低減する方法が望まれている。
特開昭55−18566号公報 特開昭61−117218号公報 特開2000−169946号公報
As described above, as long as the conventional technique is used, it is not expected to further improve the iron loss of the unidirectional electrical steel sheet. Therefore, a method for dramatically reducing the iron loss as compared with the prior art is desired.
JP-A-55-18586 JP 61-117218 A JP 2000-169946 A

上記従来技術の現状を踏まえ、本発明は、従来の溝や歪形成以外の手段を用いて、ヒステリシス損の増加を抑制しつつ渦電流損をより低減することによって、従来に比べて飛躍的に鉄損特性が向上する低鉄損一方向性電磁鋼板を提供するものである。   In light of the current state of the prior art described above, the present invention uses a means other than conventional grooves and strain formation to significantly reduce eddy current loss while suppressing an increase in hysteresis loss, thereby dramatically increasing the conventional technology. A low iron loss unidirectional electrical steel sheet having improved iron loss characteristics is provided.

本発明は、上記課題を解決するものであり、その発明の要旨は以下の通りである。
(1)鋼板表裏層の何れか一方又は両方における1箇所又は複数箇所に、鋼板圧延方向に対して60〜120°の角度をなす方向に連続して、又は所定間隔で、磁気異方性定数がFeの磁気異方性定数より大きく、かつ鋼板面の法線方向に対して±60°以内の角度をなす向きに少なくとも1つの磁化容易軸を有する強磁性金属または強磁性金属化合物を含有し、該強磁性金属または強磁性金属化合物の鋼板面における総面積率が1.2%以上であることを特徴とする低鉄損一方向性電磁鋼板。
This invention solves the said subject, and the summary of the invention is as follows.
(1) Magnetic anisotropy constant continuously or at a predetermined interval in a direction forming an angle of 60 to 120 ° with respect to the rolling direction of the steel sheet at one or a plurality of positions in one or both of the steel sheet front and back layers. Contains a ferromagnetic metal or a ferromagnetic metal compound having a magnetic anisotropy constant greater than that of Fe and at least one easy axis of magnetization in an angle of ± 60 ° to the normal direction of the steel plate surface. , low core loss oriented electrical steel sheet, wherein the total area ratio in the steel sheet surface of the ferromagnetic metal or ferromagnetic metal compound is 1.2% or more.

(2)前記強磁性金属または強磁性金属化合物の少なくとも1つの磁化容易軸の向きが、鋼板表面の法線方向に対して平行であることを特徴とする前記(1)に記載の低鉄損一方向性電磁鋼板。 (2) The low iron loss according to (1) above, wherein the direction of at least one easy axis of the ferromagnetic metal or ferromagnetic metal compound is parallel to the normal direction of the steel sheet surface Unidirectional electrical steel sheet.

)前記強磁性金属または強磁性金属化合物は、鋼板面から板厚方向に35μm以下の範囲に有することを特徴とする前記(1)または)に記載の低鉄損一方向性電磁鋼板。 ( 3 ) The low iron loss unidirectional electromagnetic wave according to (1) or ( 2 ) above, wherein the ferromagnetic metal or the ferromagnetic metal compound has a thickness of 35 μm or less from the steel plate surface in the plate thickness direction. steel sheet.

)前記強磁性金属または強磁性金属化合物は、鋼板圧延方向に7mm以下の間隔で有することを特徴とする前記(1)〜()の何れか1項に記載の低鉄損一方向性電磁鋼板。 ( 4 ) One direction of the low iron loss according to any one of (1) to ( 3 ), wherein the ferromagnetic metal or the ferromagnetic metal compound has an interval of 7 mm or less in a steel plate rolling direction. Electrical steel sheet.

本発明によれば、鉄損特性が非常に優れた一方向性電磁鋼板を提供でき、トランスのエネルギー損失が非常に小さくなる等、工業的効果が極めて大きい。   ADVANTAGE OF THE INVENTION According to this invention, the unidirectional electrical steel plate which was very excellent in the iron loss characteristic can be provided, and industrial effects are very large, such as the energy loss of a transformer becoming very small.

以下に、本発明について詳細に説明する。
本発明者らは、一方向性電磁鋼板の表面に溝または歪形成による従来の鉄損低減方法について確認試験を行い、以下の問題点を確認した。
図1は、表面に溝または歪を形成し低鉄損化した一方向性電磁鋼板における表面張力と鉄損との関係を示す図である。
The present invention is described in detail below.
The present inventors conducted a confirmation test on a conventional iron loss reduction method by forming grooves or strains on the surface of a unidirectional electrical steel sheet, and confirmed the following problems.
FIG. 1 is a diagram showing the relationship between surface tension and iron loss in a unidirectional electrical steel sheet having grooves or strains formed on its surface to reduce iron loss.

表面に溝または歪を形成し低鉄損化した一方向性電磁鋼板の何れも、外部応力により鋼板表面の張力を増加することによって、さらに鉄損が低減する。
表面張力が2kgf/mmの場合に、表面に溝を形成した一方向性電磁鋼板ではW17/50で0.66(W/Kg)、表面に歪を形成した一方向性電磁鋼板ではW17/50で0.64(W/Kg)まで低鉄損化が図れるが、それ以上の低鉄損化は困難である。
In any of the unidirectional electrical steel sheets in which grooves or strains are formed on the surface and the iron loss is reduced, the iron loss is further reduced by increasing the tension of the steel sheet surface due to external stress.
When the surface tension is 2 kgf / mm 2 , W17 / 50 is 0.66 (W / Kg) for the unidirectional electrical steel sheet with grooves on the surface, and W17 / 50 for the unidirectional electrical steel sheet with strain on the surface. The iron loss can be reduced to 0.64 (W / Kg) at 50, but further reduction of the iron loss is difficult.

鋼板圧延方向に対しておよそ直角な方向に溝を形成する方法では、表面の溝深さの増加とともに全損失を構成する渦電流損は磁区細分化が進行するため低減する。
しかし、全損失を構成するヒステリシス損は表面の溝深さの増加とともに逆に増加してしまうため、表面の溝形成による全損失の低減には限界がある。また、溝形成によって鋼板表面の凹状部から磁束密度が漏れるため、磁気特性の一つであるB8(磁界800A/mにおける磁束密度)が劣化する問題も生じる。
In the method of forming grooves in a direction approximately perpendicular to the rolling direction of the steel sheet, the eddy current loss constituting the total loss is reduced with the increase of the groove depth on the surface, and the magnetic domain fragmentation proceeds to reduce.
However, since the hysteresis loss constituting the total loss increases with an increase in the groove depth on the surface, there is a limit to the reduction of the total loss due to the formation of the groove on the surface. Further, since the magnetic flux density leaks from the concave portion on the surface of the steel sheet due to the groove formation, there is a problem that B8 (magnetic flux density at a magnetic field of 800 A / m), which is one of the magnetic characteristics, is deteriorated.

一方、レーザ照射等により鋼板圧延方向に対しておよそ直角な方向に歪を導入する方法では、歪量の増加とともに磁区細分化を図られ損失は低減される。この方法では表面溝形成方法に比べて、ヒステリシス損の増加や表面の漏れ磁界によるB8の劣化の問題は生じにくいため、図1に示すように溝形成方法に比べて低損失化の効果が高い。
しかし、本発明者らの確認試験結果から、レーザ照射により弾性歪の増加により磁区細分化は進むが、同時に塑性歪も増加し、塑性歪による磁壁移動が妨げられるためヒステリシス損が増加することを確認している。また、この方法で低損失化した鋼板は、歪取り焼鈍処理を行なう場合には歪による磁区細分化効果は消失してしまうため、約800℃の歪取り焼鈍処理が必要とする巻きトランスに使用する鋼板には、この方法は適用できず、焼鈍処理が不要な積みトランスの用途に制限されるという問題があった。
On the other hand, in the method of introducing strain in a direction approximately perpendicular to the rolling direction of the steel sheet by laser irradiation or the like, the magnetic domain is subdivided as the amount of strain is increased and the loss is reduced. Compared with the surface groove forming method, this method is less likely to cause an increase in hysteresis loss and B8 deterioration due to a surface leakage magnetic field. Therefore, as shown in FIG. .
However, from the confirmation test results of the present inventors, the magnetic domain subdivision progresses due to the increase in elastic strain by laser irradiation, but at the same time the plastic strain also increases, and the hysteresis loss increases because the domain wall movement due to plastic strain is hindered. I have confirmed. In addition, the steel sheet reduced in loss by this method loses the effect of domain subdivision due to strain when strain relief annealing is performed, so it is used for winding transformers that require strain relief annealing at about 800 ° C. This method cannot be applied to the steel sheet to be used, and there is a problem that it is limited to the use of a stacking transformer that does not require annealing.

以上の本発明者らの確認試験結果から、溝形成又は歪形成と張力付与等のような従来方法の組み合わせでは、一方向性電磁鋼板の低鉄損化に限界があり、大幅な低鉄損化は図れないことを確認した。   From the above confirmation test results by the present inventors, there is a limit to the reduction in iron loss of the unidirectional electrical steel sheet by the combination of conventional methods such as groove formation or strain formation and tension application. It was confirmed that it could not be realized.

本発明は、上記のような従来方法とは全く異なる技術思想及び全く新たな方法により、大幅な低鉄損化を図った一方向性電磁鋼板を提案するものである。
先ず、本発明の技術思想について説明する。
図2の概念図に示すように、一般に、一方向性電磁鋼板の磁化容易軸は圧延方向に向いているため、磁区は、圧延方向に平行および反平行な磁化で構成され、180°磁区幅を形成する。
この状態でさらに鋼板表面の圧延方向に対して直角方向に溝を形成すると、鋼板の180°磁区幅は狭くなる、つまり、磁区の細分化が行われることは上述した通りである。
The present invention proposes a unidirectional electrical steel sheet in which a significant reduction in iron loss is achieved by a completely different technical idea and a completely new method from the conventional methods described above.
First, the technical idea of the present invention will be described.
As shown in the conceptual diagram of FIG. 2, since the easy axis of the unidirectional electrical steel sheet is generally oriented in the rolling direction, the magnetic domain is composed of magnetizations parallel and antiparallel to the rolling direction, and has a 180 ° magnetic domain width. Form.
In this state, if grooves are formed in a direction perpendicular to the rolling direction of the steel plate surface, the 180 ° magnetic domain width of the steel plate becomes narrow, that is, the magnetic domains are subdivided as described above.

本発明者らは、表面の溝形成による磁区の細分化のメカニズムを磁区解析から検討した結果、この鋼板では溝の断面に磁極が発生し、これが磁区の再構成を促すために、結果的に180°磁区幅が細分化されることを見出した。
上述した鋼板表面に形成する溝深さを増加するとともに磁区の細分化が促進する理由は、溝深さの増加により溝断面積が増大するため、溝断面に発生する磁極も増加し、さらに磁区の再構成が促進するからであると考えられる。
しかし、この方法は、上述したように溝深さの増加とともにヒステリシス損を増加し鉄損低減を阻害するため、鉄損特性の低減には限界がある。
As a result of studying the subdivision mechanism of magnetic domains due to surface groove formation from magnetic domain analysis, the present inventors have generated magnetic poles in the cross section of the grooves in this steel plate, and this promotes reconfiguration of the magnetic domains. It has been found that the 180 ° magnetic domain width is subdivided.
The reason why the groove depth formed on the surface of the steel sheet is increased and the subdivision of the magnetic domain is promoted is that the groove cross-sectional area increases as the groove depth increases, so that the magnetic pole generated in the groove cross-section also increases. This is thought to be due to the promotion of restructuring.
However, since this method increases the hysteresis loss and inhibits the iron loss reduction as the groove depth increases as described above, there is a limit in reducing the iron loss characteristics.

本発明は、上記磁区解析結果を踏まえ、鋼板の溝断面に比べて表面積が格段に広い鋼板表面に磁極を発生させることで磁極量を増加させ、磁区の再構成を促進し、より細分化させることを技術思想とする。
そのために、本発明は、図5に示すように板厚方向に磁化容易軸を有する物質を鋼板表層部の少なくとも一部に付与し、図3および図4に示すように、上記物質を付与した部分において各180°磁区を構成する磁化の向きを鋼板表面に向かう板厚方向に誘導し、鋼板表面に磁極を誘起する方法により、磁区の再構成、細分化の促進を実現するものである。
Based on the magnetic domain analysis results, the present invention increases the amount of magnetic poles by generating magnetic poles on the surface of the steel sheet having a significantly larger surface area than the groove cross section of the steel sheet, promotes reconfiguration of the magnetic domains, and further subdivides them. This is the technical idea.
Therefore, in the present invention, a material having an axis of easy magnetization in the thickness direction as shown in FIG. 5 is applied to at least a part of the steel sheet surface layer portion, and the above materials are applied as shown in FIG. 3 and FIG. In the portion, the direction of magnetization constituting each 180 ° magnetic domain is induced in the thickness direction toward the steel plate surface, and magnetic poles are induced on the steel plate surface, thereby realizing reconfiguration of magnetic domains and promotion of subdivision.

本発明によれば、鋼板表面に溝または歪を形成した一方向性電磁鋼板における溝深さまたは塑性歪の増加に伴うヒステリシス損増加の問題は生じ難いため、従来に比べて鉄損特性を飛躍的に改善できる一方向性電磁鋼板を提供することができる。   According to the present invention, the problem of increased hysteresis loss due to an increase in groove depth or plastic strain in a unidirectional electrical steel sheet in which grooves or strains are formed on the steel sheet surface is less likely to occur. Can be provided.

物質の磁化が、磁化容易軸に向き易いかどうかを示す指標は、磁気トルク法やマイクロ波共鳴法等により測定される正負の磁気異方性定数で決まる。
例えば、電磁鋼板の母材元素であるFeは、図6に示すように磁化容易軸が三つあり、その磁化容易軸の一つは圧延方向に向いている。
また、鉄の磁気異方性定数は、結晶の対称性から3方向が同等の正の磁気異方性定数:約4.8×10(J/m)を持つことが知られている。
従って、電磁鋼板の各180°磁区を構成する磁化の向き(鉄の容易軸方向である圧延方向)を鋼板表面に向かう板厚方向に誘導し、鋼板表面に磁極を誘起させるためには、板厚方向に容易軸を有する物質の磁気異方性定数が少なくとも鉄よりも大きくする必要がある。
An index indicating whether the magnetization of a substance is likely to be directed to the easy axis of magnetization is determined by positive and negative magnetic anisotropy constants measured by a magnetic torque method, a microwave resonance method, or the like.
For example, Fe, which is a base material element of an electromagnetic steel sheet, has three easy magnetization axes as shown in FIG. 6, and one of the easy magnetization axes is oriented in the rolling direction.
In addition, the magnetic anisotropy constant of iron is known to have a positive magnetic anisotropy constant equivalent to about 4.8 × 10 4 (J / m 3 ) in three directions due to crystal symmetry. .
Therefore, in order to induce the magnetic direction (rolling direction which is the easy axis direction of iron) constituting each 180 ° magnetic domain of the magnetic steel sheet in the plate thickness direction toward the steel sheet surface, and to induce magnetic poles on the steel sheet surface, The material having an easy axis in the thickness direction needs to have a magnetic anisotropy constant that is at least larger than that of iron.

上記の理由から、本発明の一方向性電磁鋼板において、鋼板表裏層の何れか一方又は両方における1箇所又は複数箇所に付与する金属または金属化合物の磁気異方性定数は、Feの磁気異方性定数より大きなものとする。   For the above reasons, in the unidirectional electrical steel sheet of the present invention, the magnetic anisotropy constant of the metal or metal compound applied to one or a plurality of positions in either one or both of the steel sheet front and back layers is the magnetic anisotropy of Fe. It should be larger than the sex constant.

一方向性電磁鋼板に対して上記金属または金属化合物の付与する箇所は、鋼板表裏層の何れか一方又は両方における1箇所又は複数箇所のいずれの実施形態でも、従来の一方向性電磁鋼板に比べて鉄損を低減できる作用、効果は得られる。   The location where the metal or metal compound is applied to the unidirectional electrical steel sheet is one or a plurality of locations in either one or both of the steel sheet front and back layers, as compared to the conventional unidirectional electrical steel sheet. Thus, the effect and the effect of reducing the iron loss can be obtained.

本発明において、上記のメカニズムによる一方向性電磁鋼板の磁区の再編成、細分化の促進効果は、鋼板表面に誘起させる磁極の大きさにより決まる。
そのため、本発明において、鋼板に付与する上記金属または金属化合物の表面積(鋼板全体に対する総面積率(%))および磁化容易軸方向(鋼板面の法線方向に対する角度)を適正範囲に規定することが重要である。
In the present invention, the effect of promoting the reorganization and fragmentation of the magnetic domains of the unidirectional electrical steel sheet by the above mechanism is determined by the size of the magnetic pole induced on the steel sheet surface.
Therefore, in the present invention, the surface area (total area ratio (%) with respect to the entire steel plate) and the easy axis direction (angle with respect to the normal direction of the steel plate surface) of the metal or metal compound to be applied to the steel plate are defined within an appropriate range. is important.

以下に本発明の一方向性電磁鋼板における磁気異方性定数がFeの磁気異方性定数より大きい金属または金属化合物の表面積及び磁化容易軸方向の適正範囲について説明する。
なお、以下の説明の便宜上、「磁気異方性定数がFeの磁気異方性定数より大きい金属または金属化合物」を「高磁気異方性物質」という。
In the following, the surface area of the metal or metal compound in which the magnetic anisotropy constant in the unidirectional electrical steel sheet of the present invention is larger than the magnetic anisotropy constant of Fe and the appropriate range in the easy axis direction will be described.
For convenience of the following description, “a metal or metal compound having a magnetic anisotropy constant larger than that of Fe” is referred to as “high magnetic anisotropy substance”.

図7は、板厚が0.23mmの一方向性電磁鋼板における高磁気異方性物質の磁化容易軸方向及び磁気異方性定数と、鉄損W17/50との関係を示す図である。
なお、高磁気異方性物質は、図5に示すように鋼板の圧延方向に対してほぼ直角方向に、鋼板表面からの深さが約20μmで、幅が約60μmの帯状範囲に存在し、帯状範囲の間隔(圧延方向距離)を約5mmとした。この際の高磁気異方性物質の鋼板面における総面積率は、約1.2%であった。
FIG. 7 is a diagram showing the relationship between the easy axis direction of magnetization and the magnetic anisotropy constant of the highly magnetic anisotropic material in the unidirectional electrical steel sheet having a thickness of 0.23 mm, and the iron loss W17 / 50.
Note that the highly magnetic anisotropy substance is present in a band-like range having a depth from the steel sheet surface of about 20 μm and a width of about 60 μm in a direction substantially perpendicular to the rolling direction of the steel sheet as shown in FIG. The interval between strips (distance in the rolling direction) was about 5 mm. At this time, the total area ratio of the highly magnetic anisotropic material on the steel plate surface was about 1.2%.

図7において、鉄損W17/50は、磁気測定装置を用いて、周波数50Hzで励磁し、最大磁束密度が1.7Tになる時の鉄損値を示す。
また、磁気異方性定数は、Feの磁気異方性定数(約4.8×10(J/m))に対する相対比率として示す。また、磁化容易軸方向は、高磁気異方性物質の少なくとも1つの磁化容易軸と鋼板面の法線方向とのなす角度(°)を示す。
In FIG. 7, iron loss W17 / 50 indicates an iron loss value when the magnetic flux is excited at a frequency of 50 Hz using a magnetometer, and the maximum magnetic flux density is 1.7T.
The magnetic anisotropy constant is shown as a relative ratio to the magnetic anisotropy constant of Fe (about 4.8 × 10 4 (J / m 3 )). Moreover, the easy axis direction indicates an angle (°) between at least one easy axis of the highly magnetic anisotropic material and the normal direction of the steel plate surface.

図7から、従来の一方向性電磁鋼板に比べて鉄損値を充分に低減するためには、上述したように高磁気異方性物質がFeの磁気異方性定数よりも大きく(鉄の磁気異方性定数に対する相対比率が1を超える)するとともに、その容易軸方向が鋼板面の法線方向に対して±60度以内とする必要がある。
また、一方向性電磁鋼板の鉄損値をより低減させるためには、高磁気異方性物質の容易軸方向が鋼板面の法線方向に対して0°、つまり、法線方向と平行とすることが好ましい。
なお、上記容易軸方向の鋼板面の法線方向に対する角度において、[+]は時計周り方向、[−]は反時計周り方向を示す。
From FIG. 7, in order to sufficiently reduce the iron loss value compared with the conventional unidirectional electrical steel sheet, as described above, the high magnetic anisotropy material is larger than the magnetic anisotropy constant of Fe (of iron The relative ratio to the magnetic anisotropy constant exceeds 1), and the easy axis direction needs to be within ± 60 degrees with respect to the normal direction of the steel plate surface.
Further, in order to further reduce the iron loss value of the unidirectional electrical steel sheet, the easy axis direction of the highly magnetic anisotropic material is 0 ° with respect to the normal direction of the steel sheet surface, that is, parallel to the normal direction. It is preferable to do.
In addition, in the angle with respect to the normal line direction of the steel plate surface in the easy axis direction, [+] indicates a clockwise direction, and [−] indicates a counterclockwise direction.

以上の理由から、本発明では、鋼板表裏層の何れか一方又は両方における1箇所又は複数箇所に、磁気異方性定数がFeの磁気異方性定数より大きく、かつ鋼板面の法線方向に対して±60°以内の角度をなす向きに少なくとも1つの磁化容易軸を有する金属または金属化合物(高磁気異方性物質)を含有させることとした。
また、一方向性電磁鋼板の鉄損値をより低減させるためには、高磁気異方性物質の容易軸方向が鋼板面の法線方向と平行とすることが好ましい。
For the above reasons, in the present invention, the magnetic anisotropy constant is larger than the magnetic anisotropy constant of Fe in one or a plurality of places in either one or both of the steel sheet front and back layers, and in the normal direction of the steel sheet surface. On the other hand, a metal or a metal compound (high magnetic anisotropy material) having at least one easy axis of magnetization in an angle of ± 60 ° or less is included.
In order to further reduce the iron loss value of the unidirectional electrical steel sheet, it is preferable that the easy axis direction of the highly magnetic anisotropic material is parallel to the normal direction of the steel sheet surface.

なお、上記の磁気異方性定数がFeの磁気異方性定数より大きく、かつ鋼板面の法線方向に対して±60°以内の角度をなす向きに少なくとも1つの磁化容易軸を有する金属または金属化合物(高磁気異方性物質)としては、Co系合金、FeNiO系化合物、MnBi等が挙げられる。   A metal having at least one easy axis in the direction in which the magnetic anisotropy constant is larger than the magnetic anisotropy constant of Fe and forms an angle of ± 60 ° or less with respect to the normal direction of the steel plate surface, or Examples of the metal compound (high magnetic anisotropy substance) include a Co-based alloy, a FeNiO-based compound, and MnBi.

また、物質の磁気異方性は、その結晶構造やその形状などに依存する。例えば、針状結晶構造の鉄粉の磁気異方性は、Fe自体の磁気異方性定数に比べて、針状方向の異方性が高い磁気異方性定数をもつことが知られている。
したがって、上記金属または金属化合物(高磁気異方性物質)として、上記の例示した金属または金属化合物で結晶構造や形状が異なり、特定方位の磁気異方性が異なるものも当然含むものである。
また、本発明において、上記金属または金属化合物(高磁気異方性物質)の形態は、金属系、合金系、化合物物系、酸化物系いずれでも良い。
In addition, the magnetic anisotropy of a substance depends on its crystal structure and shape. For example, the magnetic anisotropy of iron powder having a needle-like crystal structure is known to have a magnetic anisotropy constant that is higher in the needle-like direction than the magnetic anisotropy constant of Fe itself. .
Accordingly, the metal or metal compound (high magnetic anisotropy substance) naturally includes the above-exemplified metal or metal compound having a different crystal structure and shape and different magnetic anisotropy in a specific orientation.
In the present invention, the metal or metal compound (high magnetic anisotropy material) may be any of metal, alloy, compound, and oxide.

また、図7から、高磁気異方性物質のFeの磁気異方性定数に対する相対比率が5以上、つまり、磁気異方性定数(絶対値)が約2.4×10(J/m)以上の高磁気異方性物質を用いれば、本発明が規定する磁化容易軸方向の範囲内で磁化容易軸方向にばらつきがあっても、安定して充分に鉄損値を低下することができる。
さらに、磁気異方性定数(絶対値)が約2.4×10(J/m)以上の高磁気異方性物質を用いれば、本発明が規定する高磁気異方性物質の総面積率の範囲内で高磁気異方性物質の総面積率にばらつきがあっても、安定して充分に鉄損値を低下できることも本発明者らは実験などで確認している。
このため、本発明では、一方向性電磁鋼板の鉄損値をより安定して充分に低減させるために、上記金属または金属化合物(高磁気異方性物質)の磁気異方性定数(絶対値)は、2.4×10(J/m)以上であることが好ましい。
Further, from FIG. 7, the relative ratio of the highly magnetic anisotropic material to the magnetic anisotropy constant of Fe is 5 or more, that is, the magnetic anisotropy constant (absolute value) is about 2.4 × 10 5 (J / m 3 ) If the above highly magnetic anisotropic material is used, even if there is a variation in the easy axis direction within the range of the easy axis direction defined by the present invention, the iron loss value can be lowered stably and sufficiently. Can do.
Further, if a high magnetic anisotropy material having a magnetic anisotropy constant (absolute value) of about 2.4 × 10 5 (J / m 3 ) or more is used, the total of the high magnetic anisotropy materials defined by the present invention is used. The present inventors have confirmed through experiments and the like that the iron loss value can be stably and sufficiently reduced even if the total area ratio of the highly magnetic anisotropic material varies within the area ratio.
For this reason, in the present invention, in order to more stably and sufficiently reduce the iron loss value of the unidirectional electrical steel sheet, the magnetic anisotropy constant (absolute value) of the metal or metal compound (high magnetic anisotropy material) is used. ) Is preferably 2.4 × 10 5 (J / m 3 ) or more.

図8は、板厚が0.23mmの一方向性電磁鋼板における高磁気異方性物質の総面積率と、鉄損W17/50との関係を示す図である。
なお、高磁気異方性物質は、図5に示すように鋼板の圧延方向に対してほぼ直角方向に、鋼板面からの深さが約20μmに付与した帯状範囲の幅または帯状範囲の間隔(圧延方向距離)を変化させることにより、高磁気異方性物質の鋼板面における総面積率を変化させた。
また、高磁気異方性物質の磁気異方性定数は、Feに比べて大きい、約4.53×10(J/m)であった。また、高磁気異方性物質の少なくとも1つの磁化容易軸方向は、鋼板面の法線方向に対して60°であった。
FIG. 8 is a diagram showing the relationship between the total area ratio of the highly magnetic anisotropic material and the iron loss W17 / 50 in the unidirectional electrical steel sheet having a thickness of 0.23 mm.
As shown in FIG. 5, the highly magnetic anisotropy material is a width of the band-shaped range or a distance between the band-shaped ranges (approximately 20 μm deep from the surface of the steel sheet in a direction substantially perpendicular to the rolling direction of the steel sheet ( The total area ratio on the steel plate surface of the highly magnetic anisotropic material was changed by changing the distance in the rolling direction).
Moreover, the magnetic anisotropy constant of the high magnetic anisotropy substance was about 4.53 × 10 5 (J / m 3 ), which is larger than that of Fe. Further, at least one easy magnetization axis direction of the highly magnetic anisotropic material was 60 ° with respect to the normal direction of the steel plate surface.

図8において、鉄損W17/50は、磁気測定装置を用いて、周波数50Hzで励磁し、最大磁束密度が1.7Tになる時の鉄損値を示す。
図8から、従来の一方向性電磁鋼板に比べて鉄損値を充分に低減するためには、高磁気異方性物質の鋼板面における総面積率が1.2%以上とする必要がある。
以上の理由から、本発明では、鋼板表裏層の何れか一方又は両方における1箇所又は複数箇所に含有する、磁気異方性定数がFeの磁気異方性定数より大きい金属または金属化合物(高磁気異方性物質)の鋼板面における総面積率を1.2%以上とした。
In FIG. 8, iron loss W17 / 50 indicates the iron loss value when the magnetic flux is excited at a frequency of 50 Hz using a magnetometer and the maximum magnetic flux density is 1.7T.
From FIG. 8, in order to sufficiently reduce the iron loss value as compared with the conventional unidirectional electrical steel sheet, the total area ratio of the highly magnetic anisotropic material on the steel sheet surface needs to be 1.2% or more. .
For the reasons described above, in the present invention, a metal or metal compound (high magnetic property) having a magnetic anisotropy constant larger than the magnetic anisotropy constant of Fe contained in one or a plurality of places in either or both of the steel sheet front and back layers. The total area ratio of the anisotropic material) on the steel sheet surface was set to 1.2% or more.

本発明の一方向性電磁鋼板は、上述したように、鋼板表面に溝または歪を形成した一方向性電磁鋼板における溝深さまたは塑性歪の増加に伴うヒステリシス損増加の問題は生じ難いため、従来に比べて鉄損特性を飛躍的に改善することができる。
しかしながら、本発明者らの実験などの検討によれば、鋼板面から板厚方向の高磁気異方性物質の厚みが35μmを超えるような場合には、鋼板面に向いた板厚方向の磁化量が過度に増加し、この磁化方向を圧延方向に向けるための仕事量が増加する影響が無視できなくなり、ヒステリシス損がやや増加する傾向にある。
このため、鋼板面から板厚方向の高磁気異方性物質の厚みが35μmを超えるような場合には、高磁気異方性物質の付与による効果がやや減少する場合がある。また、高磁気異方性物質の厚みを過度に増加することは、高価な高磁気異方性物質の使用による鋼板コストを増加させる原因となり好ましくない。
このため、本発明において、前記金属または金属化合物(高磁気異方性物質)の鋼板面から板厚方向の深さ範囲は、35μm以下の範囲とすることが好ましい。
As described above, the unidirectional electrical steel sheet of the present invention is unlikely to have a problem of increased hysteresis loss due to an increase in groove depth or plastic strain in the unidirectional electrical steel sheet in which grooves or strains are formed on the steel sheet surface. Compared to the prior art, the iron loss characteristics can be dramatically improved.
However, according to the examination by the present inventors, when the thickness of the highly magnetic anisotropic material in the plate thickness direction from the steel plate surface exceeds 35 μm, the magnetization in the plate thickness direction facing the steel plate surface The amount increases excessively, and the influence of increasing the work amount for directing the magnetization direction to the rolling direction cannot be ignored, and the hysteresis loss tends to increase slightly.
For this reason, when the thickness of the high magnetic anisotropy material in the plate thickness direction from the steel plate surface exceeds 35 μm, the effect of applying the high magnetic anisotropy material may be slightly reduced. Further, excessively increasing the thickness of the high magnetic anisotropy material is not preferable because it causes an increase in steel sheet costs due to the use of an expensive high magnetic anisotropy material.
For this reason, in this invention, it is preferable that the depth range of the said metal or metal compound (high magnetic anisotropic substance) from the steel plate surface of a plate | board thickness direction shall be the range of 35 micrometers or less.

本発明の上記高磁気異方性物質が鋼板面の総面積率で1.2%以上付与された一方向性電磁鋼板を実際に製造する場合には、図5に示すように鋼板の圧延方向に対して所定方向の鋼板表面から所定深さ、所定幅の帯状範囲に、所定間隔(ピッチ)の凹状の窪みを作り、その鋼板をメッキ浴に浸し、高磁気異方性物質を積層させる実施形態が好ましい。   When the unidirectional electrical steel sheet to which the high magnetic anisotropy material of the present invention is applied 1.2% or more in terms of the total area ratio of the steel sheet surface is actually rolled, as shown in FIG. An indentation with a predetermined interval (pitch) is made in a band-shaped range with a predetermined depth and width from the surface of the steel plate in a predetermined direction, and the steel plate is immersed in a plating bath to stack a highly magnetic anisotropic material. Form is preferred.

このような実施形態において、高磁気異方性物質を付与する帯状範囲の圧延方向の間隔(ピッチ)を7mm以下とすることが好ましい。上記間隔(ピッチ)が7mmを超えると、鋼板面における総面積率を1.2%以上にするために、局所的な帯状範囲の幅を増やす必要がある。
そのため、本発明の一方向電磁鋼板の実製造時において、局所的な積層領域の増加によるメッキ時間の増加などの問題を招く可能性があるため製造操業上好ましくない。
したがって、本発明において、前記金属または金属化合物(高磁気異方性物質)が存在する領域の鋼板圧延方向の間隔を7mm以下とするのが好ましい。
In such an embodiment, it is preferable that the interval (pitch) in the rolling direction of the band-shaped range to which the high magnetic anisotropy substance is applied is 7 mm or less. When the interval (pitch) exceeds 7 mm, it is necessary to increase the width of the local belt-shaped range in order to make the total area ratio on the steel plate surface 1.2% or more.
Therefore, in actual production of the unidirectional electrical steel sheet according to the present invention, there is a possibility of causing problems such as an increase in plating time due to an increase in the local lamination region, which is not preferable in terms of production operation.
Therefore, in this invention, it is preferable that the space | interval of the steel plate rolling direction of the area | region where the said metal or a metal compound (high magnetic anisotropic material) exists is 7 mm or less.

また、上記本発明実施形態において、上記高磁気異方性物質を付与する帯状範囲は、図5に示すように鋼板の圧延方向に対してほぼ直角方向が好ましい。
しかし、実製造時には、コイルに巻き取りながら、鋼板表面に凹状の窪みをつけ、メッキ浴で積層することになるので、高磁気異方性物質が付与された帯状範囲の方向は、鋼板圧延方向に対してずれが生じてしまうことを確認した。
Moreover, in the said embodiment of this invention, the strip | belt-shaped range which provides the said highly magnetic anisotropic substance has a preferable substantially orthogonal direction with respect to the rolling direction of a steel plate, as shown in FIG.
However, at the time of actual manufacturing, a concave depression is formed on the surface of the steel sheet while winding it around the coil, and the plating is performed in a plating bath. It has been confirmed that a deviation occurs with respect to.

前述した通り、磁区制御を施す前の一方向性電磁鋼板は、理想的には、鉄損を低減するために、圧延方向に磁化容易軸をもった(110)[001]方位の結晶粒で構成された集合組織鋼板であることが望ましい。
しかし、実際に工業的に製造し得る一方向性電磁鋼板における磁化容易軸は圧延方向と完全に平行ではなく、磁化容易軸は圧延方向に対してずれ角度が存在する。
前述した通り、一方向性電磁鋼板の磁区細分化により鉄損を低減するためには、鋼板の磁化方向、つまり、磁化容易軸に対して直角方向に帯状範囲を形成するのが有効であると考えられる。
As described above, the unidirectional electrical steel sheet before the magnetic domain control is ideally made of (110) [001] oriented grains having an easy axis of magnetization in the rolling direction in order to reduce iron loss. It is desirable that the textured steel plate is configured.
However, the easy magnetization axis in a unidirectional electrical steel sheet that can be actually produced industrially is not completely parallel to the rolling direction, and the easy magnetization axis has a deviation angle with respect to the rolling direction.
As described above, in order to reduce the iron loss by subdividing the magnetic domain of the unidirectional electrical steel sheet, it is effective to form a belt-shaped range in the magnetization direction of the steel sheet, that is, in the direction perpendicular to the easy axis of magnetization. Conceivable.

本発明者らの実験結果によれば、上記磁化容易軸の圧延方向に対するずれ角度に起因して、圧延方向に対して60〜120°の方向に帯状範囲を形成する場合に、磁区細分化の効果による鉄損の低減が充分に得られることを確認した。
上記の角度範囲は、理想とする磁化容易軸方向、つまり、鋼板の圧延方向に対して直角な方向からずれ角度で30°以内の範囲に相当する。
この角度範囲から外れると鋼板の磁区細分化作用は少なくなるため、従来に比べてより安定して充分に鉄損値を向上するためには、上記高磁気異方性物質を付与する帯状範囲の方向を圧延方向に対して60〜120°の方向とするのが好ましい。
したがって、本発明において、前記金属または金属化合物(高磁気異方性物質)が存在する帯状範囲は、鋼板圧延方向に対して60〜120°の角度をなす方向に連続して、又は所定間隔で有することが好ましい。
According to the experimental results of the present inventors, due to the deviation angle of the easy magnetization axis with respect to the rolling direction, when the band-shaped range is formed in the direction of 60 to 120 ° with respect to the rolling direction, It was confirmed that the iron loss due to the effect can be sufficiently reduced.
The above-mentioned angle range corresponds to an ideal easy axis direction, that is, a range within 30 ° in deviation angle from a direction perpendicular to the rolling direction of the steel sheet.
Outside this angle range, the magnetic domain fragmentation action of the steel sheet is reduced. Therefore, in order to improve the iron loss value more stably and sufficiently than in the past, the band-shaped range to which the high magnetic anisotropic material is added The direction is preferably 60 to 120 ° with respect to the rolling direction.
Therefore, in the present invention, the band-like range in which the metal or metal compound (high magnetic anisotropy material) exists is continuously in a direction forming an angle of 60 to 120 ° with respect to the steel plate rolling direction, or at a predetermined interval. It is preferable to have.

本発明において、鋼板表裏層の何れか一方又は両方における1箇所又は複数箇所に、前記金属または金属化合物(高磁気異方性物質)を付与する方法は、特に限定する必要はない。例えば、その具体的な方法としては、通常の方法で得られる一方向性電磁鋼板に対して、さらに、エッチングや歯形ロール等の加工方法を用いて、その鋼板表面に溝を形成した後、上記高磁気異方性物質を積層しコイルに巻き取る方法が用いられる。
なお、上記高磁気異方性物質を積層する方法は、例えば、スパッタ法、蒸着法、メッキ法のいずれかの方法が用いられる。
また、鋼板に溝を形成せずに、母材鋼板を圧延で製造する過程に形成した窪み等を利用して上記高磁気異方性物質を積層しても良い。
あるいは、鋼板に溝を形成せずに、上記高磁気異方性物質を冷間または熱間圧延し埋め込んでも良い。
もしくは、上記高磁気異方性物質を積層ではなく、鋼板表面へのイオン注入やドーピング等の方法により付与する方法を利用しても良い。
In the present invention, the method of applying the metal or metal compound (high magnetic anisotropic material) to one or a plurality of locations in either or both of the steel sheet front and back layers is not particularly limited. For example, as a specific method, for a unidirectional electrical steel sheet obtained by a normal method, further, after forming grooves on the steel sheet surface using a processing method such as etching or a tooth profile roll, the above A method of laminating a highly magnetic anisotropic material and winding it around a coil is used.
As a method for laminating the high magnetic anisotropic material, for example, any one of a sputtering method, a vapor deposition method, and a plating method is used.
Further, the high magnetic anisotropy material may be laminated using a recess formed in the process of manufacturing the base steel plate by rolling without forming a groove in the steel plate.
Alternatively, the high magnetic anisotropic material may be cold or hot rolled and embedded without forming grooves in the steel plate.
Or you may utilize the method of providing the said highly magnetic anisotropic substance by methods, such as ion implantation to the steel plate surface, doping, instead of lamination | stacking.

質量%でSiが約3%含有し、残部はFeとその他の不純物の組成から成り、鋼板の結晶方位が(110)[001]の理想方位に対して平均値で約3度以下のずれを持つ集合組織を有し、厚さが0.23mmの一方向性電磁鋼板を製造した。このとき、この鋼板の鉄損値W17/50は、約0.9(W/Kg)であった。
その後、この鋼板の表層に、図5に示すように表1の条件で高磁気異方性物質を積層し、表層に高磁気異方性物質を付与した鋼板を製造した(表1の試料No.1〜14)。
Si contains about 3% by mass, the balance is composed of Fe and other impurities, and the crystal orientation of the steel sheet deviates from the ideal orientation of (110) [001] by about 3 degrees or less on average. A unidirectional electrical steel sheet having a texture with a thickness of 0.23 mm was manufactured. At this time, the iron loss value W17 / 50 of this steel sheet was about 0.9 (W / Kg).
Thereafter, a high magnetic anisotropy substance was laminated on the surface layer of this steel sheet under the conditions shown in Table 1 as shown in FIG. 5 to produce a steel sheet with a high magnetic anisotropy substance applied to the surface layer (Sample No. in Table 1). .1-14).

また、高磁気異方性物質を付与した本発明の一方向性電磁鋼板に対する比較鋼板として、上記一方向性電磁鋼板の表層に溝を形成した鋼板(表1の試料No.15)、および上記一方向性電磁鋼板の表層に歪を形成した鋼板(表1の試料No.16)を製造した。
なお、一方向性電磁鋼板の表層に溝を形成した鋼板(表1の試料No.15)の溝深さは約20μm、溝幅は約0.1mm、溝間隔(ピッチ)は約5mmで、溝方向は圧延方向にほぼ直角方向に形成した。
また、一方向性電磁鋼板の表層に歪を形成した鋼板(表1の試料No.16)は、鋼板表面に1パルスあたり約3mJのエネルギーを持つパルスレーザーを圧延方向に約5mmピッチの間隔で照射し作成した。このとき、レーザ照射領域は、圧延方向にほぼ直角方向になるようにした。
In addition, as a comparative steel sheet for the unidirectional electrical steel sheet of the present invention to which a high magnetic anisotropy material is provided, a steel sheet (sample No. 15 in Table 1) having grooves formed in the surface layer of the unidirectional electrical steel sheet, and the above A steel plate (sample No. 16 in Table 1) having a strain formed on the surface layer of the unidirectional electrical steel plate was manufactured.
In addition, the groove depth of the steel sheet (sample No. 15 in Table 1) having grooves formed on the surface layer of the unidirectional electrical steel sheet is about 20 μm, the groove width is about 0.1 mm, and the groove interval (pitch) is about 5 mm. The groove direction was formed substantially perpendicular to the rolling direction.
In addition, a steel plate (sample No. 16 in Table 1) in which a strain is formed on the surface layer of a unidirectional electrical steel plate, a pulse laser having an energy of about 3 mJ per pulse is applied to the steel plate surface at a pitch of about 5 mm in the rolling direction. Irradiated and created. At this time, the laser irradiation region was set to be substantially perpendicular to the rolling direction.

表1に示すように、試料No.1〜11の発明例は、高磁気異方性物質の磁気異方性定数(Feの磁気異方性定数に対する相対比)、少なくとも1つの磁化容易軸方向(鋼板面の法線方向に対する角度)、および鋼板面における総面積率の条件が、本発明の規定範囲内であるため、鋼板の鉄損値(W17/50)が0.60(W/kg)未満に充分低減され、良好な鉄損特性を有する一方向電磁鋼板が得られた。   As shown in Table 1, sample no. Inventive examples 1 to 11 include a magnetic anisotropy constant (relative ratio of Fe to a magnetic anisotropy constant) of a high magnetic anisotropy material, at least one easy axis direction of magnetization (an angle with respect to a normal direction of a steel plate surface). Since the condition of the total area ratio on the steel sheet surface is within the specified range of the present invention, the iron loss value (W17 / 50) of the steel sheet is sufficiently reduced to less than 0.60 (W / kg), and good iron A unidirectional electrical steel sheet having loss characteristics was obtained.

また、これらの発明例のうち、本発明で規定するさらに好ましい条件、つまり、高磁気異方性物質の磁気異方性定数の絶対値が2.4×10J/m以上、少なくとも1つの磁化容易軸方向が法線方向に平行、鋼板面から板厚方向の深さ(積層厚)が35μm以下、付与領域の鋼板圧延方向の間隔が7mm以下、付与領域方向の鋼板圧延方向に対する角度が60〜120°の条件を満足する試料No.1〜6の発明例は、それらの条件を外れた試料No.7〜11の発明例に比べて鋼板の鉄損値(W17/50)がより低減(0.47(W/Kg)以下)し、鉄損特性は飛躍的に改善された。 Among these invention examples, more preferable conditions defined in the present invention, that is, the absolute value of the magnetic anisotropy constant of the highly magnetic anisotropic material is 2.4 × 10 5 J / m 3 or more, and at least 1 The two easy axis directions are parallel to the normal direction, the depth (lamination thickness) from the steel plate surface to the plate thickness direction is 35 μm or less, the distance between the application regions in the steel plate rolling direction is 7 mm or less, and the angle of the application region direction to the steel plate rolling direction Sample No. satisfying the condition of 60 to 120 °. Inventive Examples 1 to 6 are sample Nos. The iron loss value (W17 / 50) of the steel sheet was further reduced (0.47 (W / Kg) or less) and the iron loss characteristics were dramatically improved as compared with the inventive examples 7-11.

これに対して、試料No.12〜14の比較例は、それぞれ高磁気異方性物質の磁気異方性定数(Feの磁気異方性定数に対する相対比)が低く、全ての磁化容易軸方向(鋼板面の法線方向に対する角度)が高く、或いは鋼板面における総面積率が低く、何れかの条件が本発明の規定範囲から外れているため、鋼板の鉄損値(W17/50)が0.69(W/kg)以上と高くなり、一方向電磁鋼板の鉄損特性が劣る結果であった。   In contrast, sample no. In each of Comparative Examples 12 to 14, the magnetic anisotropy constant (relative ratio of Fe to the magnetic anisotropy constant) of the high magnetic anisotropy material is low, and all the easy axis directions (with respect to the normal direction of the steel plate surface). Angle) is high, or the total area ratio on the steel sheet surface is low, and any of the conditions is out of the specified range of the present invention, so the iron loss value (W17 / 50) of the steel sheet is 0.69 (W / kg). As a result, the iron loss characteristics of the unidirectional electrical steel sheet were inferior.

また、試料No.15、16の比較例は、従来の鋼板表層に溝を形成した鋼板または鋼板表層に歪を形成した鋼板であるが、それぞれの鋼板の鉄損値(W17/50)が0.69と0.65(W/kg)と高くなり、一方向電磁鋼板の鉄損特性が劣る結果であった。   Sample No. The comparative examples 15 and 16 are steel plates in which grooves are formed in the conventional steel plate surface layer or steel plates in which strain is formed in the steel plate surface layer, and the iron loss values (W17 / 50) of the respective steel plates are 0.69 and 0.00. The result was as high as 65 (W / kg), and the iron loss characteristics of the unidirectional electrical steel sheet were inferior.

Figure 0004437939
Figure 0004437939

上記表1の試料No.3の本発明例と、同試料No.16の比較例(鋼板表面に歪形成)のそれぞれの一方向性電磁鋼板を約800℃の加熱温度で歪取り焼鈍を行った後、それぞれの鋼板の鉄損値を測定した。その結果を表2に示す。
表2から、本発明例の一方向性電磁鋼板は、歪取り焼鈍後であっても良好な鉄損値をほぼ維持することができた。
これに対して、比較例の鋼板表面に歪を形成した一方向性電磁鋼板は、歪取り焼鈍後に歪による磁区細分化効果は消失し、鉄損値W17/50が0.65から0.9に大幅に増加した。
Sample No. in Table 1 above. 3 of the present invention and the same sample No. After each unidirectional electrical steel sheet of 16 comparative examples (strain formation on the steel sheet surface) was subjected to strain relief annealing at a heating temperature of about 800 ° C., the iron loss value of each steel sheet was measured. The results are shown in Table 2.
From Table 2, the unidirectional electrical steel sheet of the present invention example was able to substantially maintain a good iron loss value even after the strain relief annealing.
On the other hand, the unidirectional electrical steel sheet in which strain is formed on the surface of the steel sheet of the comparative example loses the magnetic domain refinement effect due to strain after strain relief annealing, and the iron loss value W17 / 50 is 0.65 to 0.9. Increased significantly.

Figure 0004437939
Figure 0004437939

表面に溝または歪を形成し低鉄損化した一方向性電磁鋼板における表面張力と鉄損値との関係を示すグラフである。It is a graph which shows the relationship between the surface tension and the iron loss value in the unidirectional electrical steel sheet which formed the groove | channel or the distortion in the surface and reduced the iron loss. 鋼板に生じる磁区構造を示す概念図である。It is a conceptual diagram which shows the magnetic domain structure which arises in a steel plate. 本発明による磁区構造の再編成を示す概念図である。It is a conceptual diagram which shows the reorganization of the magnetic domain structure by this invention. 磁区構造の再編成における鋼板表層近傍の磁化分布を示す断面図である。It is sectional drawing which shows the magnetization distribution of the steel plate surface vicinity in the rearrangement of a magnetic domain structure. 鋼板表層部に高磁気異方性物質を付与した一実施形態を示す概念図である。It is a conceptual diagram which shows one Embodiment which provided the highly magnetic anisotropic material to the steel plate surface layer part. 電磁鋼板の母材元素であるFeの3つの磁化容易軸を示す概念図である。It is a conceptual diagram which shows three easy-magnetization axes | shafts of Fe which is a base material element of an electromagnetic steel plate. 鋼板表面に付与した高磁気異方性物質の磁化容易軸方向及び磁気異方性定数と、鉄損値との関係を示すグラフである。It is a graph which shows the relationship between the easy axis direction of magnetization and the magnetic anisotropy constant of the highly magnetic anisotropic material provided to the steel plate surface, and an iron loss value. 高磁気異方性物質の付与領域の総面積率と鉄損値との関係を示すグラフである。It is a graph which shows the relationship between the total area rate of the provision area | region of a highly magnetic anisotropic substance, and an iron loss value.

Claims (4)

鋼板表裏層の何れか一方又は両方における1箇所又は複数箇所に、鋼板圧延方向に対して60〜120°の角度をなす方向に連続して、又は所定間隔で、磁気異方性定数がFeの磁気異方性定数より大きく、かつ鋼板面の法線方向に対して±60°以内の角度をなす向きに少なくとも1つの磁化容易軸を有する強磁性金属または強磁性金属化合物を含有し、該強磁性金属または強磁性金属化合物の鋼板面における総面積率が1.2%以上であることを特徴とする低鉄損一方向性電磁鋼板。 The magnetic anisotropy constant is Fe at one or a plurality of locations in either or both of the steel plate front and back layers , continuously in a direction forming an angle of 60 to 120 ° with respect to the steel plate rolling direction, or at a predetermined interval . greater than the magnetic anisotropy constant, and contains ferromagnetic metal or ferromagnetic metal compound having at least one easy axis in a direction at an angle within ± 60 ° with respect to the normal direction of the steel sheet surface, the strong A low iron loss unidirectional electrical steel sheet, wherein a total area ratio of a magnetic metal or a ferromagnetic metal compound on a steel sheet surface is 1.2% or more. 前記強磁性金属または強磁性金属化合物の少なくとも1つの磁化容易軸の向きが、鋼板表面の法線方向に対して平行であることを特徴とする請求項1に記載の低鉄損一方向性電磁鋼板。 2. The low iron loss unidirectional electromagnetic according to claim 1, wherein an orientation of at least one easy axis of the ferromagnetic metal or the ferromagnetic metal compound is parallel to a normal direction of a steel plate surface. steel sheet. 前記強磁性金属または強磁性金属化合物は、鋼板面から板厚方向に35μm以下の範囲に有することを特徴とする請求項1または2に記載の低鉄損一方向性電磁鋼板。 3. The low iron loss unidirectional electrical steel sheet according to claim 1, wherein the ferromagnetic metal or the ferromagnetic metal compound has a thickness of 35 μm or less in the thickness direction from the steel sheet surface. 前記強磁性金属または強磁性金属化合物は、鋼板圧延方向に7mm以下の間隔で有することを特徴とする請求項1〜の何れか1項に記載の低鉄損一方向性電磁鋼板。 The low iron loss unidirectional electrical steel sheet according to any one of claims 1 to 3 , wherein the ferromagnetic metal or the ferromagnetic metal compound has an interval of 7 mm or less in a steel sheet rolling direction.
JP2004141956A 2004-05-12 2004-05-12 Low iron loss unidirectional electrical steel sheet Expired - Lifetime JP4437939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141956A JP4437939B2 (en) 2004-05-12 2004-05-12 Low iron loss unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141956A JP4437939B2 (en) 2004-05-12 2004-05-12 Low iron loss unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2005327772A JP2005327772A (en) 2005-11-24
JP4437939B2 true JP4437939B2 (en) 2010-03-24

Family

ID=35473898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141956A Expired - Lifetime JP4437939B2 (en) 2004-05-12 2004-05-12 Low iron loss unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4437939B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964669B2 (en) * 2007-05-16 2012-07-04 新日本製鐵株式会社 Film generation method

Also Published As

Publication number Publication date
JP2005327772A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4593678B2 (en) Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101553497B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
US11638971B2 (en) Grain-oriented silicon steel with low core loss and manufacturing method therefore
JP5866850B2 (en) Method for producing grain-oriented electrical steel sheet
US10020101B2 (en) Grain-oriented electrical steel sheet and method for producing same
RU2570591C1 (en) Textured sheet of electrical steel
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JP7028242B2 (en) Manufacturing method of winding cores and winding cores of grain-oriented electrical steel sheets and transformers using them
JP2012102395A (en) Grain-oriented electromagnetic steel sheet, and method for producing the same
JP4344264B2 (en) Low iron loss unidirectional electrical steel sheet
EP2573193A1 (en) Method for producing unidirectional electromagnetic steel sheet
JP3243099B2 (en) Manufacturing method of laminated electromagnetic steel sheet
JP4437939B2 (en) Low iron loss unidirectional electrical steel sheet
WO2022153605A1 (en) Grain-oriented electrical steel sheet and production method therefor
JP2022509866A (en) Directional electrical steel sheet and its manufacturing method
JP2002356750A (en) Grain-oriented electric steel plate of low core loss and low noise, and manufacturing method thereof
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
JP4979970B2 (en) Low iron loss unidirectional electrical steel sheet
JP4276618B2 (en) Low iron loss unidirectional electrical steel sheet
JP5760511B2 (en) Method for producing grain-oriented electrical steel sheet
JP5742175B2 (en) Low iron loss three-phase transformer
JP2002069594A (en) Silicon steel sheet for low-noise transformer
WO2023007952A1 (en) Wound core and wound core manufacturing method
JP2017145432A (en) Magnetic steel sheet for inverter power supply reactor iron core, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4437939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350