JP2000328139A - Production of thick low iron loss grain oriented silicon steel plate - Google Patents

Production of thick low iron loss grain oriented silicon steel plate

Info

Publication number
JP2000328139A
JP2000328139A JP11130350A JP13035099A JP2000328139A JP 2000328139 A JP2000328139 A JP 2000328139A JP 11130350 A JP11130350 A JP 11130350A JP 13035099 A JP13035099 A JP 13035099A JP 2000328139 A JP2000328139 A JP 2000328139A
Authority
JP
Japan
Prior art keywords
laser beam
iron loss
steel sheet
steel plate
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11130350A
Other languages
Japanese (ja)
Inventor
Takashi Mogi
尚 茂木
Kimihiko Sugiyama
公彦 杉山
Atsushi Tanaka
篤史 田中
Norihiro Yamamoto
紀宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11130350A priority Critical patent/JP2000328139A/en
Publication of JP2000328139A publication Critical patent/JP2000328139A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To irradiate the surface of a thick grain oriented silicon steel plate of >=0.30 mm plate thickness with a laser beam and to improve the iron loss characteristics therein. SOLUTION: In the method for producing a grain oriented silicon steel plate in which a grain oriented silicon steel plate having >=0.3 mm plate thickness is irradiated with a laser beam and magnetic domain fractionization is executed, the cumulative irradiating energy density at the optional point on a scan line in the laser beam irradiation is controlled to the range from (69t+44) to (104t+66)(mJ/mm2) to the plate thickness (mm), and moreover, the power density of the laser beam is controlled to <=(168t+106) kW/mm2. The irradiating diameter of the laser beam is preferably controlled to 6 to 10 mm major axis and 0.25 to 0.35 mm minor axis in the case of an oval and to 0.4 to 0.5 mm in the case of a circle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トランスの鉄心な
どに利用される、レーザビーム照射により磁区制御され
鉄損特性が良好な板厚の厚い低鉄損一方向性電磁鋼板の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thick, low-iron-loss unidirectional magnetic steel sheet which is used for an iron core of a transformer, is magnetically controlled by laser beam irradiation, and has good iron loss characteristics. It is.

【0002】[0002]

【従来の技術】現在、実用化されている一方向性電磁鋼
板は、鋼板の圧延方向に磁化容易軸をもち、主にトラン
スなどの電気機器に使われているが、近年、一方向性電
磁鋼板に対し、エネルギーロス低減のための鉄損改善
や、使用中の騒音低減のための磁気ひずみ改善の要請が
高くなっている。
2. Description of the Related Art Currently, unidirectional electromagnetic steel sheets that have been put to practical use have an axis of easy magnetization in the rolling direction of the steel sheet and are mainly used for electrical equipment such as transformers. There is an increasing demand for steel sheets to reduce iron loss to reduce energy loss and to improve magnetostriction to reduce noise during use.

【0003】この鋼板に局所歪の導入、あるいは溝の形
成による磁区細分化処理を施すと、鋼板断面に流れる渦
電流が減少し、熱エネルギーの発生が抑えられるため鉄
損が低減する。これにより電気機器のエネルギーロスを
減らすことができる。例えば特開昭53−137016
号公報に開示されているように、一方向性電磁鋼板の表
面に線状の微小歪を形成し、歪導入間隔を最適にするこ
とで、歪導入前よりも鉄損を低減する効果を得ている。
When a magnetic domain is refined by introducing local strain or forming a groove in the steel sheet, an eddy current flowing in the cross section of the steel sheet is reduced, and generation of heat energy is suppressed, so that iron loss is reduced. Thereby, the energy loss of the electric device can be reduced. For example, JP-A-53-137016
As disclosed in Japanese Unexamined Patent Publication, by forming a linear minute strain on the surface of a grain-oriented electrical steel sheet and optimizing the strain introduction interval, an effect of reducing iron loss compared to before strain introduction is obtained. ing.

【0004】中でも、特開昭55−18566号公報に
開示されるように、鋼板の表面にパルスYAGレーザビ
ームを集光照射して、被照射部での被膜の蒸発反力によ
り歪を導入する方法は、鉄損低減効果が大きく、かつ非
接触加工であることから信頼性・制御性も高い非常に優
れた一方向性電磁鋼板の製造方法である。一方、一方向
性電磁鋼板には、電機機器のコア製造工程における鋼板
積層作業の負担を軽減するため、板厚を厚くした種類の
もの(厚手材)がある。厚手材は薄手材と比較し鉄損が
大きく、レーザビーム照射による鉄損低減効果のメリッ
トが低いため、通常、レーザビーム照射は行われていな
かった。
In particular, as disclosed in Japanese Patent Application Laid-Open No. 55-18566, a pulsed YAG laser beam is condensed and irradiated on the surface of a steel sheet to introduce a strain due to the evaporation reaction force of the film at the irradiated portion. The method is a method for producing a highly unidirectional magnetic steel sheet which has a great effect of reducing iron loss and has high reliability and controllability due to non-contact processing. On the other hand, as the unidirectional magnetic steel sheet, there is a type (thick material) in which the thickness is increased in order to reduce the load of the steel sheet laminating operation in the core manufacturing process of the electrical equipment. Thick materials have a large iron loss compared to thin materials, and the merit of the iron loss reduction effect by laser beam irradiation is low. Therefore, laser beam irradiation was not usually performed.

【0005】しかしながら、近年、厚手材に対しても、
作業性が良く、かつ鉄損が低いことが要請されるように
なり、これに応じ、研究がなされているが、厚手材にお
けるレーザ照射後の鉄損低減メカニズムには不明な点が
多く、いまだ低鉄損厚手材の製造条件は確立されていな
い。
However, in recent years, even for thick materials,
There has been a demand for good workability and low iron loss, and research has been conducted accordingly.However, there are many unknowns about the iron loss reduction mechanism after laser irradiation on thick materials. Manufacturing conditions for low iron loss thick materials have not been established.

【0006】[0006]

【発明が解決しようとする課題】レーザビーム照射等に
より微小歪を導入して磁区制御をする一方向性電磁鋼板
において、レーザビーム照射を行う鋼板には、薄い板厚
(0.27mm以下)のものが多く、経験的な知見か
ら、厚い板厚の鋼板における鉄損低減には限界があると
考えられていた。すなわち、板厚の薄い鋼板に、操業上
定めた、鉄損最適値を得るレーザビーム照射条件で最適
な微小歪を加えると、鉄損が最低値となることが知られ
ているが、この最適条件で板厚の厚い鋼板にレーザビー
ムを照射しても鉄損特性の向上は見られない。
SUMMARY OF THE INVENTION In a unidirectional magnetic steel sheet for controlling magnetic domains by introducing micro-strain by laser beam irradiation or the like, the steel sheet to be irradiated with the laser beam has a small thickness (0.27 mm or less). From many empirical findings, it was thought that there was a limit in reducing iron loss in a thick steel plate. That is, it is known that, when a small steel plate having a small thickness is subjected to an optimally small strain under a laser beam irradiation condition for obtaining an optimum iron loss determined in operation, the iron loss becomes a minimum value. Irradiation of a laser beam to a thick steel plate under the conditions does not show any improvement in iron loss characteristics.

【0007】そこで、本発明では、板厚0.3mm以上
の一方向性電磁鋼板における鉄損低減法を明らかにし、
優れた鉄損特性を持つ板厚の厚い一方向性電磁鋼板を提
供することを目的とする。
Therefore, the present invention clarifies a method for reducing iron loss in a grain-oriented electrical steel sheet having a thickness of 0.3 mm or more,
It is an object of the present invention to provide a thick grain-oriented electrical steel sheet having excellent iron loss characteristics.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、板厚が厚い鋼板におけるレーザビーム照射条件を
最適化し、優れた鉄損特性を持つ一方向性電磁鋼板を提
供することである。本発明の具体的な手段は、以下の通
りである。 (1)板厚0.3mm以上の一方向性電磁鋼板の表面に
レーザビームを照射して磁区細分化をおこなう一方向性
電磁鋼板の製造方法において、レーザビーム照射のスキ
ャン線状の任意の点での積算照射エネルギー密度を、板
厚t(mm)に対して(69t+44)から(104t
+66)mJ/mm2 の範囲に調整する。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a unidirectional electrical steel sheet having excellent iron loss characteristics by optimizing a laser beam irradiation condition for a steel sheet having a large thickness. . Specific means of the present invention are as follows. (1) In a method of manufacturing a unidirectional magnetic steel sheet in which a magnetic domain is subdivided by irradiating a laser beam onto a surface of a unidirectional magnetic steel sheet having a thickness of 0.3 mm or more, an arbitrary point on a scan line of laser beam irradiation. From (69t + 44) to (104t) with respect to the plate thickness t (mm).
+66) Adjust to the range of mJ / mm 2 .

【0009】(2)上記(1)の製造方法において、レ
ーザビームのパワー密度を(168t+106)kW/
mm2 以下に調整する。 (3)上記(1)もしくは(2)の製造方法において、
レーザビームの照射径を、楕円の場合、長軸:6〜10
mm、短軸:0.25〜0.35mmとし、円形の場
合、直径:0.4〜0.5mmとする。
(2) In the manufacturing method of (1), the power density of the laser beam is set to (168t + 106) kW /
adjusted to mm 2 or less. (3) In the method of the above (1) or (2),
When the irradiation diameter of the laser beam is elliptical, the major axis is 6 to 10.
mm, short axis: 0.25 to 0.35 mm, and in the case of a circular shape, the diameter: 0.4 to 0.5 mm.

【0010】[0010]

【発明の実施の形態】本発明者らは、鋼板にレーザビー
ム照射により弾性歪を与えた後の鉄損を種々検討した結
果、鋼板断面における弾性歪の強度を変えることによ
り、磁区細分化後の鉄損が、板厚の厚い材料でも変化し
得ることを見出した。以下、実験結果を基に詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies on iron loss after applying elastic strain to a steel sheet by irradiating a laser beam, and as a result, by changing the strength of the elastic strain in the cross section of the steel sheet, Has been found to be able to change even with a thicker material. The details will be described below based on experimental results.

【0011】本発明者らは、エネルギー密度、板厚及び
磁区細分化後の鉄損との関係を見るため、常法により製
造した板厚0.23〜0.50mmの一方向性電磁鋼板
の表面に、レーザビームの照射径、照射間隔を変えて磁
区細分化処理を行い、鉄損を測定した。板厚(mm)と
積算照射エネルギー密度(鋼板の単位面積当たりのエネ
ルギー量)(mJ/mm2 )に対する鉄損(W17/5
0(W/kg))の関係を図1に、また板厚(mm)と
パワー密度(鋼板の単位面積・単位時間当たりに与えら
れたエネルギー量)(kW/mm2 )に対する鉄損(W
17/50(W/kg))の関係を図2に示す。
The present inventors examined the relationship between the energy density, the sheet thickness, and the iron loss after the magnetic domain refinement. The surface was subjected to magnetic domain refining treatment by changing the irradiation diameter and irradiation interval of the laser beam, and the iron loss was measured. Iron loss (W17 / 5) with respect to sheet thickness (mm) and integrated irradiation energy density (energy amount per unit area of steel sheet) (mJ / mm 2 )
0 (W / kg)), and iron loss (W / mm 2 ) with respect to sheet thickness (mm) and power density (energy given per unit area / unit time of steel sheet) (kW / mm 2 ).
17/50 (W / kg)) is shown in FIG.

【0012】レーザビーム照射による鉄損改善の原理
は、照射点を熱源にした歪により、磁化容易方向と直交
する還流磁区が発生し、ここでの静磁エネルギーが最小
になるよう180°磁壁によって形成されている主磁区
が細分化され、その結果、磁壁間隔に比例した鉄損が低
下することにある。最良の鉄損値をもたらす積算照射エ
ネルギー密度(mJ/mm2 )は、図1から明らかなよ
うに、板厚(mm)に対しほぼ比例関係にある。これ
は、磁壁形成のエネルギーが磁壁の面積に比例するため
である。このことから、局所歪を強く導入することが、
磁区細分化のための磁壁を増す磁気弾性エネルギーを大
きくすると考えられる。
[0012] The principle of iron loss improvement by laser beam irradiation is as follows. A return domain perpendicular to the direction of easy magnetization is generated by a strain using the irradiation point as a heat source, and a 180 ° domain wall is used to minimize the magnetostatic energy here. The formed main magnetic domain is subdivided, and as a result, iron loss in proportion to the domain wall interval is reduced. The integrated irradiation energy density (mJ / mm 2 ) that gives the best iron loss value is almost proportional to the plate thickness (mm), as is apparent from FIG. This is because the energy of domain wall formation is proportional to the domain wall area. From this, it is possible to strongly introduce local distortion,
It is considered that the magnetoelastic energy for increasing the domain wall for domain refining is increased.

【0013】ここで図1において、それぞれの板厚にお
ける鉄損の最良値プラス10%の値となる積算照射エネ
ルギー密度の点をとり、積算照射エネルギー密度(E)
と板厚(t)との関係を最小自乗法により求めると、E
=104t+66、及び、E=69t+44が得られ
る。すなわち、積算照射エネルギー密度(E)を(10
4t+66)mJ/mm2 以上とすると、鋼板に生じた
歪によって180°磁壁がピンニングされ、その結果鉄
損が大きくなる。一方、積算照射エネルギー密度が(6
9t+44)mJ/mm2 以下であると、レーザビーム
照射による効果がない。このように、積算照射エネルギ
ー密度が、(69t+44)〜(104t+66)mJ
/mm2 の範囲にあると鉄損が低く、良好な電磁特性に
なっているのである。
In FIG. 1, the point of the integrated irradiation energy density at which the value of the iron loss at each sheet thickness becomes the best value plus 10% is taken, and the integrated irradiation energy density (E) is obtained.
Is obtained by the least squares method, the relationship between
= 104t + 66 and E = 69t + 44. That is, the integrated irradiation energy density (E) is (10)
If it is 4t + 66) mJ / mm 2 or more, the 180 ° domain wall is pinned by the strain generated in the steel sheet, and as a result, the iron loss increases. On the other hand, the integrated irradiation energy density is (6
If it is 9t + 44) mJ / mm 2 or less, there is no effect of laser beam irradiation. Thus, the integrated irradiation energy density is (69t + 44) to (104t + 66) mJ
/ Mm 2 , iron loss is low and good electromagnetic characteristics are obtained.

【0014】以上から、積算照射エネルギー密度を(6
9t+44)から(104t+66)mJ/mm2 の範
囲とした。また、レーザビームのパワー密度(kW/m
2 )についても、最適な鉄損を与える値は、図2から
明らかなように、板厚(mm)にほぼ比例している。エ
ネルギー密度(mJ/mm2 )は鋼板への影響度を示す
のに対し、パワー密度(kW/mm2 )は鋼板への衝撃
度を示すと考えられている。したがって、磁区細分化処
理においてパワー密度が大きくなりすぎると、即ち、衝
撃度が大きくなりすぎると、かえって磁化反転に寄与す
る180°磁壁がピンニングされ、このことが鉄損を増
加させることとなるので、パワー密度は、所定の範囲に
制限される。
From the above, the integrated irradiation energy density is (6
9t + 44) to (104t + 66) mJ / mm 2 . In addition, the power density of the laser beam (kW / m
As for m 2 ), the value giving the optimum iron loss is almost proportional to the plate thickness (mm), as is clear from FIG. It is considered that the energy density (mJ / mm 2 ) indicates the degree of influence on the steel sheet, whereas the power density (kW / mm 2 ) indicates the degree of impact on the steel sheet. Therefore, if the power density becomes too large in the magnetic domain refining process, that is, if the degree of impact becomes too large, the 180 ° domain wall contributing to the magnetization reversal is pinned, which increases the iron loss. , The power density is limited to a predetermined range.

【0015】ここで、図2において、エネルギー密度の
場合と同様に、それぞれの板厚における鉄損の最良値プ
ラス10%の値となるパワー密度の点を取り、パワー密
度(P)と板厚(t)との関係を最小自乗法により求め
ると、P=168t+106の関係が得られる。すなわ
ち、パワー密度が(168t+106)kW/mm2
上であると衝撃度が大きくなりすぎ鉄損が増大する。一
方、下限については、衝撃度の点から特に限定する必要
がなく、パワー密度とエネルギー密度の両方を満足する
条件を採用すればよい。ただし、パワー密度が小さけれ
ば、その分照射時間を大きく取る必要があるため、工業
的には最適なパワー密度値が適宜決定される。なお、レ
ーザは連続波を用いる場合とパルス波を用いる場合とが
あるが、本発明のパワー密度については、連続波の場合
はその出力を、パルスの場合はその最大出力を規定す
る。
In FIG. 2, as in the case of the energy density, the point of the power density at which the value of the iron loss at each sheet thickness becomes the best value plus 10% is taken, and the power density (P) and the sheet thickness are taken. When the relationship with (t) is obtained by the least square method, the relationship of P = 168t + 106 is obtained. That is, if the power density is (168t + 106) kW / mm 2 or more, the impact strength becomes too large and the iron loss increases. On the other hand, the lower limit does not need to be particularly limited in terms of the impact degree, and a condition that satisfies both the power density and the energy density may be adopted. However, if the power density is small, it is necessary to increase the irradiation time correspondingly. Therefore, the optimum power density value is industrially determined as appropriate. Note that the laser may use a continuous wave or a pulse wave, and the power density of the present invention defines its output in the case of a continuous wave and its maximum output in the case of a pulse.

【0016】以上から、レーザビームのパワー密度を、
(168t+106)kW/mm2以下とした。また、
レーザビームの照射径は、適正な磁区幅を形成する上で
重要であり、エネルギー密度、パワー密度と組み合わせ
て適宜決定するのが好ましい。照射径の限定範囲は、レ
ーザビームの照射径が楕円の場合、長軸を6〜10m
m、短軸を0.25〜0.35mmとし、円形の場合、
直径を0.4〜0.5mmとする。この理由は、レーザ
ビームの照射径が、この照射径より小さいと、磁区細分
化に必要なエネルギーに達しないし、一方、これより大
きいと、照射された部分は磁気の通りにくい部分となる
が、これが大きくなりすぎて鉄損特性が劣化するからで
ある。
From the above, the power density of the laser beam is
(168t + 106) kW / mm 2 or less. Also,
The irradiation diameter of the laser beam is important in forming an appropriate magnetic domain width, and is preferably determined appropriately in combination with the energy density and the power density. The limited range of the irradiation diameter is such that when the irradiation diameter of the laser beam is elliptical, the major axis is 6 to 10 m.
m, the short axis is 0.25 to 0.35 mm, and in the case of a circle,
The diameter is set to 0.4 to 0.5 mm. The reason is that if the irradiation diameter of the laser beam is smaller than this irradiation diameter, the energy required for magnetic domain segmentation will not be reached, and if it is larger than this, the irradiated part will be a part that is hard to pass magnetism, This is because this becomes too large and the iron loss characteristics deteriorate.

【0017】以下、実施例について説明する。Hereinafter, embodiments will be described.

【0018】[0018]

【実施例】実施例1 公知の製造方法によりグラス被膜が形成された板厚0.
23と0.35mmの一方向性電磁鋼板の表面に、レー
ザビームを、鋼板圧延方向に対し、垂直方向に長軸を持
つ楕円のレーザスポットとして、エネルギー密度を、約
40mJ/mm 2 〜130mJ/mm2 と変化させて照
射した。レーザビームを円形状のレーザスポットとして
照射する場合は、直径を0.45mmとした.50Hz
で励磁した時のB=1.7Tにおける鉄損の変化を図3
に示す。板厚の薄い鋼板(図中、▲:0.23mm厚)
と比較し、板厚の厚い鋼板(図中、−:0.35mm
厚)は、その最適エネルギー密度が高い方にずれてい
る。
EXAMPLES Example 1 A sheet having a thickness of 0.degree.
23 and 0.35 mm unidirectional electrical steel sheet
The beam has a long axis perpendicular to the steel sheet rolling direction.
The energy density is approximately
40mJ / mm Two~ 130mJ / mmTwoAnd change
Fired. Laser beam as circular laser spot
In the case of irradiation, the diameter was 0.45 mm. 50Hz
Fig. 3 shows the change in iron loss at B = 1.7T when excited in
Shown in Thin steel plate (▲: 0.23mm thick in the figure)
Thicker steel plate (-: 0.35 mm in the figure)
Thickness) is shifted to the higher energy density
You.

【0019】以上の結果より、レーザエネルギー条件が
本発明で規定する範囲にあると、板厚の厚い低鉄損一方
向性電磁鋼板を得ることができる。 実施例2 公知の製造方法によりグラス被膜が形成された板厚0.
30と0.35mmの一方向性電磁鋼板(平均磁束密度
B8:1.920T)の表面にレーザビームを、鋼板の
圧延方向に対しほぼ垂直方向に線状に照射した。レーザ
スポットは、直径0.45mmのほぼ円形にし、照射エ
ネルギーを種々変えた。照射間隔は、圧延方向6500
μm、圧延方向から直角方向500μmとした。
From the above results, when the laser energy condition is in the range specified in the present invention, a low iron loss unidirectional magnetic steel sheet having a large thickness can be obtained. Example 2 A sheet having a thickness of 0.degree.
The surface of a unidirectional electrical steel sheet (average magnetic flux density B8: 1.920T) of 30 and 0.35 mm was irradiated with a laser beam linearly in a direction substantially perpendicular to the rolling direction of the steel sheet. The laser spot was made approximately circular with a diameter of 0.45 mm, and the irradiation energy was variously changed. The irradiation interval is 6500 in the rolling direction.
μm, and 500 μm in a direction perpendicular to the rolling direction.

【0020】積算照射エネルギー密度は、本発明例とし
て90mJ/mm2 、比較例として60mJ/mm2
した。50Hzで励磁した時の板厚0.30mm、およ
び0.35mmのB=1.7Tにおける鉄損値を表1に
示す。本発明において鉄損は3%低減している。
The total irradiation energy density, as the present invention example 90 mJ / mm 2, was 60 mJ / mm 2 as a comparative example. Table 1 shows the iron loss values at B = 1.7T of 0.30 mm in plate thickness and 0.35 mm when excited at 50 Hz. In the present invention, iron loss is reduced by 3%.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】以上説明したように、還流磁区幅および
弾性歪分布による磁区細分化の効果を用いることによ
り、板厚の厚い一方向性電磁鋼板の鉄損特性を、従来製
品の鉄損特性よりさらに向上させることができ、トラン
スのエネルギー損失および騒音をさらに低減することが
出来る。したがって、本発明の工業的意義は極めて大き
い。
As described above, the iron loss characteristics of a thick unidirectional magnetic steel sheet can be compared with the iron loss characteristics of a conventional product by using the effect of domain refining by the width of the return magnetic domain and the distribution of elastic strain. The energy loss and noise of the transformer can be further reduced. Therefore, the industrial significance of the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】薄い鋼板と厚い鋼板における積算照射エネルギ
ー密度と鉄損の関係を示す図である。
FIG. 1 is a diagram showing a relationship between integrated irradiation energy density and iron loss in a thin steel plate and a thick steel plate.

【図2】薄い鋼板と厚い鋼板におけるパワー密度と鉄損
の関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between power density and iron loss in a thin steel plate and a thick steel plate.

【図3】薄い鋼板と厚い鋼板において、エネルギー密度
を変化させた時の鉄損を示す図である。
FIG. 3 is a diagram showing iron loss when the energy density is changed in a thin steel plate and a thick steel plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 篤史 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 山本 紀宏 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4E068 AH00 CA01 CA07 DA12 DA14 DB01 4K033 AA02 PA08 RA04 TA06 5E041 AA02 CA02 HB05 NN06 NN17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Atsushi Tanaka, Inventor 1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (72) Inventor, Norihiro Yamamoto Tobata-ku, Tobata-ku, Kitakyushu, Fukuoka Town 1-1 Shin Nippon Steel Corporation Yawata Works F-term (reference) 4E068 AH00 CA01 CA07 DA12 DA14 DB01 4K033 AA02 PA08 RA04 TA06 5E041 AA02 CA02 HB05 NN06 NN17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 板厚0.3mm以上の一方向性電磁鋼板
の表面にレーザビームを照射して磁区細分化を行なう一
方向性電磁鋼板の製造方法において、レーザビーム照射
のスキャン線上の任意の点での積算照射エネルギー密度
を、板厚t(mm)に対して(69t+44)から(1
04t+66)(mJ/mm2 )の範囲に調整すること
を特徴とする板厚の厚い低鉄損一方向性電磁鋼板の製造
方法。
1. A method of manufacturing a grain-oriented magnetic steel sheet in which a magnetic field is refined by irradiating a surface of a grain-oriented magnetic steel sheet with a thickness of 0.3 mm or more to an arbitrary direction on a scan line of laser beam irradiation. The integrated irradiation energy density at the point was calculated from (69t + 44) to (1) with respect to the plate thickness t (mm).
04t + 66) (mJ / mm 2 ).
【請求項2】 レーザビームのパワー密度を、(168
t+106)kW/mm2 以下に調整することを特徴と
する請求項1記載の板厚の厚い低鉄損一方向性電磁鋼板
の製造方法。
2. The power density of the laser beam is (168)
2. The method according to claim 1, wherein the thickness is adjusted to t + 106) kW / mm 2 or less.
【請求項3】 レーザビームの照射径を、楕円の場合、
長軸:6〜10mm、短軸:0.25〜0.35mmと
し、円形の場合、直径:0.4〜0.5mmとすること
を特徴とする請求項1もしくは2記載の板厚の厚い低鉄
損一方向性電磁鋼板の製造方法。
3. When the irradiation diameter of the laser beam is an ellipse,
The thick plate according to claim 1 or 2, wherein the major axis is 6 to 10 mm, the minor axis is 0.25 to 0.35 mm, and in the case of a circular shape, the diameter is 0.4 to 0.5 mm. Manufacturing method of low iron loss unidirectional electrical steel sheet.
JP11130350A 1999-05-11 1999-05-11 Production of thick low iron loss grain oriented silicon steel plate Withdrawn JP2000328139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11130350A JP2000328139A (en) 1999-05-11 1999-05-11 Production of thick low iron loss grain oriented silicon steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11130350A JP2000328139A (en) 1999-05-11 1999-05-11 Production of thick low iron loss grain oriented silicon steel plate

Publications (1)

Publication Number Publication Date
JP2000328139A true JP2000328139A (en) 2000-11-28

Family

ID=15032301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11130350A Withdrawn JP2000328139A (en) 1999-05-11 1999-05-11 Production of thick low iron loss grain oriented silicon steel plate

Country Status (1)

Country Link
JP (1) JP2000328139A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255454A (en) * 2007-04-09 2008-10-23 Nippon Steel Corp Grain oriented silicon steel sheet having high incremental permeability, and iron core for direct current reactor using the same
WO2014068962A1 (en) 2012-10-31 2014-05-08 Jfeスチール株式会社 Oriented magnetic steel sheet, and production method therefor
WO2014068963A1 (en) 2012-10-30 2014-05-08 Jfeスチール株式会社 Production method for oriented magnetic steel sheet exhibiting low iron loss
EP2226399A4 (en) * 2007-12-12 2016-11-09 Nippon Steel & Sumitomo Metal Corp Method for manufacturing grain-oriented electromagnetic steel sheet whose magnetic domains are controlled by laser beam application
EP2602344A4 (en) * 2010-08-06 2017-05-31 JFE Steel Corporation Oriented electromagnetic steel plate
EP3330388A4 (en) * 2015-07-28 2018-08-15 JFE Steel Corporation Linear groove forming method and linear grooves forming apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255454A (en) * 2007-04-09 2008-10-23 Nippon Steel Corp Grain oriented silicon steel sheet having high incremental permeability, and iron core for direct current reactor using the same
EP2226399A4 (en) * 2007-12-12 2016-11-09 Nippon Steel & Sumitomo Metal Corp Method for manufacturing grain-oriented electromagnetic steel sheet whose magnetic domains are controlled by laser beam application
EP2602344A4 (en) * 2010-08-06 2017-05-31 JFE Steel Corporation Oriented electromagnetic steel plate
US9799432B2 (en) 2010-08-06 2017-10-24 Jfe Steel Corporation Grain oriented electrical steel sheet
WO2014068963A1 (en) 2012-10-30 2014-05-08 Jfeスチール株式会社 Production method for oriented magnetic steel sheet exhibiting low iron loss
KR20150055072A (en) 2012-10-30 2015-05-20 제이에프이 스틸 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
US10889871B2 (en) 2012-10-30 2021-01-12 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
WO2014068962A1 (en) 2012-10-31 2014-05-08 Jfeスチール株式会社 Oriented magnetic steel sheet, and production method therefor
KR20150060959A (en) 2012-10-31 2015-06-03 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing the same
US10535453B2 (en) 2012-10-31 2020-01-14 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
EP3330388A4 (en) * 2015-07-28 2018-08-15 JFE Steel Corporation Linear groove forming method and linear grooves forming apparatus
US11045902B2 (en) 2015-07-28 2021-06-29 Jfe Steel Corporation Linear groove formation method and linear groove formation device

Similar Documents

Publication Publication Date Title
JP4593678B2 (en) Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
KR101421391B1 (en) Grain oriented electrical steel sheet
JP3482340B2 (en) Unidirectional electrical steel sheet and manufacturing method thereof
JP4669565B2 (en) Method for producing grain-oriented electrical steel sheet in which magnetic domain is controlled by laser light irradiation
JP5613972B2 (en) Unidirectional electrical steel sheet with excellent iron loss characteristics
CN103069035B (en) Grain-oriented electrical steel sheet, and method for producing same
WO2019182154A1 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
EP2813593A1 (en) Grain-oriented electrical steel plate
KR20140103973A (en) Grain-oriented electrical steel sheet and method for producing same
KR102639341B1 (en) Grain-oriented electrical steel sheet and production method therefor
JP4344264B2 (en) Low iron loss unidirectional electrical steel sheet
KR20160126015A (en) Grain-oriented electrical steel sheet for low-noise transformer, and method for manufacturing said sheet
JPWO2020158732A1 (en) Directional electrical steel sheet and its manufacturing method
JP2011246782A (en) Method of manufacturing grain-oriented electromagnetic steel sheet
JP2000328139A (en) Production of thick low iron loss grain oriented silicon steel plate
JP4598321B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JPH11293340A (en) Low core loss oriented silicon steel sheet and its production
KR100345722B1 (en) Method for manufacturing a grain oriented electrical steel sheet having a low magnetostriction and manufacturing apparaturs used therein
Ushigami et al. Development of low-loss grain-oriented silicon steel
WO2021132378A1 (en) Grain-oriented electromagnetic steel sheet and production method therefor
JP2002069594A (en) Silicon steel sheet for low-noise transformer
JP4478796B2 (en) Thermal reforming method for electrical steel sheet
JP5867126B2 (en) Iron loss improvement method and apparatus for grain-oriented electrical steel sheet
JP5884168B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR20230164165A (en) Grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801