JP2011246782A - Method of manufacturing grain-oriented electromagnetic steel sheet - Google Patents

Method of manufacturing grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2011246782A
JP2011246782A JP2010122824A JP2010122824A JP2011246782A JP 2011246782 A JP2011246782 A JP 2011246782A JP 2010122824 A JP2010122824 A JP 2010122824A JP 2010122824 A JP2010122824 A JP 2010122824A JP 2011246782 A JP2011246782 A JP 2011246782A
Authority
JP
Japan
Prior art keywords
steel sheet
plasma
magnetic domain
grain
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010122824A
Other languages
Japanese (ja)
Other versions
JP5471839B2 (en
Inventor
Hiroshi Yamaguchi
山口  広
Seiji Okabe
誠司 岡部
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010122824A priority Critical patent/JP5471839B2/en
Publication of JP2011246782A publication Critical patent/JP2011246782A/en
Application granted granted Critical
Publication of JP5471839B2 publication Critical patent/JP5471839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a low iron loss grain-oriented electromagnetic steel sheet greatly increasing the iron loss reducing effect by performing magnetic domain subdivision treatment using a transferred plasma arc greatly increased in controllability of a discharge mark.SOLUTION: In the method of manufacturing the grain-oriented electromagnetic steel sheet that after formation of an insulating film on a surface of the steel sheet containing 1.5-7.0 mass% Si and subjected to secondary recrystallization annealing, the magnetic domain subdivision treatment is performed using the transferred plasma arc, the magnetic domain subdivision treatment is performed by blowing off dilution gas so as to surround the periphery of plasma gas blown off from the tip of a plasma torch and controlling the ratio Gs/Gp of a flow rate Gs of the dilution gas to a flow rate Gp of the plasma gas within a range of 0.15-12 to obtain the low iron loss grain-oriented electromagnetic steel sheet.

Description

本発明は、主として変圧器や発電器の鉄心等に用いられる低鉄損方向性電磁鋼板の製造方法に関し、具体的には、移行型のプラズマアークを用いて磁区細分化処理を施す低鉄損方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a low iron loss direction-oriented electrical steel sheet mainly used for transformers, generator cores, and the like. Specifically, the present invention relates to a low iron loss to which a magnetic domain subdivision treatment is performed using a transfer type plasma arc. The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet.

Siを含有し、かつ二次再結晶して結晶方位が(110)[001]方位(Goss方位)に高度に配向した方向性電磁鋼板は、優れた軟磁気特性を有することから、商用周波数帯域で使用される各種鉄芯材料として広く用いられている。斯かる用途に用いられる方向性電磁鋼板に要求される磁気特性としては、鉄損が低いこと、具体的には50Hzの周波数で1.7Tに磁化したときの鉄損W17/50(W/kg)が低いことが挙げられる。 A grain-oriented electrical steel sheet containing Si and secondarily recrystallized so that the crystal orientation is highly oriented in the (110) [001] orientation (Goss orientation) has excellent soft magnetic properties. It is widely used as various iron core materials used in. Magnetic properties required for the grain-oriented electrical steel sheet used for such applications include low iron loss, specifically, iron loss when magnetized to 1.7 T at a frequency of 50 Hz (W 17/50 (W / kg) is low.

また、変圧器の励磁電流を低減する観点からは、結晶方位の優劣を表す磁束密度が高いことも求められており、具体的には、800A/mで磁化したときの磁束密度B(T)が高いことが挙げられる。一般に、鉄損はヒステリシス損と渦電流損の和として表されるが、磁束密度の高い方向性電磁鋼板は、ヒステリシス損が小さく、鉄損特性にも優れていることが多い。 In addition, from the viewpoint of reducing the exciting current of the transformer, a high magnetic flux density representing superiority or inferiority of the crystal orientation is also required. Specifically, the magnetic flux density B 8 (T) when magnetized at 800 A / m. ) Is high. In general, iron loss is expressed as the sum of hysteresis loss and eddy current loss. However, grain oriented electrical steel sheets having a high magnetic flux density have small hysteresis loss and often have excellent iron loss characteristics.

ところで、方向性電磁鋼板のヒステリシス損は、二次再結晶粒の結晶方位が(110)[001]に高度に配向するほど小さくなるが、それに伴って、二次再結晶粒径も粗大化するため、磁区幅が大きくなり、鉄損のもう一つの主因である渦電流損が増大するようになる。そのため、(110)[001]への配向度を極限まで高めたとしても、鉄損はそれほど改善されないという問題があった。   By the way, the hysteresis loss of the grain-oriented electrical steel sheet becomes smaller as the crystal orientation of the secondary recrystallized grains is highly oriented to (110) [001], and accordingly, the secondary recrystallized grain size is also coarsened. For this reason, the magnetic domain width increases, and eddy current loss, which is another main cause of iron loss, increases. Therefore, even if the degree of orientation to (110) [001] is increased to the limit, the iron loss is not improved so much.

そこで、この問題を打破する技術として、高度に配向した方向性電磁鋼板の磁区を細分化して、鉄損を向上させる各種の技術が開発され、提案されている。例えば、特許文献1には、仕上焼鈍した二次再結晶後の鋼板表面に冷間圧延方向と直角方向に押圧することによって線状の微小歪を導入し磁区細分化する方法が、また、特許文献2には、同鋼板表面上にレーザービーム(光)を照射して線状の微小歪を導入し磁区細分化する方法が、また、特許文献3には、プラズマ炎(プラズマジェット)を放射して磁区細分化する方法等が開示されている。   Accordingly, as a technique for overcoming this problem, various techniques for improving the iron loss by subdividing the magnetic domains of the highly oriented grain-oriented electrical steel sheet have been developed and proposed. For example, Patent Document 1 discloses a method in which linear fine strain is introduced by pressing in the direction perpendicular to the cold rolling direction on the surface of the steel sheet after the secondary annealing that has been subjected to finish annealing, and a method for subdividing the magnetic domain is also disclosed in Patent Document 2 discloses a method of irradiating a laser beam (light) on the surface of the steel sheet to introduce linear micro-strain to subdivide the magnetic domain, and Patent Document 3 emits a plasma flame (plasma jet). Thus, a method for subdividing the magnetic domain is disclosed.

特公昭58−005968号公報Japanese Patent Publication No.58-005968 特公昭57−002252号公報Japanese Patent Publication No.57-002252 特公平07−072300号公報Japanese Patent Publication No. 07-072300

しかしながら、押圧により微小歪を導入する特許文献1の方法は、押圧によって鋼板の裏面に凸部が生じるため、占積率が低下するという問題がある。また、レーザー光を照射する特許文献2の方法は、レーザー光処理装置が高価で、励起用ランプの寿命が短く、また、エネルギー効率という観点からは変換効率が悪いという欠点があり、基本的には高コストな方法である。   However, the method of Patent Document 1 in which micro strain is introduced by pressing has a problem that the space factor decreases because a convex portion is formed on the back surface of the steel sheet by pressing. Further, the method of Patent Document 2 for irradiating laser light has the disadvantages that the laser light processing apparatus is expensive, the life of the excitation lamp is short, and the conversion efficiency is poor from the viewpoint of energy efficiency. Is an expensive method.

また、プラズマ炎を放射する特許文献3の方法は、「非移行型」のプラズマジェットを用いる方法であり、具体的には、プラズマトーチ内のタングステンなどからなる電極を陰極とし、トーチ自体を陽極として両電極間にアーク放電を起こさせ、トーチ内部でArガス等の作動ガスをプラズマ化し、このプラズマ化したガスをジェット状にして鋼板に噴射させることで、プラズマ炎が放射された部分を磁気的に硬質化して磁区細分化する技術である。しかし、この方法は、プラズマジェットの放射距離が高々0.5mm程度でしかなく、照射幅の制御も難しいという欠点がある。しかも、この方法は、プラズマトーチ自体が陽極となるため、プラズマ放電による熱損傷が大きく、トーチの交換を頻繁に行わなければならないという問題点を抱えている。   Further, the method of Patent Document 3 that radiates a plasma flame is a method using a “non-migration type” plasma jet. Specifically, an electrode made of tungsten or the like in a plasma torch is used as a cathode, and the torch itself is used as an anode. As a result, an arc discharge is generated between both electrodes, and a working gas such as Ar gas is converted into plasma inside the torch, and the plasmaized gas is jetted onto a steel sheet to magnetize the portion where the plasma flame is radiated. This is a technology that hardens and subdivides magnetic domains. However, this method has a drawback that the radiation distance of the plasma jet is only about 0.5 mm at most and it is difficult to control the irradiation width. In addition, this method has a problem that since the plasma torch itself serves as an anode, thermal damage due to plasma discharge is large, and the torch must be frequently replaced.

ところで、プラズマには、アークの発生位置の違いから、前述したような「非移行型」と、プラズマトーチ内部のタングステンなどからなる電極を陰極とし、加工対象である鋼板を陽極とし、その間でアーク放電を起こし、そこに作動ガスを噴出することでプラズマアークを形成する「移行型」とがある。移行型は、加工対象が金属に限られるが、非移行型に比べて伝達熱量が大きいため、切断や溶接に広く用いられている。   By the way, because of the difference in the arc generation position, the plasma is made of the “non-transition type” as described above, the electrode made of tungsten or the like inside the plasma torch as the cathode, the steel plate to be processed as the anode, and the arc between them. There is a “transition type” in which a discharge occurs and a plasma arc is formed by ejecting a working gas. The transfer type is limited to metal, but is widely used for cutting and welding because it has a larger amount of heat transfer than the non-transfer type.

なお、特許文献3には、磁区細分化に用いるプラズマ炎の放射は、移行型でも非移行型でもよいことが記載されているが、従来の移行型のプラズマアークを、そのまま電磁鋼板の磁区細分化処理に適用した場合には、絶縁被膜の破壊を伴うため、飛び飛びで不連続・不均一な放電痕しか得られず、十分な磁区細分化効果を得ることは難しい。   Although Patent Document 3 describes that the radiation of the plasma flame used for magnetic domain subdivision may be a transfer type or a non-transfer type, a conventional transfer type plasma arc is used as it is as a magnetic domain subdivision of an electromagnetic steel sheet. When applied to the treatment, the insulating coating is destroyed, so that only discontinuous and non-uniform discharge traces can be obtained and it is difficult to obtain a sufficient magnetic domain fragmentation effect.

しかし、特許文献3で用いている非移行型のプラズジェットは、伝達熱量が小さいだけでなく、ジェットガスでプラズマ炎を引き出しているだけであるため、エネルギー効率も非常に低いという欠点を有している。これに対して、移行型のプラズマアークは、直接、アーク電流が鋼板に流れるため、エネルギー効率が高く、磁区細分化効果にも優れているので、磁区細分化には、移行型のプラズマアークを用いるのが好ましい。   However, the non-transfer type plasma jet used in Patent Document 3 not only has a small amount of heat to be transferred, but also has a drawback that the energy efficiency is very low because it only draws out a plasma flame with jet gas. ing. On the other hand, since the transfer type plasma arc directly flows through the steel sheet, the transfer type plasma arc has high energy efficiency and excellent magnetic domain subdivision effect. It is preferable to use it.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、放電痕の制御性を大幅に向上させた移行型のプラズマアークを用いて磁区細分化処理することにより、鉄損低減効果を大幅に向上させた低鉄損方向性電磁鋼板の製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to perform magnetic domain subdivision processing using a transfer type plasma arc that greatly improves the controllability of discharge marks. Another object of the present invention is to propose a method for producing a low iron loss grain-oriented electrical steel sheet that greatly improves the effect of reducing iron loss.

発明者らは、移行型プラズマアークにおける上述した問題点を解決するべく、鋭意検討を重ねた。その結果、移行型プラズマアークの問題点は、プラズマ化したガス(プラズマガス)が安定であると、絶縁被膜の破壊には有利であるが、一度アーク電流が流れ始めると、放電が安定であるが故に次の位置での放電に移行し難くなるため、飛び飛びで不均一な放電を起こすようになり、生ずる放電痕も飛び飛びで不均一となってしまうことが明らかとなった。そして、これを防止するには、トーチ先端から噴出するプラズマガスに対して、その周囲を取り囲むようにプラズマ化していないガス(希釈ガス)を適正量噴出し、拡がりを持つプラズマガスの周辺部を希釈し、中心部分のみでアーク放電を生じさせるようにしてやることが有効であること、そして、上記希釈条件を適正化することで、絶縁コーティングを有する鋼板に対しても、磁区細分化効果を発現できる程度に放電痕を小さくし、かつ連続とみなせる程度に放電間隔を制御することができることを見いだし、本発明を完成させた。   The inventors made extensive studies to solve the above-described problems in the transfer plasma arc. As a result, the problem with the transfer type plasma arc is that the stable plasmaized gas (plasma gas) is advantageous for the destruction of the insulating coating, but once the arc current starts flowing, the discharge is stable. Therefore, since it becomes difficult to shift to the discharge at the next position, it becomes clear that non-uniform discharge occurs due to jumping, and the resulting discharge trace also becomes non-uniform due to jumping. In order to prevent this, an appropriate amount of non-plasma gas (diluted gas) is blown out to surround the periphery of the plasma gas discharged from the tip of the torch, and the peripheral portion of the plasma gas having a spread is removed. It is effective to dilute and generate arc discharge only at the central part, and by optimizing the above dilution conditions, the effect of subdividing the magnetic domain is exhibited even for steel plates with insulating coatings. The inventors have found that the discharge trace can be made as small as possible and the discharge interval can be controlled to such an extent that it can be regarded as continuous, and the present invention has been completed.

すなわち、本発明は、Siを1.5〜7.0mass%含有する二次再結晶焼鈍後の鋼板表面に絶縁被膜を被成した後、移行型プラズマアークを用いて磁区細分化処理を施す方向性電磁鋼板の製造方法において、上記磁区細分化処理を、プラズマトーチ先端から噴出するプラズマガスの周囲を包囲するよう希釈ガスを噴出させるとともに、プラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpを0.15〜12の範囲に制御して行うことを特徴とする方向性電磁鋼板の製造方法である。   That is, in the present invention, after forming an insulating film on the steel sheet surface after secondary recrystallization annealing containing 1.5 to 7.0 mass% of Si, the direction of performing magnetic domain subdivision treatment using a transfer type plasma arc In the method for producing a magnetic conductive steel sheet, the magnetic domain fragmentation process is performed by injecting a dilution gas so as to surround the periphery of the plasma gas ejected from the tip of the plasma torch, and a ratio Gs of the flow rate Gs of the dilution gas to the flow rate Gp of the plasma gas. This is a method for producing a grain-oriented electrical steel sheet, which is performed by controlling / Gp within a range of 0.15 to 12.

本発明によれば、高配向方向性電磁鋼板の磁区細分化処理に、移行型のプラズマアークを用いることにより、磁束密度の低下を招くことなく鉄損の低減を図ることができる。したがって、本発明により得られた方向性電磁鋼板をトランスの鉄心等に用いた場合には、設計磁束密度を下げて大型化することなく、エネルギー損失の低減を達成することが可能となるので、その工業的意義は極めて大きい。   According to the present invention, it is possible to reduce iron loss without causing a decrease in magnetic flux density by using a transfer type plasma arc for magnetic domain subdivision processing of a highly oriented grain-oriented electrical steel sheet. Therefore, when the grain-oriented electrical steel sheet obtained by the present invention is used for a transformer core or the like, it is possible to achieve a reduction in energy loss without reducing the design magnetic flux density and increasing the size, The industrial significance is extremely great.

プラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpが鉄損改善に及ぼす効果を示すグラフである。It is a graph which shows the effect which ratio Gs / Gp of the flow volume Gs of the dilution gas with respect to the flow volume Gp of plasma gas has on iron loss improvement.

本発明は、常法の精錬プロセスで溶製したSiを1.5〜7.0mass%を含有する鋼を連続鋳造等でスラブとし、このスラブを加熱後、熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、次いで、湿水素雰囲気中で脱炭を兼ねた一次再結晶焼鈍後、焼鈍分離剤を塗布し、コイル状で二次再結晶させる仕上焼鈍を施した後、鋼板表面に絶縁被膜を被成する一連の工程からなる方向性電磁鋼板の製造方法において、上記絶縁被膜形成後に、移行型のプラズマアークを用いて磁区細分化処理することで、低鉄損の方向性電磁鋼板を得る製造技術に関するものである。   In the present invention, a steel containing 1.5 to 7.0 mass% of Si melted by a conventional refining process is used as a slab by continuous casting or the like, and the slab is heated and then hot-rolled to obtain a hot-rolled sheet. Then, after performing hot-rolled sheet annealing as necessary, it was made into a cold-rolled sheet with a final sheet thickness by cold rolling at least once with intermediate or intermediate annealing, and then also decarburized in a wet hydrogen atmosphere In the manufacturing method of grain-oriented electrical steel sheet, which consists of a series of steps of applying an insulating separator on the surface of the steel sheet after applying the annealing separator after the primary recrystallization annealing and applying the secondary recrystallization in a coil shape. Further, the present invention relates to a manufacturing technique for obtaining a grain-oriented electrical steel sheet having a low iron loss by performing magnetic domain fragmentation using a transfer-type plasma arc after forming the insulating film.

先ず、本発明を開発する基礎となった実験について説明する。
C:0.07mass%、Si:3.3mass%、Mn:0.07mass%、S:0.025mass%、Al:0.026mass%、N:0.008mass%、Sn:0.1mass%を含有する板厚が2.0mmの熱延板に、1120℃×2分の熱延板焼鈍を施した後、冷間圧延して最終板厚が0.23mmの冷延板とし、次いで、この冷延板に、露点が50℃の窒素と水素の混合ガス雰囲気中で850℃×90秒の脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とするスラリー(焼鈍分離剤)を塗布・乾燥した後、水素75vol%+窒素25vol%の雰囲気中で、1180℃まで25℃/hrで昇温した後、1180℃×20hrの仕上焼鈍を施し、その後、リン酸マグネシウムとシリカを主とする絶縁被膜を鋼板両面に被成し、鋼板表面にフォルステライト層と絶縁被膜を有する方向性電磁鋼板とした。この鋼板からエプスタイン試験片を採取し、圧延方向の鉄損W17/50を測定した。
First, the experiment that became the basis for developing the present invention will be described.
Contains C: 0.07 mass%, Si: 3.3 mass%, Mn: 0.07 mass%, S: 0.025 mass%, Al: 0.026 mass%, N: 0.008 mass%, Sn: 0.1 mass% A hot-rolled sheet having a thickness of 2.0 mm is subjected to hot-rolled sheet annealing at 1120 ° C. for 2 minutes, and then cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. Slurry mainly composed of MgO (annealing separator) after primary recrystallization annealing that also serves as decarburization annealing at 850 ° C. for 90 seconds in a mixed gas atmosphere of nitrogen and hydrogen with a dew point of 50 ° C. ), And then heated up to 1180 ° C. at 25 ° C./hr in an atmosphere of 75 vol% hydrogen + 25 vol% nitrogen, and then subjected to a final annealing of 1180 ° C. × 20 hr, and then magnesium phosphate and silica Insulating coating mainly composed of Form the steel plate both surfaces, it was oriented electrical steel sheet having a forsterite layer and an insulating film on the surface of the steel sheet. An Epstein specimen was taken from this steel plate, and the iron loss W 17/50 in the rolling direction was measured.

その後、上記方向性電磁鋼板の片側表面に、ノズル径1mmφのプラズマガス噴出口と、そのプラズマガスの周囲に希釈ガスを噴出できるリング状スリットを有するプラズマトーチを用いて、トーチ内のタングステン電極を陰極とし、鋼板を陽極として、両極間にアーク放電させる移行型プラズマアークを用いて磁区細分化処理を施した。この際、プラズマガスと希釈ガスのいずれにも純Arガスを使用し、プラズマガスの流量を0.4〜20L/min、希釈ガスの流量を0.5〜10L/minの範囲でそれぞれ変えて、プラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpを広範囲に変化させた。なお、磁区細分化を行う際の放電電流、プラズマトーチと鋼板との相対速度および極間距離は、放電電流を0.5〜20A、相対速度を10〜2000mm/秒、極間距離を0.5〜3.5mmの範囲で変化させた予備実験の結果から、絶縁被膜上に形成されるプラズマ放電痕が目視観察で連続と見なせる程度となる条件に設定した。なお、磁区細分化前の磁区幅は1〜2mm程度であるため、放電痕の点列の間隔がそれ以上では、磁区細分化の効果が得られない。したがって、およそ1mm以内の間隔となっている場合に放電痕が連続と見なせるものとした。   Thereafter, a tungsten electrode in the torch is attached to one side surface of the grain-oriented electrical steel sheet using a plasma torch having a plasma gas outlet having a nozzle diameter of 1 mmφ and a ring-shaped slit capable of injecting a dilution gas around the plasma gas. Magnetic domain refinement treatment was performed using a transfer type plasma arc in which arc discharge was performed between both electrodes, using a steel plate as an anode and a cathode. At this time, pure Ar gas is used for both the plasma gas and the dilution gas, and the flow rate of the plasma gas is changed in the range of 0.4 to 20 L / min and the flow rate of the dilution gas is changed in the range of 0.5 to 10 L / min. The ratio Gs / Gp of the dilution gas flow rate Gs to the plasma gas flow rate Gp was varied over a wide range. It should be noted that the discharge current, the relative speed between the plasma torch and the steel sheet and the distance between the electrodes when performing magnetic domain subdivision are 0.5 to 20 A for the discharge current, 10 to 2000 mm / second for the relative speed, and 0. From the result of the preliminary experiment which was changed in the range of 5 to 3.5 mm, the conditions were set such that the plasma discharge marks formed on the insulating coating could be regarded as continuous by visual observation. In addition, since the magnetic domain width before the magnetic domain subdivision is about 1 to 2 mm, the effect of the magnetic domain subdivision cannot be obtained when the interval between the dot trains of the discharge traces is more than that. Therefore, the discharge trace can be regarded as continuous when the interval is within about 1 mm.

次いで、上記プラズマアークで磁区細分化処理した鋼板から試験片を採取し、磁性コロイドを用いて鋼板の磁区パターンを観察することにより、鋼板表面に生じた放電痕の間隔を詳細に調査するとともに、再度、鉄損W17/50を測定した。なお、上記放電痕は、連続的な直線ではなく、微小な点列であった。これは、鋼板表面に形成された絶縁被膜やフォルステライト被膜を破壊するためのアーク放電が、断続的に発生したためと考えられる。また、上記放電痕の点列の間隔は、プラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpによって大きく影響され、放電電流等その他の条件による影響は小さかった。 Next, a test piece is collected from the steel sheet that has been subjected to magnetic domain subdivision treatment with the plasma arc, and by observing the magnetic domain pattern of the steel sheet using a magnetic colloid, the interval between discharge marks generated on the steel sheet surface is investigated in detail. Again, the iron loss W 17/50 was measured. In addition, the said discharge trace was not a continuous straight line but a minute point sequence. This is presumably because arc discharge for breaking the insulating coating or forsterite coating formed on the steel sheet surface occurred intermittently. Further, the interval between the dot trains of the discharge trace was greatly influenced by the ratio Gs / Gp of the flow rate Gs of the dilution gas to the flow rate Gp of the plasma gas, and the influence by other conditions such as the discharge current was small.

図1に、磁区細分化処理前後の鉄損の差ΔW17/50と、プラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpとの関係を示した。この図から、流量比が0.15〜12の範囲で鉄損低減効果が得られることがわかる。これは、流量比Gs/Gpが0.15より小さい場合には、希釈ガスによってプラズマ放電を絞って不連続な放電を抑止する効果が弱くなるため、放電痕の間隔が磁区幅よりも大きくなって磁区細分化効果が得られなくなるためと推定される。一方、流量比Gs/Gpが12より大きい、すなわち希釈ガスが多すぎる場合には、プラズマガスの噴射が希釈ガスによって乱され、放電痕の点列がトーチの走査線上から外れたり、アーク放電が安定して起こらなくなったりするため、磁区細分化効果が得られなくなるものと考えられる。 FIG. 1 shows the relationship between the difference ΔW 17/50 in iron loss before and after the magnetic domain refinement and the ratio Gs / Gp of the flow rate Gs of dilution gas to the flow rate Gp of plasma gas. From this figure, it can be seen that the iron loss reduction effect is obtained when the flow ratio is in the range of 0.15 to 12. This is because when the flow rate ratio Gs / Gp is smaller than 0.15, the effect of suppressing the discontinuous discharge by constricting the plasma discharge with the dilution gas is weakened, so the interval between the discharge traces becomes larger than the magnetic domain width. This is probably because the magnetic domain refinement effect cannot be obtained. On the other hand, when the flow rate ratio Gs / Gp is larger than 12, that is, when there is too much dilution gas, the injection of plasma gas is disturbed by the dilution gas, and the point mark of the discharge trace deviates from the scan line of the torch or arc discharge It is considered that the magnetic domain refinement effect cannot be obtained because it does not occur stably.

上記実験の結果から、移行型プラズマアークを用いて磁区細分化処理する場合には、プラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpを適正範囲に保つ必要があることがわかる。   From the results of the above experiment, it is understood that when the magnetic domain fragmentation process is performed using the transfer type plasma arc, the ratio Gs / Gp of the flow rate Gs of the dilution gas to the flow rate Gp of the plasma gas needs to be maintained in an appropriate range.

なお、移行型プラズマアークを用いて磁区細分化処理する際の放電電圧は、プラズマトーチと鋼板との極間距離に依存するため特定できない。また、プラズマトーチと鋼板との距離は、鋼板の表面状態などにも依存するが、アーク放電を安定的に持続させるためには、極間距離は0.1〜4.5mmの範囲に設定するのが望ましい。   In addition, the discharge voltage at the time of performing the magnetic domain fragmentation treatment using the transfer type plasma arc cannot be specified because it depends on the distance between the plasma torch and the steel plate. Further, the distance between the plasma torch and the steel sheet depends on the surface condition of the steel sheet, but in order to stably maintain the arc discharge, the distance between the electrodes is set in the range of 0.1 to 4.5 mm. Is desirable.

また、放電痕の大きさは、絶縁被膜やフォルステライト被膜の絶縁性によって変化し、例えば、上記絶縁被膜等がない鋼板では、放電痕は大きくかつ連続的となるが、このような放電痕では、鉄損低減効果は小さい。すなわち、直接放電した部分では、磁区構造が乱されてしまうので、磁区細分化の効果が相殺されてしまう。一方、本発明の方向性電磁鋼板のように絶縁被膜が形成された鋼板では、放電痕は小さくかつ断続的となる。その結果、放電痕により磁区構造が乱される領域が小さくなり、効果的に鉄損値を低減できる。
なお、放電痕に及ぼす放電電流の影響はあまり明確ではない。また、鉄損特性を劣化させる要因となる放電痕の大きさに及ぼすプラズマトーチのノズル径の影響はほとんどないが、アーク放電を安定的に持続させるためには、ノズル径は3mmφ以下であることが好ましい。
In addition, the size of the discharge trace varies depending on the insulation properties of the insulating coating and forsterite coating.For example, in a steel plate without the above-described insulating coating, the discharge trace is large and continuous. The iron loss reduction effect is small. That is, in the directly discharged portion, the magnetic domain structure is disturbed, so that the effect of magnetic domain refinement is offset. On the other hand, in a steel sheet on which an insulating coating is formed, such as the grain-oriented electrical steel sheet of the present invention, the discharge trace is small and intermittent. As a result, the region where the magnetic domain structure is disturbed by the discharge trace is reduced, and the iron loss value can be effectively reduced.
The influence of the discharge current on the discharge trace is not so clear. In addition, there is almost no influence of the nozzle diameter of the plasma torch on the size of the discharge mark that causes the iron loss characteristics to deteriorate, but the nozzle diameter should be 3 mmφ or less in order to stably maintain the arc discharge. Is preferred.

また、プラズマアークを鋼板表面に放射する方向は、圧延方向と直角な方向が最も鉄損低減効果が大きいが、圧延方向と直角な方向に対して±45°の範囲内であれば、十分な鉄損低減効果が得られる。また、プラズマアークを放射する鋼板圧延方向の間隔は、1〜20mmの範囲とするのが好ましい。   Further, the direction in which the plasma arc is radiated to the steel sheet surface is most effective in reducing the iron loss in the direction perpendicular to the rolling direction, but is sufficient if it is within a range of ± 45 ° with respect to the direction perpendicular to the rolling direction. An effect of reducing iron loss is obtained. Moreover, it is preferable to make the space | interval of the steel plate rolling direction which radiates | emits a plasma arc into the range of 1-20 mm.

次に、本発明の方向性電磁鋼板(製品板)の成分組成について説明する。
Si:1.5〜7.0mass%
Siは、鋼の固有抵抗を高めて鉄損を低減するために添加する必須元素であり、斯かる効果を得るためには、1.5mass%以上の添加が必要である。一方、Siの含有量が7.0mass%を超えると、鋼が硬質化し、圧延することが難しくなる。よって、Siは、1.5〜7.0mass%の範囲とする。好ましくは、2.0〜4.5mass%の範囲である。
Next, the component composition of the grain-oriented electrical steel sheet (product board) of the present invention will be described.
Si: 1.5-7.0 mass%
Si is an essential element that is added to increase the specific resistance of steel and reduce iron loss. In order to obtain such an effect, addition of 1.5 mass% or more is necessary. On the other hand, if the Si content exceeds 7.0 mass%, the steel becomes hard and difficult to roll. Therefore, Si is set to a range of 1.5 to 7.0 mass%. Preferably, it is in the range of 2.0 to 4.5 mass%.

本発明の方向性電磁鋼板は、二次再結晶焼鈍後、絶縁被膜を被成した方向性電磁鋼板であればよく、上記Si以外の他の成分については特に制限はないが、以下の成分組成を有するものであることが好ましい。
C:0.003mass%
Cは、磁気特性に有害な作用があり、特に磁気時効を起こして鉄損特性を劣化させるので、0.003mass%以下とすることが好ましい。
The grain-oriented electrical steel sheet of the present invention may be a grain-oriented electrical steel sheet that has been subjected to an insulating coating after secondary recrystallization annealing, and there are no particular restrictions on the other components other than Si, but the following component composition: It is preferable that it has.
C: 0.003 mass%
C has a detrimental effect on the magnetic properties, and particularly causes magnetic aging and deteriorates the iron loss properties. Therefore, C is preferably 0.003 mass% or less.

Mn:0.03〜2.5mass%
Mnは、鋼の固有抵抗を高めて鉄損を低減したり、Sによる熱間脆性を防止したりするのに有効な元素である。斯かる効果を発現させるためには、0.03mass%以上添加するのが好ましい。一方、2.5mass%を超えると、熱処理時にγ変態を起して磁気特性を低下させるおそれがある。よって、Mnは、0.03〜2.5mass%の範囲とする。
Mn: 0.03 to 2.5 mass%
Mn is an element effective in increasing the specific resistance of steel to reduce iron loss and preventing hot brittleness due to S. In order to exhibit such an effect, it is preferable to add 0.03 mass% or more. On the other hand, if it exceeds 2.5 mass%, γ transformation may occur at the time of heat treatment to deteriorate the magnetic properties. Therefore, Mn is set to a range of 0.03 to 2.5 mass%.

N:0.002mass%以下
Nは、磁気特性に有害な作用があり、特に鉄損を劣化させるので、0.002mass%以下とすることが好ましい。
N: 0.002 mass% or less N has a detrimental effect on magnetic properties, and particularly deteriorates iron loss. Therefore, N is preferably 0.002 mass% or less.

S:0.002mass%以下
Sは、磁気特性に有害な作用があり、特に鉄損を劣化させるので、0.002mass%以下とすることが好ましい。
S: 0.002 mass% or less S has a harmful effect on the magnetic properties, and particularly deteriorates the iron loss. Therefore, it is preferably 0.002 mass% or less.

なお、本発明の方向性電磁鋼板は、上記成分以外に、方向性電磁鋼板の製造において適宜添加され、二次再結晶焼鈍後にも鋼板中に残量するインヒビター成分として、Sb:0.005〜1.5mass%、Mo:0.005〜1.5mass%、Sn:0.005〜1.5mass%,P:0.005〜1.5mass%、Cr:0.005〜1.5mass%、Cu:0.005〜1.5mass%のうちから選ばれる1種または2種以上を含有していてもよい。   In addition to the above components, the grain-oriented electrical steel sheet of the present invention is appropriately added in the production of grain-oriented electrical steel sheets, and as an inhibitor component remaining in the steel sheet even after secondary recrystallization annealing, Sb: 0.005 1.5 mass%, Mo: 0.005-1.5 mass%, Sn: 0.005-1.5 mass%, P: 0.005-1.5 mass%, Cr: 0.005-1.5 mass%, Cu : One or more selected from 0.005 to 1.5 mass% may be contained.

次に、仕上焼鈍後の鋼板表面に形成する絶縁被膜は、張力付与型の絶縁被膜であることが好ましく、例えば、従来からフォルステライト被膜を有する方向性電磁鋼板に用いられているリン酸塩−コロイダルシリカ−クロム酸系の絶縁被膜は、奏する効果や処理コスト、製造性などの点から好ましいが、特開平6−65754号公報や特開平6−65755号公報、特開平6−299366号公報などで提案されているホウ酸−アルミナ等の酸化物系被膜を適用してもよい。なお、被膜の厚みは、張力付与効果や占積率、被膜密着性等の観点から0.3〜10μmの範囲とするのが好ましい。   Next, the insulating film formed on the surface of the steel sheet after the finish annealing is preferably a tension-imparting type insulating film. For example, phosphates conventionally used for grain-oriented electrical steel sheets having a forsterite film A colloidal silica-chromic acid-based insulating coating is preferable from the viewpoints of effects, processing costs, manufacturability, and the like. However, JP-A-6-65754, JP-A-6-65555, JP-A-6-299366, etc. An oxide-based film such as boric acid-alumina proposed in (1) may be applied. In addition, it is preferable that the thickness of a film shall be the range of 0.3-10 micrometers from viewpoints, such as a tension provision effect, a space factor, and film adhesiveness.

C:0.006mass%、Si:3.0mass%、Mn:0.07mass%、Al:0.025mass%、N:0.0080mass%、S:0.001mass%、Se:0.03mass%を含有する最終板厚0.20mmに圧延された冷延板に、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、2分割し、それぞれの冷延板を用いて以下のA,Bの2法で方向性電磁鋼板を製造した。
A)一次再結晶焼鈍後の鋼板に、MgOを主成分とした焼鈍分離剤を塗布乾燥した後、二次再結晶焼鈍と純化焼鈍を含む仕上焼鈍を施してフォルステライト被膜を有する方向性電磁鋼板とした。
B)一次再結晶焼鈍後の鋼板に、主成分がMgOで、塩化鉛を添加した焼鈍分離剤を塗布乾燥した後、二次再結晶焼鈍と純化焼鈍を含む仕上焼鈍を施して、フォルステライト被膜のない平滑な表面を有する方向性電磁鋼板とした後、NaCl水溶液中で電解して平滑化処理し、さらに、CVD法で片面当たり1μmのTiN膜を被成した。
次いで、上記A,B2種の方向性電磁鋼板の表面に、リン酸マグネシウム、コロイダルシリカおよびクロム酸マグネシウムを主成分とする水性処理液を塗布し、800℃で焼き付けて、目付量が約8.0g/mの絶縁被膜を被成した。
Contains C: 0.006 mass%, Si: 3.0 mass%, Mn: 0.07 mass%, Al: 0.025 mass%, N: 0.0080 mass%, S: 0.001 mass%, Se: 0.03 mass% A cold rolled sheet rolled to a final sheet thickness of 0.20 mm is subjected to primary recrystallization annealing that also serves as decarburization annealing, and then divided into two, and using the respective cold rolled sheets, the following A and B 2 The grain-oriented electrical steel sheet was manufactured by the method.
A) A grain-oriented electrical steel sheet having a forsterite coating after applying and drying an annealing separator mainly composed of MgO on a steel sheet after primary recrystallization annealing and then subjecting it to a final annealing including secondary recrystallization annealing and purification annealing. It was.
B) After applying and drying an annealing separator containing MgO as the main component and adding lead chloride to the steel sheet after primary recrystallization annealing, finish annealing including secondary recrystallization annealing and purification annealing is performed, and a forsterite film After making a grain-oriented electrical steel sheet having a smooth surface without any surface, it was electrolyzed and smoothed in an aqueous NaCl solution, and a TiN film having a thickness of 1 μm per side was formed by CVD.
Next, an aqueous treatment liquid mainly composed of magnesium phosphate, colloidal silica and magnesium chromate is applied to the surfaces of the A and B type grain oriented electrical steel sheets and baked at 800 ° C., and the basis weight is about 8. An insulating coating of 0 g / m 2 was deposited.

次いで、上記のようにして得られた2種の方向性電磁鋼板から、エプスタイン試験片を採取し、圧延方向の磁束密度Bおよび鉄損W17/50を測定した後、0.5mmφのノズル径を有するプラズマトーチを用いて、タングステン電極を陰極とし、絶縁被膜を被成した鋼板を陽極として移行型プラズマアークを発生させ、鋼板の片表面に圧延方向に対し直角方向に1.5m/secの速度で走査し、磁区細分化処理を施した。なお、この際、プラズマガスおよび希釈ガスのいずれにも純Arガスを使用し、それぞれの流量を、プラズマガスは1〜10L/min、希釈ガスは1〜15L/minの範囲で変えてプラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpを変化させた。なお、プラズマトーチを走査する圧延方向の間隔は15mm、トーチと鋼板との距離は2mmとした。 Next, Epstein test pieces were collected from the two kinds of grain- oriented electrical steel sheets obtained as described above, and after measuring the magnetic flux density B 8 and iron loss W 17/50 in the rolling direction, a 0.5 mmφ nozzle Using a plasma torch having a diameter, a transitional plasma arc is generated using a tungsten electrode as a cathode and a steel plate with an insulating coating as an anode, and 1.5 m / sec in a direction perpendicular to the rolling direction on one surface of the steel plate. The magnetic domain was subdivided by scanning at a speed of. At this time, pure Ar gas is used for both the plasma gas and the dilution gas, and the respective flow rates are changed within the range of 1 to 10 L / min for the plasma gas and 1 to 15 L / min for the dilution gas. The ratio Gs / Gp of the flow rate Gs of the dilution gas to the flow rate Gp was changed. The interval in the rolling direction for scanning the plasma torch was 15 mm, and the distance between the torch and the steel plate was 2 mm.

上記磁区細分化処理後の鋼板からエプスタイン試験片を採取し、圧延方向の磁束密度Bおよび鉄損W17/50を測定し、磁区細分化処理前の値と共に表1に示した。なお、表1には、磁区細分化処理前の値をベース(参考例)とした処理前後の差も併記した。この結果から、流量比Gs/Gpが0.15より小さいか12より大きな条件で磁区細分化処理したNo.1−1,1−5,2−1および2−4の鋼板では、鉄損の低減が得られないか、逆に劣化していた。これに対して、本発明に適合する条件で磁区細分化処理したNo.1−2〜1−4およびNo.2−2,2−3の鋼板は、いずれも磁区細分化により大幅な鉄損低減がなされていることがわかる。また、本発明に適合する条件で磁区細分化処理した鋼板では、エッチング等で溝形成するような耐熱型の磁区細分化に見られる磁束密度Bの低下も認められない。 The magnetic domain collected subdivided Epstein test piece of a steel plate after treatment, the magnetic flux density B 8 and iron loss W 17/50 in the rolling direction were measured and shown in Table 1 together with the domain refining pretreatment values. Table 1 also shows the difference between before and after the treatment based on the values before the magnetic domain refinement treatment (reference example). From this result, it was confirmed that the magnetic domain subdivision processing was performed under conditions where the flow ratio Gs / Gp was smaller than 0.15 or larger than 12. In the steel sheets of 1-1, 1-5, 2-1 and 2-4, reduction of iron loss could not be obtained or conversely deteriorated. On the other hand, No. 1 in which magnetic domain refinement processing was performed under conditions suitable for the present invention. 1-2 to 1-4 and No.1. It can be seen that the steel sheets of 2-2 and 2-3 are all significantly reduced in iron loss by magnetic domain refinement. Further, in steel plate treated domain refining in conditions compatible with the present invention, nor observed decrease in the magnetic flux density B 8 found in domain refining of heat-resistant, such as grooves formed by etching or the like.

Figure 2011246782
Figure 2011246782

Claims (1)

Siを1.5〜7.0mass%含有する二次再結晶焼鈍後の鋼板表面に絶縁被膜を被成した後、移行型プラズマアークを用いて磁区細分化処理を施す方向性電磁鋼板の製造方法において、上記磁区細分化処理を、プラズマトーチ先端から噴出するプラズマガスの周囲を包囲するよう希釈ガスを噴出させるとともに、プラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpを0.15〜12の範囲に制御して行うことを特徴とする方向性電磁鋼板の製造方法。 A method for producing a grain-oriented electrical steel sheet, in which an insulating coating is formed on a steel sheet surface after secondary recrystallization annealing containing 1.5 to 7.0 mass% of Si, and then subjected to magnetic domain refinement using a transfer plasma arc In the magnetic domain subdivision process, the dilution gas is ejected so as to surround the periphery of the plasma gas ejected from the tip of the plasma torch, and the ratio Gs / Gp of the dilution gas flow rate Gs to the plasma gas flow rate Gp is set to 0.15. A method for producing a grain-oriented electrical steel sheet, characterized in that the control is performed in a range of ˜12.
JP2010122824A 2010-05-28 2010-05-28 Method for producing grain-oriented electrical steel sheet Active JP5471839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010122824A JP5471839B2 (en) 2010-05-28 2010-05-28 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010122824A JP5471839B2 (en) 2010-05-28 2010-05-28 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2011246782A true JP2011246782A (en) 2011-12-08
JP5471839B2 JP5471839B2 (en) 2014-04-16

Family

ID=45412409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122824A Active JP5471839B2 (en) 2010-05-28 2010-05-28 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5471839B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034128A1 (en) 2012-08-30 2014-03-06 Jfeスチール株式会社 Oriented electromagnetic steel sheet for iron core and method for manufacturing same
WO2014068962A1 (en) 2012-10-31 2014-05-08 Jfeスチール株式会社 Oriented magnetic steel sheet, and production method therefor
WO2014068963A1 (en) 2012-10-30 2014-05-08 Jfeスチール株式会社 Production method for oriented magnetic steel sheet exhibiting low iron loss
KR20170068557A (en) 2014-10-23 2017-06-19 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and process for producing same
US20180080127A1 (en) * 2015-03-27 2018-03-22 Jfe Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
WO2020116188A1 (en) 2018-12-05 2020-06-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and production method therefor
JP2020190026A (en) * 2019-05-15 2020-11-26 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing the same
US10982329B2 (en) * 2015-03-27 2021-04-20 Jfe Steel Corporation Insulation-coated oriented magnetic steel sheet and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296617A (en) * 1985-10-24 1987-05-06 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet with small iron loss
JPH06248344A (en) * 1993-02-26 1994-09-06 Kawasaki Steel Corp Production of low iron loss grain-oriented silicon steel sheet applied with plasma irradiation and plasma irradiating equipment for metallic sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296617A (en) * 1985-10-24 1987-05-06 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet with small iron loss
JPH06248344A (en) * 1993-02-26 1994-09-06 Kawasaki Steel Corp Production of low iron loss grain-oriented silicon steel sheet applied with plasma irradiation and plasma irradiating equipment for metallic sheet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036775A (en) 2012-08-30 2015-04-07 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet for iron core and method of manufacturing the same
US10026533B2 (en) 2012-08-30 2018-07-17 Jfe Steel Corporation Grain-oriented electrical steel sheet for iron core and method of manufacturing the same
WO2014034128A1 (en) 2012-08-30 2014-03-06 Jfeスチール株式会社 Oriented electromagnetic steel sheet for iron core and method for manufacturing same
KR20150055072A (en) 2012-10-30 2015-05-20 제이에프이 스틸 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
US10889871B2 (en) 2012-10-30 2021-01-12 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
WO2014068963A1 (en) 2012-10-30 2014-05-08 Jfeスチール株式会社 Production method for oriented magnetic steel sheet exhibiting low iron loss
KR20150060959A (en) 2012-10-31 2015-06-03 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing the same
WO2014068962A1 (en) 2012-10-31 2014-05-08 Jfeスチール株式会社 Oriented magnetic steel sheet, and production method therefor
US10535453B2 (en) 2012-10-31 2020-01-14 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
KR20170068557A (en) 2014-10-23 2017-06-19 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and process for producing same
US11225698B2 (en) 2014-10-23 2022-01-18 Jfe Steel Corporation Grain-oriented electrical steel sheet and process for producing same
US10920323B2 (en) * 2015-03-27 2021-02-16 Jfe Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
US10982329B2 (en) * 2015-03-27 2021-04-20 Jfe Steel Corporation Insulation-coated oriented magnetic steel sheet and method for manufacturing same
US20180080127A1 (en) * 2015-03-27 2018-03-22 Jfe Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
WO2020116188A1 (en) 2018-12-05 2020-06-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and production method therefor
KR20210088666A (en) 2018-12-05 2021-07-14 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof
US11923116B2 (en) 2018-12-05 2024-03-05 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing same
JP2020190026A (en) * 2019-05-15 2020-11-26 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing the same
JP7334673B2 (en) 2019-05-15 2023-08-29 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP5471839B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5471839B2 (en) Method for producing grain-oriented electrical steel sheet
JP5998424B2 (en) Oriented electrical steel sheet
JP6928094B2 (en) Directional electromagnetic steel sheet and its magnetic domain miniaturization method
JP5532185B2 (en) Oriented electrical steel sheet and method for improving iron loss thereof
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
WO2013099272A1 (en) Oriented electromagnetic steel plate and manufacturing method therefor
JP5954421B2 (en) Oriented electrical steel sheet for iron core and method for producing the same
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
JP2013072116A (en) Grain-oriented electrical steel sheet and method for producing the same
JP2012172191A (en) Production method for grain-oriented magnetic steel sheet
JP5842410B2 (en) Method for producing grain-oriented electrical steel sheet
JP6465048B2 (en) Method for producing grain-oriented electrical steel sheet
JP6660025B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2023195466A1 (en) Grain-oriented electromagnetic steel sheet and production method for same
JP2012057232A (en) Grain oriented magnetic steel sheet and production method therefor
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015140470A (en) Grain oriented silicon steel plate and production method thereof
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP7365416B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
WO2021020027A1 (en) Method for forming linear groove, and method for forming grain-oriented electrical steel sheet
JP2021195571A (en) Oriented electromagnetic steel sheet
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP7538126B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2023121125A (en) Grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250