JP7334673B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP7334673B2
JP7334673B2 JP2020084029A JP2020084029A JP7334673B2 JP 7334673 B2 JP7334673 B2 JP 7334673B2 JP 2020084029 A JP2020084029 A JP 2020084029A JP 2020084029 A JP2020084029 A JP 2020084029A JP 7334673 B2 JP7334673 B2 JP 7334673B2
Authority
JP
Japan
Prior art keywords
content
steel sheet
oriented electrical
less
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020084029A
Other languages
Japanese (ja)
Other versions
JP2020190026A (en
Inventor
幸乃 宮本
善彰 財前
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020190026A publication Critical patent/JP2020190026A/en
Application granted granted Critical
Publication of JP7334673B2 publication Critical patent/JP7334673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板に関し、特に、高周波域における鉄損が低い無方向性電磁鋼板に関する。また、本発明は前記無方向性電磁鋼板の製造方法に関する。 TECHNICAL FIELD The present invention relates to a non-oriented electrical steel sheet, and more particularly to a non-oriented electrical steel sheet with low core loss in a high frequency range. The present invention also relates to a method for manufacturing the non-oriented electrical steel sheet.

電気自動車やハイブリッド電気自動車用などに用いられるモータは、小型化、高効率化の観点より、400Hz~2kHzといった高周波域での駆動が行われている。そのため、このようなモータのコア材として使用される無方向性電磁鋼板には、高周波域における鉄損が低いことが求められる。 Motors used for electric vehicles and hybrid electric vehicles are driven in a high frequency range of 400 Hz to 2 kHz from the viewpoint of miniaturization and high efficiency. Therefore, a non-oriented electrical steel sheet used as a core material for such a motor is required to have a low core loss in a high frequency range.

そこで、高周波域における低鉄損化のために、SiやAlなどの合金元素の添加や、板厚の低減など、様々な手法が検討されてきた。 Therefore, in order to reduce the iron loss in the high frequency range, various methods such as addition of alloying elements such as Si and Al and reduction of plate thickness have been investigated.

例えば、特許文献1、特許文献2では、鋼板に対して浸珪焼鈍を施すことにより、板厚方向におけるSi濃度分布を制御することが提案されている。 For example, Patent Literature 1 and Patent Literature 2 propose controlling the Si concentration distribution in the sheet thickness direction by subjecting a steel sheet to siliconizing annealing.

特開平11-293422号公報JP-A-11-293422 特開2013-155397号公報JP 2013-155397 A

特許文献1、特許文献2で提案されているような従来の方法によれば、高周波域における鉄損に一定の改善が見られるが、依然として十分とはいえず、さらなる高周波域における低鉄損化が求められている。 According to conventional methods such as those proposed in Patent Documents 1 and 2, a certain improvement in iron loss in the high frequency range is seen, but it is still not sufficient, and further reduction in iron loss in the high frequency range is achieved. is required.

本発明は、上記事情に鑑みてなされたものであり、高周波域における鉄損がさらに低減された無方向性電磁鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-oriented electrical steel sheet with further reduced core loss in a high frequency range.

本発明者らは、上記課題を解決する方法について鋭意検討した結果、次の(1)~(3)の知見を得た。 The inventors of the present invention have obtained the following findings (1) to (3) as a result of intensive studies on methods for solving the above problems.

(1)特許文献1、特許文献2で提案されているような従来の技術においては、コスト低減のため、N2分圧が100%に近い雰囲気で浸珪拡散処理が行われていた。そのような高N2分圧雰囲気で浸珪拡散処理を行うことにより鋼板が窒化され、鋼板中のN含有量が顕著に増加する。 (1) In conventional techniques such as those proposed in Patent Documents 1 and 2, the silicon diffusion treatment is performed in an atmosphere with an N 2 partial pressure close to 100% in order to reduce costs. By performing the siliconizing diffusion treatment in such a high N2 partial pressure atmosphere, the steel sheet is nitrided and the N content in the steel sheet is significantly increased.

(2)浸珪処理後の鋼板における平均N含有量と、高周波域における鉄損との間には相関があり、前記平均N含有量を0.0020質量%以下に抑制することにより、高周波域における鉄損を低く抑えることができる。 (2) There is a correlation between the average N content in the steel sheet after the siliconizing treatment and the iron loss in the high frequency range. The iron loss in can be kept low.

(3)平均N含有量を0.0020質量%以下に抑制するためには、N2分圧が70%以下である雰囲気中で浸珪処理および拡散処理を行えばよい。 (3) In order to suppress the average N content to 0.0020% by mass or less, the siliconizing treatment and the diffusion treatment should be performed in an atmosphere having an N2 partial pressure of 70% or less.

本発明は上記知見に基づいてなされたものであり、その要旨構成は以下のとおりである。 The present invention has been made based on the above knowledge, and the gist and configuration thereof are as follows.

1.表面から板厚中心方向に向かってSi含有量が連続的に減少するSi含有量分布を有する無方向性電磁鋼板であって、
SiおよびNを含み、残部がFeおよび不可避不純物からなる成分組成を有し、
板厚:tが0.01~0.35mmであり、
全板厚の平均N含有量:[N]が0.0020質量%以下であり、
Si含有量が全板厚の平均Si含有量以上の領域として定義される表層部における平均Si含有量:[Si]1が2.5~7.0質量%であり、
Si含有量が全板厚の平均Si含有量未満の領域として定義される内層部における平均Si含有量:[Si]0が1.5~5.0質量%であり、
前記板厚tに対する前記表層部の合計厚さ:t1の比として定義される複層比t1/tが0.10~0.70であり、
前記表層部における平均Si含有量:[Si]1と、前記内層部における平均Si含有量:[Si]0との差([Si]1-[Si]0)として定義されるΔSiが0.5~4.0質量%である無方向性電磁鋼板。
1. A non-oriented electrical steel sheet having a Si content distribution in which the Si content continuously decreases from the surface toward the center of the plate thickness,
Having a component composition containing Si and N, the balance being Fe and inevitable impurities,
Plate thickness: t is 0.01 to 0.35 mm,
Average N content of total plate thickness: [N] is 0.0020% by mass or less,
The average Si content in the surface layer portion defined as a region where the Si content is equal to or higher than the average Si content of the entire plate thickness: [Si] 1 is 2.5 to 7.0% by mass,
The average Si content in the inner layer portion defined as a region where the Si content is less than the average Si content of the entire plate thickness: [Si] 0 is 1.5 to 5.0% by mass,
The multilayer ratio t 1 /t defined as the ratio of the total thickness of the surface layer portion to the plate thickness t: t 1 is 0.10 to 0.70,
ΔSi defined as the difference ([Si] 1 −[Si] 0 ) between the average Si content in the surface layer: [Si] 1 and the average Si content in the inner layer: [Si] 0 is 0.0. A non-oriented electrical steel sheet with a content of 5 to 4.0% by mass.

2.最大磁束密度:1.0T、周波数:1kHzにおける鉄損:W10/1k(W/kg)と、前記板厚:t(mm)とが、下記(1)式を満たす、上記1に記載の無方向性電磁鋼板。
10/1k≦15+138×t …(1)
2. 1. The above 1, wherein the maximum magnetic flux density: 1.0 T, the iron loss at a frequency of 1 kHz: W 10/1k (W/kg), and the plate thickness: t (mm) satisfy the following formula (1): Non-oriented electrical steel sheet.
W10 /1k ≦15+138×t (1)

3.前記成分組成が、さらに、
Sn:0.10質量%以下、
P :0.10質量%以下、および
Sb:0.10質量%以下からなる群より選択される少なくとも1つを含む、上記1または2に記載の無方向性電磁鋼板。
3. The component composition further comprises
Sn: 0.10% by mass or less,
3. The non-oriented electrical steel sheet according to 1 or 2 above, containing at least one selected from the group consisting of P: 0.10% by mass or less, and Sb: 0.10% by mass or less.

4.前記成分組成が、さらに、
Al:1.20質量%以下、
Ti:0.0100質量%以下、
Nb:0.0100質量%以下、および
V :0.0100質量%以下からなる群より選択される少なくとも1つを含む、上記1~3のいずれか一項に記載の無方向性電磁鋼板。
4. The component composition further comprises
Al: 1.20% by mass or less,
Ti: 0.0100% by mass or less,
4. The non-oriented electrical steel sheet according to any one of 1 to 3 above, containing at least one selected from the group consisting of Nb: 0.0100% by mass or less and V: 0.0100% by mass or less.

5.上記1~4のいずれか一項に記載の無方向性電磁鋼板を製造する方法であって、
鋼板に対して浸珪処理と拡散処理を施す浸珪拡散処理工程を含み、
前記浸珪処理を、窒素および希ガスの一方または両方と、SiCl4とを含み、かつ、N2分圧が70%以下である雰囲気中で実施し、
前記拡散処理を、N2分圧が70%以下の雰囲気中で実施する、無方向性電磁鋼板の製造方法。
5. A method for producing a non-oriented electrical steel sheet according to any one of 1 to 4 above,
Including a siliconizing and diffusion treatment process in which the steel plate is subjected to siliconizing treatment and diffusion treatment,
The siliconizing treatment is performed in an atmosphere containing one or both of nitrogen and a rare gas and SiCl 4 and having an N 2 partial pressure of 70% or less,
A method for producing a non-oriented electrical steel sheet, wherein the diffusion treatment is performed in an atmosphere having a partial pressure of N 2 of 70% or less.

本発明によれば、高周波域における鉄損がさらに低減された無方向性電磁鋼板を提供することが出来る。 According to the present invention, it is possible to provide a non-oriented electrical steel sheet with further reduced iron loss in a high frequency range.

本発明の一実施形態における無方向性電磁鋼板の構造を示す模式図である。1 is a schematic diagram showing the structure of a non-oriented electrical steel sheet in one embodiment of the present invention. FIG. 無方向性電磁鋼板の板厚方向における、Si含有量プロファイルの例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a Si content profile in the thickness direction of a non-oriented electrical steel sheet. 表層部と内層部におけるSi含有量の差(ΔSi)と鉄損:W10/1k(W/kg)との相関を示すグラフである。4 is a graph showing the correlation between the difference in Si content (ΔSi) between the surface layer portion and the inner layer portion and the iron loss: W 10/1k (W/kg). 浸珪処理時のN2分圧:p(%)と全板厚における平均N含有量:[N](質量%)との相関を示すグラフである。Fig. 2 is a graph showing the correlation between the N2 partial pressure during siliconizing treatment: p (%) and the average N content in the entire plate thickness: [N] (mass%). 全板厚における平均N含有量:[N](質量%)と鉄損:W10/1k(W/kg)との相関を示すグラフである。4 is a graph showing the correlation between the average N content in the total plate thickness: [N] (% by mass) and the iron loss: W 10/1k (W/kg). 無方向性電磁鋼板の板厚:tに対する前記表層部の合計厚さ:t1の比として定義される複層比と鉄損:W10/1k(W/kg)との相関を示すグラフである。A graph showing the correlation between the multi-layer ratio defined as the ratio of the total thickness of the surface layer to the thickness of the non-oriented electrical steel sheet: t and the iron loss: W 10/1k (W / kg) be.

以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。 A method for carrying out the present invention will be specifically described below. In addition, the following description shows examples of preferred embodiments of the present invention, and the present invention is not limited thereto.

[無方向性電磁鋼板]
図1は、本発明の一実施形態における無方向性電磁鋼板の構造を示す模式図である。また、図2は、無方向性電磁鋼板の板厚方向における、Si含有量プロファイルの例を示す模式図である。図2における縦軸は板厚方向の位置を示しており、0が無方向性電磁鋼板の一方の表面を、tが該無方向性電磁鋼板の他方の表面を、それぞれ表している。
[Non-oriented electrical steel sheet]
FIG. 1 is a schematic diagram showing the structure of a non-oriented electrical steel sheet in one embodiment of the present invention. Moreover, FIG. 2 is a schematic diagram showing an example of the Si content profile in the plate thickness direction of the non-oriented electrical steel sheet. The vertical axis in FIG. 2 indicates the position in the plate thickness direction, with 0 representing one surface of the non-oriented electrical steel sheet and t representing the other surface of the non-oriented electrical steel sheet.

図2に示したように、本発明の無方向性電磁鋼板1(以下、単に「鋼板」という場合がある)は、表面から板厚中心方向に向かってSi含有量が連続的に減少するSi含有量分布を有している。なお、前記Si含有量分布は、鋼板の板厚方向全域にわたってSi含有量が連続的に変化する分布であってもよいが、例えば、鋼板の表面側において連続的に変化し、板厚中央部では一定であるSi含有量分布であってもよい。 As shown in FIG. 2, the non-oriented electrical steel sheet 1 of the present invention (hereinafter sometimes simply referred to as "steel sheet") has a Si content in which the Si content continuously decreases from the surface toward the center of the thickness. It has a content distribution. The Si content distribution may be a distribution in which the Si content changes continuously throughout the thickness direction of the steel plate, but for example, the Si content changes continuously on the surface side of the steel plate, and the central portion of the plate thickness may have a constant Si content distribution.

ここで、Si含有量が全板厚の平均Si含有量以上の領域を表層部、Si含有量が全板厚の平均Si含有量未満の領域を内層部と定義すると、図1に示すように、本発明の無方向性電磁鋼板1は、内層部10と、内層部10の両側に設けられた表層部20からなるということができる。 Here, if the region where the Si content is equal to or more than the average Si content of the entire plate thickness is defined as the surface layer portion, and the region where the Si content is less than the average Si content of the entire plate thickness is defined as the inner layer portion, as shown in FIG. It can be said that the non-oriented electrical steel sheet 1 of the present invention comprises an inner layer portion 10 and surface layer portions 20 provided on both sides of the inner layer portion 10 .

[成分組成]
まず、本発明の無方向性電磁鋼板の成分組成について説明する。なお、以下の説明において、各元素の含有量を表す「%」は、特に断らない限り「質量%」を表すものとする。
[Component composition]
First, the chemical composition of the non-oriented electrical steel sheet of the present invention will be described. In the following description, "%" representing the content of each element represents "% by mass" unless otherwise specified.

本発明の無方向性電磁鋼板は、SiおよびNを含み、残部がFeおよび不可避不純物からなる成分組成を有する。 The non-oriented electrical steel sheet of the present invention has a chemical composition containing Si and N with the balance being Fe and unavoidable impurities.

(平均Si含有量)
本発明の無方向性電磁鋼板は、表層部と内層部のそれぞれが以下に述べる平均Si含有量を有する。ここで、Si含有量が全板厚の平均Si含有量以上の領域を表層部、Si含有量が全板厚の平均Si含有量未満の領域を内層部と定義する。
(Average Si content)
In the non-oriented electrical steel sheet of the present invention, each of the surface layer portion and the inner layer portion has the average Si content described below. Here, a region in which the Si content is equal to or greater than the average Si content in the entire plate thickness is defined as the surface layer portion, and a region in which the Si content is less than the average Si content in the entire plate thickness is defined as the inner layer portion.

表層部における平均Si含有量:2.5~7.0%
Siは、鋼板の電気抵抗を高め、渦電流損を低減する作用を有する元素である。表層部における平均Si含有量([Si]1)が2.5%未満であると、効果的に渦電流損を低減することができない。そのため、表層部における平均Si含有量は2.5%以上、好ましくは3.0%以上、より好ましくは3.5%超とする。一方、表層部における平均Si含有量が7.0%を超えると、飽和磁化の低下により磁束密度が低下することに加え、製造性も低下する。そのため、表層部におけるSi含有量は7.0%以下、好ましくは6.5%未満、より好ましくは6.0%以下とする。
Average Si content in surface layer: 2.5 to 7.0%
Si is an element that has the effect of increasing the electrical resistance of the steel sheet and reducing the eddy current loss. If the average Si content ([Si] 1 ) in the surface layer is less than 2.5%, eddy current loss cannot be effectively reduced. Therefore, the average Si content in the surface layer is 2.5% or more, preferably 3.0% or more, and more preferably more than 3.5%. On the other hand, if the average Si content in the surface layer portion exceeds 7.0%, not only the magnetic flux density decreases due to the decrease in saturation magnetization, but also the manufacturability decreases. Therefore, the Si content in the surface layer is 7.0% or less, preferably less than 6.5%, and more preferably 6.0% or less.

なお、上述したように、表層部における平均Si含有量が2.5~7.0%であるとは、無方向性電磁鋼板の一方の表面における表層部(第1の表層部)の平均Si含有量が2.5~7.0%であり、かつ、他方の表面における表層部(第2の表層部)の平均Si含有量が2.5~7.0%であることを意味する。一般的には、第1の表層部の成分組成と第2の表層部の成分組成は同一とすればよいが、両者が異なっていてもよい。 As described above, the average Si content in the surface layer portion of 2.5 to 7.0% means that the average Si content of the surface layer portion (first surface layer portion) on one surface of the non-oriented electrical steel sheet It means that the Si content is 2.5 to 7.0% and the average Si content of the surface layer portion (second surface layer portion) of the other surface is 2.5 to 7.0%. In general, the component composition of the first surface layer portion and the component composition of the second surface layer portion may be the same, but they may be different.

内層部における平均Si含有量:1.5~5.0%
内層部のSi含有量([Si]0)が1.5%未満であると高周波鉄損が増加する。そのため、内層部の平均Si含有量は1.5%以上とする。一方、内層部の平均Si含有量が5.0%を超えると、コアの打ち抜き時にコアが割れるといった問題が生じる。そのため、内層部の平均Si含有量は5.0%以下、好ましくは4.0%以下とする。
Average Si content in inner layer: 1.5 to 5.0%
If the Si content ([Si] 0 ) in the inner layer is less than 1.5%, the high-frequency core loss increases. Therefore, the average Si content of the inner layer is set to 1.5% or more. On the other hand, if the average Si content in the inner layer portion exceeds 5.0%, there arises a problem that the core cracks during punching. Therefore, the average Si content of the inner layer is set to 5.0% or less, preferably 4.0% or less.

(Si含有量の差)
前記表層部における平均Si含有量:[Si]1と、前記内層部における平均Si含有量:[Si]0との差([Si]1-[Si]0)として定義されるΔSiが、無方向性電磁鋼板の磁気特性に与える影響について検討するために、ΔSiが異なる無方向性電磁鋼板を以下の手順で作製し、その磁気特性を評価した。なお、板全厚の平均Siは3.3%となるように、[Si]0を2.5%以上で2.5%に近い値としつつ、複層比、表層Si、内層Siの制御を行った。複層比は、0.18~0.53の範囲であった。
(Difference in Si content)
ΔSi defined as the difference ([Si] 1 - [Si] 0 ) between the average Si content in the surface layer: [Si] 1 and the average Si content in the inner layer: [Si] 0 In order to examine the effects on the magnetic properties of grain-oriented electrical steel sheets, non-oriented electrical steel sheets with different ΔSi were produced by the following procedure, and their magnetic properties were evaluated. In addition, the multilayer ratio, the surface layer Si, and the inner layer Si are controlled while setting [Si] 0 to a value close to 2.5% or more and close to 2.5% so that the average Si of the total plate thickness is 3.3%. did The multilayer ratio ranged from 0.18 to 0.53.

まず、Si:2.5%、N:0.0015%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延鋼板とした。前記熱延鋼板に対して、950℃×30sの熱延板焼鈍を施し、その後、前記熱延板焼鈍後の鋼板を冷間圧延し、板厚:0.2mmの冷延鋼板とした。次に、前記冷延鋼板に、浸珪拡散処理を施してΔSiが1.5~4.5%の無方向性電磁鋼板を作製した。前記浸珪処理においては、まず、N2分圧70%、SiCl4分圧15%、Ar分圧15%の雰囲気中、温度1200℃で浸珪処理を施した後、SiCl4分圧分をArで置換し、N2分圧70%、Ar分圧30%の雰囲気中で拡散処理を施した。なお、ΔSiが5.0%の無方向性電磁鋼板の製造も試みたが、製造中に鋼板が破断した。 First, a steel slab having a chemical composition containing Si: 2.5%, N: 0.0015%, and the balance being Fe and unavoidable impurities was hot-rolled into a hot-rolled steel sheet. The hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950° C.×30 s, and then the steel sheet after the hot-rolled sheet annealing was cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.2 mm. Next, the cold-rolled steel sheets were subjected to silicon diffusion treatment to produce non-oriented electrical steel sheets having a ΔSi of 1.5 to 4.5%. In the siliconizing treatment, first, siliconizing treatment is performed at a temperature of 1200° C. in an atmosphere of 70% N 2 partial pressure, 15% SiCl 4 partial pressure, and 15% Ar partial pressure, and then SiCl 4 partial pressure is removed. After substitution with Ar, diffusion treatment was performed in an atmosphere of N 2 partial pressure of 70% and Ar partial pressure of 30%. An attempt was made to produce a non-oriented electrical steel sheet with a ΔSi of 5.0%, but the steel sheet broke during production.

また、Si:2.8~3.2%、N:0.0015%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブを使用した点以外は同様の条件で、ΔSiが0.2~1.0%の無方向性電磁鋼板を作製した。 In addition, under the same conditions except that a steel slab having a chemical composition containing Si: 2.8 to 3.2%, N: 0.0015%, and the balance being Fe and inevitable impurities, ΔSi was A non-oriented electrical steel sheet of 0.2 to 1.0% was produced.

得られた無方向性電磁鋼板のそれぞれから、幅30mm、長さ180mmの試験片を採取し、エプスタイン試験を行って磁気特性を評価した。前記エプスタイン試験では、試験片の長さ方向が圧延方向(L方向)となるように採取したL方向試験片と、試験片の長さ方向が圧延直角方向(C方向)となるように採取したC方向試験片を等量用い、L方向とC方向における磁気特性の平均値を評価した。 A test piece having a width of 30 mm and a length of 180 mm was taken from each of the obtained non-oriented electrical steel sheets, and the Epstein test was performed to evaluate the magnetic properties. In the Epstein test, an L-direction test piece was taken so that the length direction of the test piece was in the rolling direction (L direction), and a test piece was taken so that the length direction was perpendicular to the rolling direction (C direction). Equal amounts of the C-direction test pieces were used to evaluate the average values of the magnetic properties in the L-direction and the C-direction.

図3に、表層部における平均Si含有量:[Si]1と、前記内層部における平均Si含有量:[Si]0との差([Si]1-[Si]0)として定義されるΔSi(質量%)と、1.0T、1kHzにおける鉄損:W10/1k(W/kg)との相関を示す。 In FIG. 3, ΔSi defined as the difference ([Si] 1 - [Si] 0 ) between the average Si content in the surface layer: [Si] 1 and the average Si content in the inner layer: [Si] 0 (% by mass) and iron loss at 1.0 T, 1 kHz: W 10/1k (W/kg).

図3に示した結果から分かるように、ΔSiが0.5質量%以上、4.0質量%以下であれば、鉄損を低く抑えることができる。これは、次のような理由によると考えられる。すなわち、表層部のSi含有量が内層部に比べて高い場合、表層部の透磁率が内層部より高くなる。その結果、磁束が表層部に集中し、渦電流損が低下する。しかし、ΔSiが過度に大きいと、それにともなって表層部と内層部との格子定数の差および磁歪の差が大きくなる。その結果、鋼板を磁化した際にかかる応力が増大するため、ヒステリシス損が増加する。 As can be seen from the results shown in FIG. 3, iron loss can be kept low when ΔSi is 0.5% by mass or more and 4.0% by mass or less. This is considered to be due to the following reasons. That is, when the Si content of the surface layer is higher than that of the inner layer, the magnetic permeability of the surface layer is higher than that of the inner layer. As a result, the magnetic flux concentrates on the surface layer and the eddy current loss is reduced. However, if ΔSi is excessively large, the difference in lattice constant and the difference in magnetostriction between the surface layer portion and the inner layer portion increase accordingly. As a result, the stress applied when the steel sheet is magnetized increases, resulting in an increase in hysteresis loss.

以上の理由により、本発明では表層部における平均Si含有量:[Si]1と、前記内層部における平均Si含有量:[Si]0との差([Si]1-[Si]0)として定義されるΔSiを0.5~4.0質量%とする。 For the above reasons, in the present invention, the difference between the average Si content in the surface layer: [Si] 1 and the average Si content in the inner layer: [Si] 0 ([Si] 1 - [Si] 0 ) is The defined ΔSi is 0.5 to 4.0% by mass.

平均N含有量:0.0020%以下
本発明においては、無方向性電磁鋼板の全板厚における平均N含有量:[N]を0.0020%以下とすることが重要である。以下、その限定理由について説明する。
Average N content: 0.0020% or less In the present invention, it is important to set the average N content: [N] in the total plate thickness of the non-oriented electrical steel sheet to 0.0020% or less. The reason for the limitation will be described below.

無方向性電磁鋼板のさらなる鉄損低減を図るべく、本発明者らが検討を進めていたところ、鉄損が大きい無方向性電磁鋼板ではN量が高いこと、およびスラブ段階でのN量が低い場合でも、浸珪拡散処理後の無方向性電磁鋼板におけるN量が高くなっていることが分かった。すなわち、浸珪拡散処理を施すことにより、鋼板が窒化され、鋼板中のN含有量が顕著に増加していることが分かった。 In order to further reduce the iron loss of non-oriented electrical steel sheets, the present inventors have been studying, and found that the amount of N is high in non-oriented electrical steel sheets with large iron loss, and that the amount of N in the slab stage is high. It was found that even when the N content is low, the N content in the non-oriented electrical steel sheet after the siliconization diffusion treatment is high. That is, it was found that the steel sheet was nitrided by the siliconizing diffusion treatment, and the N content in the steel sheet was significantly increased.

そこで、浸珪拡散処理を施した後の鋼板における磁気特性とN含有量の関係を調査するため、様々なN2分圧で浸珪拡散処理を行って無方向性電磁鋼板を作製し、得られた無方向性電磁鋼板の平均N含有量と、高周波域における鉄損との間の相関を調査した。具体的な手順を以下に説明する。 Therefore, in order to investigate the relationship between the magnetic properties and the N content of steel sheets after siliconization diffusion treatment, siliconization diffusion treatment was performed at various N2 partial pressures to produce non-oriented electrical steel sheets. The correlation between the average N content of the non-oriented electrical steel sheets obtained and the iron loss in the high frequency region was investigated. Specific procedures are described below.

まず、Si:2.0%、N:0.0014%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延鋼板とした。次いで、前記熱延鋼板に対して、950℃×30sの熱延板焼鈍を施した。その後、前記熱延板焼鈍後の鋼板を冷間圧延し、板厚:0.2mmの冷延鋼板とした。次に、前記冷延鋼板に、種々のN2分圧:pで浸珪拡散処理を施して無方向性電磁鋼板を得た。前記浸珪拡散処理においては、まず、SiCl4分圧:10.0%、N2分圧:p、残部Arからなる雰囲気中、1200℃で化学気相蒸着法(CVD)法により浸珪処理を施して鋼板表面にSiを堆積させ、次いで、SiCl4の分をArで置換した雰囲気中、1200℃で拡散処理を施してSiを拡散させた。前記無方向性電磁鋼板のΔSiは1.0%、後述する複層比は0.3とした。 First, a steel slab having a chemical composition containing Si: 2.0%, N: 0.0014%, and the balance being Fe and unavoidable impurities was hot-rolled to obtain a hot-rolled steel sheet. Then, the hot-rolled steel sheet was subjected to hot-rolled steel annealing at 950°C for 30 seconds. Thereafter, the steel sheet after the hot-rolled sheet annealing was cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.2 mm. Next, the cold-rolled steel sheets were subjected to siliconizing diffusion treatment at various N2 partial pressures: p to obtain non-oriented electrical steel sheets. In the siliconizing diffusion treatment, first, the siliconizing treatment is performed by a chemical vapor deposition (CVD) method at 1200° C. in an atmosphere of SiCl4 partial pressure: 10.0%, N2 partial pressure: p, balance Ar. Si was deposited on the surface of the steel sheet, and then diffusion treatment was performed at 1200° C. in an atmosphere in which SiCl 4 was replaced with Ar to diffuse Si. The ΔSi of the non-oriented electrical steel sheet was set to 1.0%, and the multi-layer ratio described later was set to 0.3.

その後、最終的に得られた無方向性電磁鋼板の全板厚における平均N含有量:[N]を、ICP(Inductively Coupled Plasma)発光分析法により測定した。また、得られた無方向性電磁鋼板のそれぞれから、幅30mm、長さ180mmの試験片を採取し、エプスタイン試験を行って磁気特性を評価した。前記エプスタイン試験では、試験片の長さ方向が圧延方向(L方向)となるように採取したL方向試験片と、試験片の長さ方向が圧延直角方向(C方向)となるように採取したC方向試験片を等量用い、L方向とC方向における磁気特性の平均値を評価した。 After that, the average N content: [N] in the total plate thickness of the finally obtained non-oriented electrical steel sheet was measured by ICP (Inductively Coupled Plasma) emission spectrometry. A test piece having a width of 30 mm and a length of 180 mm was taken from each of the obtained non-oriented electrical steel sheets, and the Epstein test was performed to evaluate the magnetic properties. In the Epstein test, an L-direction test piece was taken so that the length direction of the test piece was in the rolling direction (L direction), and a test piece was taken so that the length direction was perpendicular to the rolling direction (C direction). Equal amounts of the C-direction test pieces were used to evaluate the average values of the magnetic properties in the L-direction and the C-direction.

図4は、浸珪拡散処理時のN2分圧:p(%)と全板厚における平均N含有量:[N](質量%)との相関を示すグラフである。また、図5は、全板厚における平均N含有量:[N](質量%)と鉄損:W10/1k(W/kg)との相関を示すグラフである。 FIG. 4 is a graph showing the correlation between the N 2 partial pressure: p (%) during the siliconizing diffusion treatment and the average N content: [N] (mass %) in the entire sheet thickness. Moreover, FIG. 5 is a graph showing the correlation between the average N content: [N] (% by mass) and the iron loss: W 10/1k (W/kg) in the entire sheet thickness.

図4に示した結果から、浸珪拡散処理時のN2分圧:pと、無方向性電磁鋼板の平均N含有量:[N]との間に相関があることが分かる。そして、図5に示した結果から、無方向性電磁鋼板の平均N含有量:[N]が高いほど、鉄損が増大することが分かる。これは、[N]が高いほど、固溶したNによる結晶格子の歪みが増大し、磁壁移動が妨げられるためであると考えられる。そのため、本発明では、鉄損を低減するために[N]を0.0020%以下とする。また、図4より、[N]を0.0020%以下とするためには、pを70%以下とすればよいことが分かる。 From the results shown in FIG. 4, it can be seen that there is a correlation between the N2 partial pressure during the siliconizing diffusion treatment: p and the average N content of the non-oriented electrical steel sheet: [N]. From the results shown in FIG. 5, it can be seen that the iron loss increases as the average N content: [N] of the non-oriented electrical steel sheet increases. This is probably because the higher the [N], the greater the distortion of the crystal lattice due to dissolved N, which hinders domain wall motion. Therefore, in the present invention, [N] is set to 0.0020% or less in order to reduce iron loss. Further, from FIG. 4, it can be seen that p should be 70% or less in order to make [N] 0.0020% or less.

以上の結果より、本発明の一実施形態における無方向性電磁鋼板は、SiおよびNを含み、残部がFeおよび不可避不純物からなる成分組成を有し、かつ、下記(a)~(c)の条件を満たすものとする。
(a)全板厚の平均N含有量:[N]が0.0020質量%以下。
(b)Si含有量が全板厚の平均Si含有量以上の領域として定義される表層部における平均Si含有量:[Si]1が2.5~7.0質量%。
(c)Si含有量が全板厚の平均Si含有量未満の領域として定義される内層部における平均Si含有量:[Si]0が1.5~5.0質量%。
From the above results, the non-oriented electrical steel sheet in one embodiment of the present invention has a chemical composition containing Si and N, the balance being Fe and inevitable impurities, and having the following (a) to (c) shall meet the conditions.
(a) Average N content in total plate thickness: [N] is 0.0020% by mass or less.
(b) Average Si content in the surface layer portion defined as a region where the Si content is equal to or higher than the average Si content of the entire sheet thickness: [Si] 1 is 2.5 to 7.0% by mass.
(c) Average Si content in the inner layer portion defined as a region where the Si content is less than the average Si content of the entire plate thickness: [Si] 0 is 1.5 to 5.0% by mass.

次に、本発明の無方向性電磁鋼板が任意に含有できる任意添加元素について説明する。なお、以下に説明する任意添加元素は、添加が必須ではない元素であるため、各元素の含有量の下限は0%であってよい。 Next, optional additive elements that the non-oriented electrical steel sheet of the present invention can optionally contain will be described. Note that the optional additive elements described below are elements that do not have to be added, so the lower limit of the content of each element may be 0%.

本発明の一実施形態においては、無方向性電磁鋼板の成分組成が、さらに任意にSn、P、およびSbからなる群より選択される少なくとも1つを含むことができる。 In one embodiment of the present invention, the chemical composition of the non-oriented electrical steel sheet may further optionally contain at least one selected from the group consisting of Sn, P, and Sb.

Sn:0.10%以下
Snを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損をさらに低下させることができる。また、Snを添加することにより、鋼板の窒化を抑制し、鉄損の増加を抑制することができる。しかし、Sn含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Snを添加する場合、Sn含有量は0.10%以下とする。一方、Sn含有量の下限はとくに限定されないが、Snの添加効果を高めるという観点からは、Sn含有量を0.005%以上とすることが好ましい。
Sn: 0.10% or less By adding Sn, the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be further reduced. Further, by adding Sn, nitriding of the steel sheet can be suppressed, and an increase in iron loss can be suppressed. However, when the Sn content exceeds 0.10%, the effect is saturated, and in addition, the manufacturability is lowered and the cost is increased. Therefore, when Sn is added, the Sn content should be 0.10% or less. On the other hand, the lower limit of the Sn content is not particularly limited, but from the viewpoint of enhancing the effect of adding Sn, the Sn content is preferably 0.005% or more.

P:0.10%以下
Snと同様に、Pを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損をさらに低下させることができる。しかし、P含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下を招く。そのため、Pを添加する場合、P含有量は0.10%以下とする。一方、P含有量の下限はとくに限定されないが、Pの添加効果を高めるという観点からは、P含有量を0.010%以上とすることが好ましい。
P: 0.10% or less Similar to Sn, the addition of P greatly improves the texture, improves the magnetic flux density, and further reduces the hysteresis loss. However, when the P content exceeds 0.10%, the effect is saturated and the manufacturability is lowered. Therefore, when P is added, the P content should be 0.10% or less. On the other hand, the lower limit of the P content is not particularly limited, but from the viewpoint of enhancing the effect of adding P, the P content is preferably 0.010% or more.

Sb:0.10%以下
SnおよびPと同様に、Sbを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損をさらに低下させることができる。しかし、Sb含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Sbを添加する場合、Sn含有量は0.10%以下とする。一方、Sb含有量の下限はとくに限定されないが、Sbの添加効果を高めるという観点からは、Sb含有量を0.005%以上とすることが好ましい。
Sb: 0.10% or less As with Sn and P, the addition of Sb greatly improves the texture, improves the magnetic flux density, and further reduces the hysteresis loss. However, when the Sb content exceeds 0.10%, the effect is saturated, and in addition, the manufacturability is lowered and the cost is increased. Therefore, when adding Sb, the Sn content should be 0.10% or less. On the other hand, the lower limit of the Sb content is not particularly limited, but from the viewpoint of increasing the effect of adding Sb, the Sb content is preferably 0.005% or more.

本発明の他の実施形態においては、無方向性電磁鋼板の成分組成が、さらに任意にAl、Ti、Nb、およびVからなる群より選択される少なくとも1つを含むことができる。 In another embodiment of the present invention, the chemical composition of the non-oriented electrical steel sheet may further optionally contain at least one selected from the group consisting of Al, Ti, Nb, and V.

Al:1.20%以下
Alは、固有抵抗を上げる作用を有する元素であり、Alを添加することによって渦電流損を低下させ、さらに低鉄損化することができる。しかし、Al含有量が1.20%を超えると、靭性が劣化する。そのため、Alを添加する場合、Al含有量を1.20%以下とする。一方、Al含有量の下限はとくに限定されないが、Alの添加効果を高めるという観点からは、Al添加量を0.01%以上とすることが好ましい。
Al: 1.20% or less Al is an element that has the effect of increasing specific resistance, and by adding Al, eddy current loss can be reduced, and iron loss can be further reduced. However, when the Al content exceeds 1.20%, the toughness deteriorates. Therefore, when adding Al, the Al content is made 1.20% or less. On the other hand, the lower limit of the Al content is not particularly limited, but from the viewpoint of enhancing the effect of adding Al, the amount of Al added is preferably 0.01% or more.

Ti:0.0100%以下
Tiは鋼中のNやCと反応し、窒化物や炭化物を生成する。そのため、Tiを添加することにより結晶粒が細粒化し、さらなる低鉄損化が可能である。しかし、Tiを多量に添加すると、窒化物、炭化物が過剰に生成することによるヒステリシス損の増加のため、かえって鉄損が高くなる。そのため、Tiを添加する場合、Ti含有量を0.0100%以下とする。一方、Ti含有量の下限はとくに限定されないが、Tiの添加効果を高めるという観点からは、Ti含有量を0.0030%以上とすることが好ましい。
Ti: 0.0100% or less Ti reacts with N and C in steel to form nitrides and carbides. Therefore, the addition of Ti makes the crystal grains finer, making it possible to further reduce iron loss. However, if a large amount of Ti is added, the hysteresis loss increases due to excessive formation of nitrides and carbides, resulting in an increase in core loss. Therefore, when Ti is added, the Ti content is made 0.0100% or less. On the other hand, the lower limit of the Ti content is not particularly limited, but from the viewpoint of increasing the effect of adding Ti, the Ti content is preferably 0.0030% or more.

Nb:0.0100%以下
Nbは鋼中のNやCと反応し、窒化物や炭化物を生成する。そのため、Nbを添加することにより結晶粒が細粒化し、さらなる低鉄損化が可能である。しかし、Nbを多量に添加すると、窒化物、炭化物が過剰に生成することによるヒステリシス損の増加のため、かえって鉄損が高くなる。そのため、Nbを添加する場合、Nb含有量を0.0100%以下とする。一方、Nb含有量の下限はとくに限定されないが、Nbの添加効果を高めるという観点からは、Nb含有量を0.0030%以上とすることが好ましい。
Nb: 0.0100% or less Nb reacts with N and C in steel to form nitrides and carbides. Therefore, the addition of Nb makes the crystal grains finer, making it possible to further reduce iron loss. However, when a large amount of Nb is added, hysteresis loss is increased due to excessive formation of nitrides and carbides, resulting in an increase in core loss. Therefore, when Nb is added, the Nb content is made 0.0100% or less. On the other hand, the lower limit of the Nb content is not particularly limited, but from the viewpoint of increasing the effect of adding Nb, the Nb content is preferably 0.0030% or more.

V:0.0100%以下
Vは鋼中のNやCと反応し、窒化物や炭化物を生成する。そのため、Vを添加することによって結晶粒が細粒化し、さらなる低鉄損化が可能である。しかし、Vを多量に添加すると、窒化物、炭化物が過剰に生成されることによるヒステリシス損の増加のため、かえって鉄損が増加する。そのため、Vを添加する場合、V含有量を0.0100%以下とする。一方、V含有量の下限はとくに限定されないが、Vの添加効果を高めるという観点からは、V含有量を0.0030%以上とすることが好ましい。
V: 0.0100% or less V reacts with N and C in steel to form nitrides and carbides. Therefore, the addition of V makes the crystal grains finer, making it possible to further reduce iron loss. However, if a large amount of V is added, the hysteresis loss is increased due to excessive formation of nitrides and carbides, so the core loss is increased. Therefore, when V is added, the V content is made 0.0100% or less. On the other hand, the lower limit of the V content is not particularly limited, but from the viewpoint of increasing the effect of adding V, the V content is preferably 0.0030% or more.

[板厚]
無方向性電磁鋼板が薄すぎると、冷間圧延や焼鈍などの製造過程における取り扱いが困難となり、製造コストが増大する。そのため、無方向性電磁鋼板の板厚tは0.01mm以上とする。一方、鋼板が厚すぎると渦電流損が大きくなり、全鉄損が増加する。そのため、tは0.35mm以下とする。
[Thickness]
If the non-oriented electrical steel sheet is too thin, it becomes difficult to handle in manufacturing processes such as cold rolling and annealing, resulting in increased manufacturing costs. Therefore, the thickness t of the non-oriented electrical steel sheet is set to 0.01 mm or more. On the other hand, if the steel plate is too thick, the eddy current loss increases and the total iron loss increases. Therefore, t is set to 0.35 mm or less.

[複層比]
次に、無方向性電磁鋼板の板厚:tに対する表層部の合計厚さ:t1の比として定義される複層比t1/tが磁気特性に与える影響について検討するために、複層比が異なる無方向性電磁鋼板を以下の手順で作製し、その磁気特性を評価した。ここで、「表層部の合計厚さ」とは、無方向性電磁鋼板の両面に設けられている表層部の厚さの和を指す。また、表層部とは、上述したように、Si含有量が全板厚の平均Si含有量以上の領域として定義される。
[multilayer ratio]
Next, in order to examine the influence of the multi-layer ratio t 1 /t , which is defined as the ratio of the total thickness of the surface layer: t to the thickness of the non-oriented electrical steel sheet: t, on the magnetic properties, the multi-layer Non-oriented electrical steel sheets with different ratios were produced by the following procedure, and their magnetic properties were evaluated. Here, the "total thickness of the surface layers" refers to the sum of the thicknesses of the surface layers provided on both sides of the non-oriented electrical steel sheet. Further, the surface layer portion is defined as a region in which the Si content is equal to or higher than the average Si content of the entire plate thickness, as described above.

まず、Si:2.0%、N:0.0018%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延鋼板とした。前記熱延鋼板に対して、950℃×30sの熱延板焼鈍を施し、その後、前記熱延板焼鈍後の鋼板を冷間圧延し、板厚:0.1mmの冷延鋼板とした。次に、前記冷延鋼板に、浸珪拡散処理を施して無方向性電磁鋼板を得た。前記浸珪拡散処理においては、まず、N2分圧70%、SiCl4分圧30%の雰囲気中、温度1200℃でCVD法により浸珪処理を施し、鋼板表面にSiを堆積させた後、SiCl4分圧分をArに置換した雰囲気中、1200℃で拡散処理を行ってSiを拡散させた。本実験では、前記拡散処理の時間を調整することにより、種々の複層比を有する無方向性電磁鋼板を作製した。前記無方向性電磁鋼板の表層部における平均Si含有量:[Si]1は4.5%、ΔSiを2.5%とした。 First, a steel slab having a chemical composition containing Si: 2.0%, N: 0.0018%, and the balance being Fe and unavoidable impurities was hot-rolled to obtain a hot-rolled steel sheet. The hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950° C.×30 s, and then the steel sheet after the hot-rolled sheet annealing was cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.1 mm. Next, the cold-rolled steel sheet was subjected to a siliconizing diffusion treatment to obtain a non-oriented electrical steel sheet. In the siliconizing diffusion treatment, first, siliconizing treatment is performed by the CVD method at a temperature of 1200° C. in an atmosphere of N 2 partial pressure of 70% and SiCl 4 partial pressure of 30% to deposit Si on the surface of the steel sheet. Diffusion treatment was performed at 1200° C. in an atmosphere in which the partial pressure of SiCl 4 was replaced with Ar to diffuse Si. In this experiment, non-oriented electrical steel sheets having various multi-layer ratios were produced by adjusting the diffusion treatment time. The average Si content in the surface layer of the non-oriented electrical steel sheet: [Si] 1 was 4.5%, and ΔSi was 2.5%.

得られた無方向性電磁鋼板のそれぞれから、幅30mm、長さ180mmの試験片を採取し、エプスタイン試験を行って磁気特性を評価した。前記エプスタイン試験では、試験片の長さ方向が圧延方向(L方向)となるように採取したL方向試験片と、試験片の長さ方向が圧延直角方向(C方向)となるように採取したC方向試験片を等量用い、L方向とC方向における磁気特性の平均値を評価した。 A test piece having a width of 30 mm and a length of 180 mm was taken from each of the obtained non-oriented electrical steel sheets, and the Epstein test was performed to evaluate the magnetic properties. In the Epstein test, an L-direction test piece was taken so that the length direction of the test piece was in the rolling direction (L direction), and a test piece was taken so that the length direction was perpendicular to the rolling direction (C direction). Equal amounts of the C-direction test pieces were used to evaluate the average values of the magnetic properties in the L-direction and the C-direction.

図6に、複層比(t1/t)と鉄損W10/1k(W/kg)との相関を示す。この結果より、複層比が0.10~0.70の場合に鉄損が大きく低下していることがわかる。この鉄損の低下は、以下の理由によると考えられる。まず、複層比が0.10未満である場合、高抵抗である表層部の割合が低いため、表層部に集中する渦電流を効果的に低減することができない。一方、複層比が0.70を超える場合には表層部と内層部の透磁率差が小さくなるため、内層部にまで磁束が浸透し、内層部からも渦電流損が発生する。したがって、複層比を0.10~0.70とすることによって鉄損を低減できる。以上の理由から、本願発明では複層比(t1/t)を0.10~0.70とする。 FIG. 6 shows the correlation between the multi-layer ratio (t 1 /t) and iron loss W 10/1k (W/kg). From this result, it can be seen that the iron loss is greatly reduced when the multi-layer ratio is 0.10 to 0.70. This reduction in iron loss is considered to be due to the following reasons. First, when the multi-layer ratio is less than 0.10, the eddy current concentrated in the surface layer portion cannot be effectively reduced because the ratio of the surface layer portion with high resistance is low. On the other hand, when the layer ratio exceeds 0.70, the magnetic permeability difference between the surface layer and the inner layer becomes small, so that the magnetic flux penetrates into the inner layer and eddy current loss also occurs from the inner layer. Therefore, iron loss can be reduced by setting the multi-layer ratio to 0.10 to 0.70. For the above reasons, the multi-layer ratio (t 1 /t) is set to 0.10 to 0.70 in the present invention.

[鉄損]
本発明においては、周波数:1kHz、最大磁束密度:1.0Tにおける鉄損(全鉄損):W10/1k(W/kg)と、前記板厚:t(mm)とが、下記(1)式を満たすことが好ましい。
10/1k≦15+138×t …(1)
[Iron loss]
In the present invention, the iron loss (total iron loss) at frequency: 1 kHz, maximum magnetic flux density: 1.0 T: W 10/1k (W/kg), and the plate thickness: t (mm) are defined as follows (1 ) is preferably satisfied.
W10 /1k ≦15+138×t (1)

無方向性電磁鋼板の鉄損が上記(1)式の関係を満たす場合、該無方向性電磁鋼板を用いて作製したステータコアの発熱が抑制され、その結果、モータ効率をさらに向上させることができる。なお、鉄損は板厚に依存するため、上記(1)式では板厚の影響を考慮して鉄損の上限値を規定している。 When the iron loss of the non-oriented electrical steel sheet satisfies the relationship of the above formula (1), the heat generation of the stator core manufactured using the non-oriented electrical steel sheet is suppressed, and as a result, the motor efficiency can be further improved. . Since the iron loss depends on the plate thickness, the above formula (1) defines the upper limit of the iron loss in consideration of the effect of the plate thickness.

電磁鋼板では、通常、磁束密度を高くすると鉄損が増大してしまうため、一般的なモータコアは磁束密度が1.0T程度となるように設計される。これに対して、本発明の無方向性電磁鋼板は、上述したように鋼板の表層部と内層部の成分組成および複層比を制御することにより、相反する性質である高磁束密度と低鉄損とを両立させている。 In an electromagnetic steel sheet, iron loss usually increases when the magnetic flux density is increased, so a general motor core is designed so that the magnetic flux density is about 1.0T. On the other hand, the non-oriented electrical steel sheet of the present invention has a high magnetic flux density and a low iron content, which are contradictory properties, by controlling the chemical composition and multilayer ratio of the surface layer portion and the inner layer portion of the steel sheet as described above. It is compatible with loss.

[製造方法]
本発明の無方向性電磁鋼板は、特に限定されないが、浸珪法を用いて製造することができる。浸珪法を用いる場合は、例えば、Si含有量が厚さ方向に一定である鋼板に対して浸珪拡散処理を施すことにより、鋼板両面の表層部のSi含有量を高めることができる。浸珪拡散処理の方法は特に限定されず、任意の方法で行うことができる。例えば、CVD法により鋼板表面にSiを堆積させる浸珪処理を行い、その後、熱処理を行ってSiを鋼板の内部へ拡散させる拡散処理を行うことができる。表層部と内層部のSi含有量は、CVD法によるSiの堆積量や、拡散処理のための熱処理条件を調整することによって制御できる。CVD法による浸珪拡散処理で得られる無方向性電磁鋼板は、例えば、図2に示したような板厚方向におけるSi含有量プロファイルを有する。
[Production method]
The non-oriented electrical steel sheet of the present invention is not particularly limited, but can be produced using a siliconizing method. When the siliconizing method is used, for example, a steel sheet having a constant Si content in the thickness direction is subjected to a siliconizing diffusion treatment to increase the Si content in the surface layers on both sides of the steel sheet. The method of siliconizing diffusion treatment is not particularly limited, and any method can be used. For example, it is possible to perform a siliconizing treatment for depositing Si on the surface of the steel sheet by a CVD method, and then perform a diffusion treatment for diffusing Si into the interior of the steel sheet by performing heat treatment. The Si content in the surface layer portion and the inner layer portion can be controlled by adjusting the deposition amount of Si by the CVD method and the heat treatment conditions for the diffusion treatment. A non-oriented electrical steel sheet obtained by siliconizing diffusion treatment by the CVD method has, for example, a Si content profile in the sheet thickness direction as shown in FIG.

従来、浸珪拡散処理は、コスト低減のため、N2分圧が100%に近い雰囲気で行われていた。そのような高N2分圧雰囲気で浸珪拡散処理を行うことにより鋼板が窒化され、鋼板中のN含有量が顕著に増加する。そこで本発明では、N2分圧が70%以下である雰囲気中で浸珪処理と拡散処理を実施する。これにより、得られる無方向性電磁鋼板の平均N含有量:[N]を0.0020質量%以下とし、その結果、鉄損を低減することができる。 Conventionally, the siliconizing diffusion treatment has been performed in an atmosphere with an N 2 partial pressure close to 100% in order to reduce costs. By performing the siliconizing diffusion treatment in such a high N2 partial pressure atmosphere, the steel sheet is nitrided and the N content in the steel sheet is significantly increased. Therefore, in the present invention, the siliconizing treatment and the diffusion treatment are performed in an atmosphere having an N2 partial pressure of 70% or less. Thereby, the average N content: [N] of the obtained non-oriented electrical steel sheet is set to 0.0020% by mass or less, and as a result, iron loss can be reduced.

より具体的には、窒素および希ガスの一方または両方と、SiCl4とを含み、かつ、N2分圧が70%以下である雰囲気中で前記浸珪処理を実施する。前記浸珪処理時の雰囲気は、窒素および希ガスの一方または両方と、SiCl4とからなり、かつ、N2分圧が70%以下である雰囲気であってよい。 More specifically, the siliconizing treatment is performed in an atmosphere containing one or both of nitrogen and a rare gas and SiCl 4 and having an N 2 partial pressure of 70% or less. The atmosphere during the siliconizing treatment may be an atmosphere comprising one or both of nitrogen and a rare gas, and SiCl 4 , and having an N 2 partial pressure of 70% or less.

浸珪処理に要する時間は、Si源であるSiCl4の分圧に依存する。したがって、SiCl4分圧は、Si含有量や製造でかけられる時間に応じて適宜調整すればよい。 The time required for the siliconizing treatment depends on the partial pressure of SiCl 4 as the Si source. Therefore, the SiCl 4 partial pressure may be appropriately adjusted according to the Si content and the time required for production.

また、前記拡散処理は、N2分圧が70%以下の雰囲気中で実施する。前記拡散処理は、窒素および希ガスの一方または両方からなり、かつ、N2分圧が70%以下である雰囲気中で実施することが好ましい。なお、浸珪処理時と拡散処理時のN2分圧は、同じであっても異なっていてもよい。 Moreover, the diffusion treatment is performed in an atmosphere having a partial pressure of N 2 of 70% or less. The diffusion treatment is preferably performed in an atmosphere containing one or both of nitrogen and a rare gas and having an N2 partial pressure of 70% or less. Incidentally, the N2 partial pressures during the siliconizing treatment and the diffusion treatment may be the same or different.

前記希ガスとしては、例えば、Ar、He、およびNeからなる群より選択される少なくとも1つを用いること好ましい。 At least one selected from the group consisting of Ar, He, and Ne, for example, is preferably used as the rare gas.

(実施例1)
本発明の効果を確認するために、以下に述べる手順で無方向性電磁鋼板を製造し、その磁気特性を評価した。
(Example 1)
In order to confirm the effects of the present invention, non-oriented electrical steel sheets were produced by the procedure described below, and their magnetic properties were evaluated.

(鋼スラブ)
まず、Si:2.0%~3.8%、N:0.0005%~0.0015%、および任意にSn、P、およびSbからなる群より選択される少なくとも1つ含み、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブを用意した。ただし、比較のため、比較例No.21においては、N含有量が0.0023%である鋼スラブを使用した。また、使用した鋼スラブにおけるSi含有量は、最終的に得られた無方向性電磁鋼板の内層部における平均Si含有量:[Si]0に等しい。また、使用した鋼スラブにおけるSn、P、およびSbの含有量は、製造過程を通じて変化しないため、最終的に得た無方向性電磁鋼板における含有量に等しい。
(steel slab)
First, Si: 2.0% to 3.8%, N: 0.0005% to 0.0015%, and optionally at least one selected from the group consisting of Sn, P, and Sb, and the balance is Fe and unavoidable impurities. However, for comparison, Comparative Example No. 21, a steel slab with an N content of 0.0023% was used. Also, the Si content in the steel slab used is equal to the average Si content in the inner layer portion of the finally obtained non-oriented electrical steel sheet: [Si] 0 . Also, the contents of Sn, P, and Sb in the steel slab used do not change throughout the manufacturing process, and thus are equal to the contents in the finally obtained non-oriented electrical steel sheet.

(熱間圧延、熱延板焼鈍)
前記鋼スラブを熱間圧延して熱延鋼板とし、次いで、前記熱延鋼板に950℃×30sの熱延板焼鈍を施した。
(Hot rolling, hot-rolled sheet annealing)
The steel slab was hot-rolled into a hot-rolled steel sheet, and then the hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950°C for 30s.

(冷間圧延)
次に、前記熱延板焼鈍後の熱延鋼板に冷間圧延を施して、表1に示した板厚tの冷延鋼板とした。
(cold rolling)
Next, the hot-rolled steel sheet after the hot-rolled sheet annealing was cold-rolled to obtain a cold-rolled steel sheet having a thickness t shown in Table 1.

(浸珪拡散処理)
得られた冷延鋼板に、浸珪拡散処理を施して無方向性電磁鋼板を得た。具体的には、まず、N2および希ガスの一方または両方と、SiCl4とからなる雰囲気中、1200℃でCVD法により浸珪処理を施して鋼板表面にSiを堆積させた。前記浸珪処理時の雰囲気の組成は表1に示したとおりとした。次いで、前記雰囲気に含まれる成分の内、SiCl4をN2または希ガスで置換した雰囲気中、1200℃で拡散処理(熱処理)を施して、鋼板表面に堆積しているSiを内部へ拡散させた。なお、前記SiCl4の置換には、浸珪処理雰囲気が希ガスを含む場合には同じ種類の希ガスを使用し、浸珪処理雰囲気が希ガスを含まない場合にはN2を使用した。
(Siliconizing diffusion treatment)
The obtained cold-rolled steel sheet was subjected to a siliconizing diffusion treatment to obtain a non-oriented electrical steel sheet. Specifically, first, a siliconizing treatment was performed by a CVD method at 1200° C. in an atmosphere containing one or both of N 2 and a rare gas and SiCl 4 to deposit Si on the surface of the steel sheet. The composition of the atmosphere during the siliconizing treatment was as shown in Table 1. Next, diffusion treatment (heat treatment) is performed at 1200° C. in an atmosphere in which SiCl 4 of the components contained in the atmosphere is replaced with N 2 or a rare gas to diffuse Si deposited on the surface of the steel sheet to the inside. Ta. For the replacement of SiCl 4 , the same kind of rare gas was used when the siliconizing atmosphere contained a rare gas, and N 2 was used when the siliconizing atmosphere did not contain a rare gas.

ただし、比較例No.21、23、および24の鋼板は、冷間圧延工程において破断したため、冷間圧延より後の処理を行わなかった。これらの鋼板は、Sn、P、Sbの少なくとも1つの含有量が過剰であったため破断したと考えられる。 However, the steel sheets of Comparative Examples Nos. 21, 23, and 24 were not subjected to treatment after cold rolling because they were broken during the cold rolling process. It is believed that these steel sheets broke because the content of at least one of Sn, P, and Sb was excessive.

また、比較例No.40の鋼板は、浸珪拡散処理後のコイル巻き取り時に破断したので、製品の評価は行わなかった。No.40の鋼板は、浸珪処理後における表層部の平均Si含有量が高いため、破断したと考えられる。 Also, Comparative Example No. The steel sheet No. 40 was broken during coil winding after the siliconization diffusion treatment, so the product was not evaluated. No. Steel sheet No. 40 is considered to have broken because the average Si content in the surface layer after siliconizing treatment was high.

(Si含有量・N含有量)
得られた無方向性電磁鋼板をカーボンモールドに埋め込み、EPMA(Electron Probe Micro Analyzer)を用いて板厚方向断面におけるSi含有量分布を測定した。得られたSi含有量分布から、無方向性電磁鋼板の全板厚におけるSi含有量の平均値を算出し、前記平均値よりもSi濃度が高い部分を表層部、低い部分を内層部とした。得られた結果から、表層部における平均Si含有量:[Si]1、内層部における平均Si含有量:[Si]0、およびΔSiを求めた。また、ICP発光分析法を用いて無方向性電磁鋼板の全板厚の平均N含有量:[N]を測定した。測定結果を表1に併記する。
(Si content/N content)
The obtained non-oriented electrical steel sheet was embedded in a carbon mold, and an EPMA (Electron Probe Micro Analyzer) was used to measure the Si content distribution in the cross section in the thickness direction. From the obtained Si content distribution, the average value of the Si content in the entire plate thickness of the non-oriented electrical steel sheet was calculated, and the portion where the Si concentration was higher than the average value was the surface layer portion, and the portion where the Si concentration was lower than the average value was the inner layer portion. . From the obtained results, the average Si content in the surface layer: [Si] 1 , the average Si content in the inner layer: [Si] 0 , and ΔSi were determined. Also, the average N content of the total thickness of the non-oriented electrical steel sheet: [N] was measured using ICP emission spectrometry. The measurement results are also shown in Table 1.

なお、上述したように、無方向性電磁鋼板の内層部における平均Si含有量:[Si]0は、使用した鋼スラブにおけるSi含有量に等しかった。 As described above, the average Si content: [Si] 0 in the inner layer of the non-oriented electrical steel sheet was equal to the Si content in the steel slab used.

また、同じく上述したように、Sn、P、およびSbの含有量は製造過程を通じて変化しないため、最終的に得た無方向性電磁鋼板における含有量は、使用した鋼スラブにおける含有量に等しい。そのため、表1には、無方向性電磁鋼板におけるSn、P、Sbの含有量として、使用した鋼スラブにおける各元素の含有量を記載した。 Also, as also mentioned above, since the contents of Sn, P, and Sb do not change throughout the manufacturing process, the contents in the final non-oriented electrical steel sheet are equal to the contents in the used steel slab. Therefore, Table 1 lists the contents of each element in the steel slabs used as the contents of Sn, P, and Sb in the non-oriented electrical steel sheets.

(複層比)
上記EPMA測定によって得られたSi含有量分布から、板厚:tに対する表層部の合計厚さ:t1の比として定義される複層比t1/tを算出した。得られた複層比の値を表1に併記する。
(multilayer ratio)
From the Si content distribution obtained by the EPMA measurement, the multi-layer ratio t 1 /t defined as the ratio of the total thickness of the surface layer portion: t 1 to the plate thickness: t was calculated. Table 1 also shows the values of the multi-layer ratios obtained.

(鉄損)
また、得られた無方向性電磁鋼板のそれぞれから、幅30mm、長さ180mmの試験片を採取し、エプスタイン試験を行って、最大磁束密度:1.0T、周波数:1kHzにおける鉄損:W10/1k(W/kg)を測定した。前記エプスタイン試験では、試験片の長さ方向が圧延方向(L方向)となるように採取したL方向試験片と、試験片の長さ方向が圧延直角方向(C方向)となるように採取したC方向試験片を等量用い、L方向とC方向における磁気特性の平均値を評価した。測定結果を表1に併記する。
(iron loss)
Further, a test piece having a width of 30 mm and a length of 180 mm was taken from each of the obtained non-oriented electrical steel sheets, and an Epstein test was performed to determine the maximum magnetic flux density: 1.0 T, frequency: 1 kHz iron loss: W 10 /1k (W/kg) was measured. In the Epstein test, an L-direction test piece was taken so that the length direction of the test piece was in the rolling direction (L direction), and a test piece was taken so that the length direction was perpendicular to the rolling direction (C direction). Equal amounts of the C-direction test pieces were used to evaluate the average values of the magnetic properties in the L-direction and the C-direction. The measurement results are also shown in Table 1.

表1に示した結果から分かるように、本発明の条件を満たす無方向性電磁鋼板は、高周波鉄損が低いという、優れた特性を有していた。 As can be seen from the results shown in Table 1, the non-oriented electrical steel sheets satisfying the conditions of the present invention had excellent properties such as low high-frequency iron loss.

Figure 0007334673000001
Figure 0007334673000001

(実施例2)
次に、表2に示す成分組成を有する鋼スラブを使用し、表3に示す雰囲気で浸珪処理を行った点以外は実施例1と同様の条件で、無方向性電磁鋼板を製造し、得られた無方向性電磁鋼板を実施例1と同様の方法で評価した。評価結果を表3に併記する。
(Example 2)
Next, a non-oriented electrical steel sheet was produced under the same conditions as in Example 1 except that a steel slab having the chemical composition shown in Table 2 was used and the siliconizing treatment was performed in the atmosphere shown in Table 3, The obtained non-oriented electrical steel sheets were evaluated in the same manner as in Example 1. The evaluation results are also shown in Table 3.

なお、Al、Ti、Nb、およびVの含有量は製造過程を通じて変化しないため、最終的に得た無方向性電磁鋼板における含有量は、使用した鋼スラブにおける含有量に等しい。 Since the contents of Al, Ti, Nb, and V do not change throughout the manufacturing process, the contents in the finally obtained non-oriented electrical steel sheet are equal to the contents in the steel slab used.

表3に示した結果から分かるように、Al、Ti、Nb、およびVの少なくとも1つを添加することにより、さらなる低鉄損化が可能である。 As can be seen from the results shown in Table 3, adding at least one of Al, Ti, Nb, and V can further reduce iron loss.

Figure 0007334673000002
Figure 0007334673000002

Figure 0007334673000003
Figure 0007334673000003

1 無方向性電磁鋼板
10 内層部
20 表層部
1 non-oriented electrical steel sheet 10 inner layer part 20 surface layer part

Claims (4)

表面から板厚中心方向に向かってSi含有量が連続的に減少するSi含有量分布を有する無方向性電磁鋼板であって、
SiおよびNを含み、残部がFeおよび不可避不純物からなる成分組成を有し、
板厚:tが0.01~0.35mmであり、
全板厚の平均N含有量:[N]が0.0020質量%以下であり、
Si含有量が全板厚の平均Si含有量以上の領域として定義される表層部における平均Si含有量:[Si]1が2.5~6.0質量%であり、
Si含有量が全板厚の平均Si含有量未満の領域として定義される内層部における平均Si含有量:[Si]0が1.5~5.0質量%であり、
前記板厚tに対する前記表層部の合計厚さ:t1の比として定義される複層比t/tが0.10~0.70であり、
前記表層部における平均Si含有量:[Si]1と、前記内層部における平均Si含有量:[Si]0との差([Si]1-[Si]0)として定義されるΔSiが0.5~4.0質量%であり、
最大磁束密度:1.0T、周波数:1kHzにおける鉄損:W10/1k(W/kg)と、前記板厚:t(mm)とが、下記(1)式を満たす、無方向性電磁鋼板。
10/1k≦15+138×t …(1)
A non-oriented electrical steel sheet having a Si content distribution in which the Si content continuously decreases from the surface toward the center of the plate thickness,
Having a component composition containing Si and N, the balance being Fe and inevitable impurities,
Plate thickness: t is 0.01 to 0.35 mm,
Average N content of total plate thickness: [N] is 0.0020% by mass or less,
The average Si content in the surface layer portion defined as a region where the Si content is equal to or higher than the average Si content of the entire plate thickness: [Si] 1 is 2.5 to 6.0 % by mass,
The average Si content in the inner layer portion defined as a region where the Si content is less than the average Si content of the entire plate thickness: [Si] 0 is 1.5 to 5.0% by mass,
The multilayer ratio t 1 /t defined as the ratio of the total thickness of the surface layer portion to the plate thickness t: t 1 is 0.10 to 0.70,
ΔSi defined as the difference ([Si] 1 −[Si] 0 ) between the average Si content in the surface layer: [Si] 1 and the average Si content in the inner layer: [Si] 0 is 0.0. 5 to 4.0% by mass,
A non -oriented electrical steel sheet in which the maximum magnetic flux density: 1.0 T, the iron loss at a frequency of 1 kHz: W 10/1k (W/kg), and the thickness: t (mm) satisfy the following formula (1): .
W10 /1k ≦15+138×t (1)
前記成分組成が、さらに、
Sn:0.10質量%以下、
P :0.10質量%以下、および
Sb:0.10質量%以下からなる群より選択される少なくとも1つを含む、請求項1に記載の無方向性電磁鋼板。
The component composition further comprises
Sn: 0.10% by mass or less,
The non-oriented electrical steel sheet according to claim 1, containing at least one selected from the group consisting of P: 0.10% by mass or less, and Sb: 0.10% by mass or less.
前記成分組成が、さらに、
Al:1.20質量%以下、
Ti:0.0100質量%以下、
Nb:0.0100質量%以下、および
V :0.0100質量%以下からなる群より選択される少なくとも1つを含む、請求項1または2に記載の無方向性電磁鋼板。
The component composition further comprises
Al: 1.20% by mass or less,
Ti: 0.0100% by mass or less,
The non-oriented electrical steel sheet according to claim 1 or 2, containing at least one selected from the group consisting of Nb: 0.0100% by mass or less and V: 0.0100% by mass or less.
請求項1~3のいずれか一項に記載の無方向性電磁鋼板を製造する方法であって、
鋼板に対して浸珪処理と拡散処理を施す浸珪拡散処理工程を含み、
前記浸珪処理を、窒素および希ガスの一方または両方と、SiClとを含み、かつ、N分圧が70%以下である雰囲気中で実施し、
前記拡散処理を、N分圧が70%以下の雰囲気中で実施する、無方向性電磁鋼板の製造方法。
A method for producing a non-oriented electrical steel sheet according to any one of claims 1 to 3,
Including a siliconizing and diffusion treatment process in which the steel plate is subjected to siliconizing treatment and diffusion treatment,
the siliconizing treatment is performed in an atmosphere containing one or both of nitrogen and a rare gas and SiCl4 , and having a N2 partial pressure of 70% or less;
A method for producing a non-oriented electrical steel sheet, wherein the diffusion treatment is performed in an atmosphere having a N2 partial pressure of 70% or less.
JP2020084029A 2019-05-15 2020-05-12 Non-oriented electrical steel sheet and manufacturing method thereof Active JP7334673B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019092324 2019-05-15
JP2019092324 2019-05-15

Publications (2)

Publication Number Publication Date
JP2020190026A JP2020190026A (en) 2020-11-26
JP7334673B2 true JP7334673B2 (en) 2023-08-29

Family

ID=73453445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020084029A Active JP7334673B2 (en) 2019-05-15 2020-05-12 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7334673B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065555A1 (en) * 2019-10-03 2021-04-08 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2023132197A1 (en) * 2022-01-07 2023-07-13 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet
WO2023132198A1 (en) * 2022-01-07 2023-07-13 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060026A (en) 2002-07-31 2004-02-26 Jfe Steel Kk Grain oriented silicon steel sheet having excellent high frequency magnetic property, rollability and workability and method for producing the same
JP2009167480A (en) 2008-01-17 2009-07-30 Jfe Steel Corp Method for producing non-oriented electrical steel sheet for etching-process, and method for manufacturing motor core
JP2011246782A (en) 2010-05-28 2011-12-08 Jfe Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
JP2013155397A (en) 2012-01-27 2013-08-15 Jfe Steel Corp Electromagnetic steel plate
WO2017047049A1 (en) 2015-09-17 2017-03-23 Jfeスチール株式会社 High silicon steel sheet and manufacturing method therefor
WO2017170749A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Electrical steel sheet and production method therefor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032705B2 (en) * 1979-06-23 1985-07-30 昇 津屋 In-plane non-oriented high-silicon steel ribbon with extremely low coercive force (100) and its manufacturing method
JPH0643611B2 (en) * 1986-03-28 1994-06-08 日本鋼管株式会社 Method for producing high silicon steel strip in continuous line
JPS62188748A (en) * 1986-09-13 1987-08-18 Noboru Tsuya Nonoriented thin high-silicon steel strip having very small coercive force
JP2560579B2 (en) * 1991-09-10 1996-12-04 日本鋼管株式会社 Method for manufacturing high silicon steel sheet having high magnetic permeability
JPH05271773A (en) * 1992-03-27 1993-10-19 Nippon Steel Corp Manufacture of ultrahigh silicon steel sheet
JPH0617202A (en) * 1992-06-30 1994-01-25 Meidensha Corp Composite silicon steel sheet and its manufacture
JP2992201B2 (en) * 1993-09-29 1999-12-20 川崎製鉄株式会社 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JPH08165520A (en) * 1994-12-09 1996-06-25 Nippon Steel Corp Nonoriented silicon steel sheet excellent in workability and production thereof
JP4192278B2 (en) * 1995-06-06 2008-12-10 Jfeスチール株式会社 Low iron loss non-oriented electrical steel sheet and manufacturing method thereof
JP4191806B2 (en) * 1995-12-08 2008-12-03 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet
JPH10140298A (en) * 1996-11-07 1998-05-26 Nkk Corp Nonoriented silicon steel sheet with low noise and low residual magnetic flux density
JPH11189850A (en) * 1997-12-24 1999-07-13 Sumitomo Metal Ind Ltd Non-oriented silicon steel sheet and its production
JP3948112B2 (en) * 1998-04-07 2007-07-25 Jfeスチール株式会社 Silicon steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060026A (en) 2002-07-31 2004-02-26 Jfe Steel Kk Grain oriented silicon steel sheet having excellent high frequency magnetic property, rollability and workability and method for producing the same
JP2009167480A (en) 2008-01-17 2009-07-30 Jfe Steel Corp Method for producing non-oriented electrical steel sheet for etching-process, and method for manufacturing motor core
JP2011246782A (en) 2010-05-28 2011-12-08 Jfe Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
JP2013155397A (en) 2012-01-27 2013-08-15 Jfe Steel Corp Electromagnetic steel plate
WO2017047049A1 (en) 2015-09-17 2017-03-23 Jfeスチール株式会社 High silicon steel sheet and manufacturing method therefor
WO2017170749A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Electrical steel sheet and production method therefor

Also Published As

Publication number Publication date
JP2020190026A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6690714B2 (en) Non-oriented electrical steel sheet, method for producing non-oriented electrical steel sheet, and method for producing motor core
JP7334673B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4616935B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2020136993A1 (en) Non-oriented electrical steel sheet and method for producing same
JP6794704B2 (en) Manufacturing method of non-oriented electrical steel sheet, non-oriented electrical steel sheet and manufacturing method of motor core
TWI393792B (en) Non - directional electrical steel sheet and manufacturing method thereof
JP7218794B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI692534B (en) Multilayer electromagnetic steel plate
TWI692533B (en) Multilayer electromagnetic steel plate
JP6870791B2 (en) Non-oriented electrical steel sheet
RU2779397C1 (en) Sheet of non-textured electrical steel
TWI675113B (en) Multilayer electromagnetic steel sheet
KR102394513B1 (en) Multilayer electrical steel sheet
JP4258163B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JPH11241150A (en) Silicon steel sheet low in residual magnetic flux density and excellent in workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7334673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150