JP5867126B2 - Iron loss improvement method and apparatus for grain-oriented electrical steel sheet - Google Patents

Iron loss improvement method and apparatus for grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5867126B2
JP5867126B2 JP2012023369A JP2012023369A JP5867126B2 JP 5867126 B2 JP5867126 B2 JP 5867126B2 JP 2012023369 A JP2012023369 A JP 2012023369A JP 2012023369 A JP2012023369 A JP 2012023369A JP 5867126 B2 JP5867126 B2 JP 5867126B2
Authority
JP
Japan
Prior art keywords
electron beam
steel sheet
iron loss
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012023369A
Other languages
Japanese (ja)
Other versions
JP2013159833A (en
Inventor
岡部 誠司
誠司 岡部
重宏 ▲高▼城
重宏 ▲高▼城
山口 広
山口  広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012023369A priority Critical patent/JP5867126B2/en
Publication of JP2013159833A publication Critical patent/JP2013159833A/en
Application granted granted Critical
Publication of JP5867126B2 publication Critical patent/JP5867126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、変圧器の鉄心などの用途に使用される方向性電磁鋼板を磁区細分化する鉄損改善方法および該方法に用いる装置に関するものである。   The present invention relates to an iron loss improvement method for subdividing a grain-oriented electrical steel sheet used for applications such as an iron core of a transformer, and an apparatus used in the method.

近年、エネルギ使用の効率化が進み、変圧器メーカなどを中心に、磁束密度が高く、かつ鉄損が低い電磁鋼板に対する需要が増してきている。
ここに、磁束密度は、電磁鋼板の結晶方位をGoss方位へ集積させることにより向上させることができる。
In recent years, the efficiency of energy use has progressed, and the demand for electrical steel sheets with high magnetic flux density and low iron loss has been increasing mainly by transformer manufacturers.
Here, the magnetic flux density can be improved by accumulating the crystal orientation of the electrical steel sheet in the Goss orientation.

一方、鉄損に関しては、素材の高純度化、高配向性、板厚低減、SiおよびAlの添加、磁区細分化などの観点から、その対策が考えられてきた。しかしながら、一般に、磁束密度を高くするほど、鉄損は劣化する傾向にある。この理由は、結晶方位が揃うと静磁エネルギが下がるため、鋼板内の磁区幅が広がって、渦電流損が高くなるからである。
渦電流損の低減方法として、熱歪みを導入することによって磁区細分化を施すこと、具体的には、レーザや電子ビームを用いて行う磁区細分化処理があり、いずれも照射による鉄損の改善効果が極めて高いことが知られている。
On the other hand, for iron loss, countermeasures have been considered from the viewpoints of high purity of material, high orientation, reduction of plate thickness, addition of Si and Al, magnetic domain fragmentation, and the like. However, generally, the higher the magnetic flux density, the more the iron loss tends to deteriorate. This is because, when the crystal orientation is aligned, the magnetostatic energy is lowered, so that the magnetic domain width in the steel sheet is expanded and the eddy current loss is increased.
As a method for reducing eddy current loss, magnetic domain subdivision is performed by introducing thermal strain. Specifically, there is a magnetic domain subdivision process using a laser or an electron beam, both of which improve iron loss by irradiation. It is known that the effect is extremely high.

例えば、特許文献1および2には、レーザ照射および電子ビーム照射によって鉄損を低減する方法が開示されている。   For example, Patent Documents 1 and 2 disclose methods for reducing iron loss by laser irradiation and electron beam irradiation.

特公平3−13293号公報Japanese Patent Publication No. 3-13293 特公平7−65106号公報Japanese Examined Patent Publication No. 7-65106

電子ビーム照射による磁区細分化方法は、ビームの照射スポットを走査させるために電子ビームを磁場で偏向させるため、ミラーを機械的に動かすレーザ照射よりも高速で走査し易いというメリットがある。電子ビームの走査速度を高めた場合は、十分な熱歪みを導入するためにビーム出力(ビーム電流)も増加させる必要があるが、単純にビーム出力を大きくすることでは、鋼板の被膜損傷が大きく、絶縁性が損なわれるという問題がある。これは、ビーム出力を大きくしても、ビームスポットから鋼板の周囲および内部への熱拡散に要する時間は一定のため、走査速度の高速化を補償するために高出力で照射した場合は、熱拡散の及ぶ微小領域に多量の入熱が施され、温度がより高くなって被膜にかかる熱応力が過大になるためである。   The magnetic domain subdivision method by electron beam irradiation has an advantage that scanning is easier at a higher speed than laser irradiation that mechanically moves a mirror because the electron beam is deflected by a magnetic field in order to scan the irradiation spot of the beam. When the scanning speed of the electron beam is increased, it is necessary to increase the beam output (beam current) in order to introduce sufficient thermal distortion. However, if the beam output is simply increased, damage to the coating on the steel sheet will increase. There is a problem that the insulating property is impaired. This is because even if the beam output is increased, the time required for thermal diffusion from the beam spot to the periphery and inside of the steel plate is constant, so if irradiation is performed at a high output to compensate for an increase in scanning speed, This is because a large amount of heat is applied to the microscopic region where the diffusion extends, and the temperature becomes higher and the thermal stress applied to the coating becomes excessive.

上記の高速かつ高出力の電子ビーム照射による微小領域の高温化を防ぐためには、その領域でのビーム照射の持続時間を長くして、時間当たりの入熱量を抑制するとともに、温度拡散の時間を確保することが有効である。そのためには電子ビームのスポット形状を走査方向に長くすること(楕円状)が有効であるが、電子ビームを磁界によって収束させる原理上、ビームスポット形状を楕円状にすることは困難である。   In order to prevent the above-mentioned high temperature and high output electron beam irradiation from increasing the temperature of the minute region, the duration of the beam irradiation in that region is lengthened, the amount of heat input per hour is suppressed, and the temperature diffusion time is reduced. It is effective to secure. For this purpose, it is effective to make the spot shape of the electron beam longer in the scanning direction (elliptical shape), but it is difficult to make the beam spot shape elliptical on the principle of converging the electron beam by a magnetic field.

そこで、発明者らは、ビーム形状を長くするのと同じ効果を得るための方途について鋭意究明したところ、ビームスポットを走査方向に高速振動させて微小領域にビームを複数回通過させるのが有効であることを見出し、本発明を完成するに至った。   Accordingly, the inventors diligently studied how to obtain the same effect as increasing the beam shape, and it is effective to cause the beam spot to vibrate at high speed in the scanning direction and pass the beam several times through a minute region. As a result, the present invention has been completed.

すなわち、本発明の要旨構成は次の通りである。
1.仕上焼鈍済みの方向性電磁鋼板の表面に、電子ビームを照射して磁区を細分化するに当たり、前記鋼板の圧延方向と交差する向きに前記電子ビームの照射スポットを走査する際に、該走査方向に前記照射スポットを振幅1mm以上10mm以下、周期0.1μs以上100μs以下で振動させて同一箇所を2回以上電子ビームで走査することを特徴とする方向性電磁鋼板の鉄損改善方法。
That is, the gist configuration of the present invention is as follows.
1. When irradiating the surface of a directionally annealed grain-oriented electrical steel sheet with an electron beam to subdivide the magnetic domain, the scanning direction of the electron beam irradiation spot is scanned in a direction crossing the rolling direction of the steel sheet. the irradiation amplitude 1mm 10mm or more or less the spot, iron loss improvement method of the grain-oriented electrical steel sheet is vibrated at a cycle 0.1μs than 100μs or less characterized that you scanned by the electron beam two or more times the same location on.

2.仕上焼鈍済みの方向性電磁鋼板の表面に、電子ビームを照射する装置であって、前記電子ビームの照射スポットを、前記鋼板の圧延方向と交差する向きに走査させる偏向コイルを有し、該偏向コイルの電流に、前記電子ビームを往復振動させる電流を重畳させる回路をそなえることを特徴とする方向性電磁鋼板の鉄損改善装置。 2. An apparatus for irradiating the surface of a directional electromagnetic steel sheet that has been subjected to finish annealing with an electron beam, comprising a deflection coil that scans the irradiation spot of the electron beam in a direction that intersects the rolling direction of the steel sheet. An iron loss improvement apparatus for grain-oriented electrical steel sheets, comprising a circuit for superimposing a current for reciprocally vibrating the electron beam on a current of a coil.

3.仕上焼鈍済みの方向性電磁鋼板の表面に、電子ビームを照射する装置であって、前記電子ビームの照射スポットを、前記鋼板の圧延方向と交差する向きに走査させる偏向コイルを有し、さらに前記電子ビームを前記走査方向に往復振動させる振動コイルを有することを特徴とする方向性電磁鋼板の鉄損改善装置。 3. An apparatus for irradiating an electron beam on the surface of a directional electromagnetic steel sheet that has been subjected to finish annealing, comprising a deflection coil that scans the irradiation spot of the electron beam in a direction that intersects the rolling direction of the steel sheet, and An iron loss improvement apparatus for grain-oriented electrical steel sheets, comprising a vibration coil for reciprocally vibrating an electron beam in the scanning direction.

本発明によれば、電子ビーム照射による磁区細分化処理が高速化されて生産性が向上するため、産業上極めて有用である。   According to the present invention, the magnetic domain fragmentation process by electron beam irradiation is accelerated and the productivity is improved, so that it is extremely useful industrially.

従来の電子ビーム照射装置を示す模式図である。It is a schematic diagram which shows the conventional electron beam irradiation apparatus. 本発明に従う鉄損改善装置における電子ビームの偏向コイルの電流回路を示す模式図である。It is a schematic diagram which shows the electric current circuit of the deflection coil of an electron beam in the iron loss improvement apparatus according to this invention. 本発明に従う鉄損改善装置を示す模式図である。It is a schematic diagram which shows the iron loss improvement apparatus according to this invention.

以下、本発明について具体的に説明する。
前記した通り、本発明の鉄損改善方法は、電子ビームを高速で走査した場合にあっても、電子ビームを微小に振動させて同一箇所に複数回電子ビームを短時間で通過させることによって、電子ビーム出力を抑制して被膜の損傷を防ぎながら、鉄損の改善効果が得られるところに特徴がある。
Hereinafter, the present invention will be specifically described.
As described above, the iron loss improving method of the present invention allows the electron beam to vibrate minutely and pass the electron beam multiple times in a short time even when the electron beam is scanned at high speed. It is characterized in that an iron loss improvement effect can be obtained while suppressing electron beam output and preventing damage to the coating.

さて、図1に、従来の磁区細分化に供する電子ビーム照射装置を示すように、フィラメントアノード1から照射された電子ビームは、集束レンズ2にて集束され、この集束された電子ビーム3は偏向コイル4を介して、鋼板5の幅方向に走査される。かように、従来は、電子ビームは、一定速度または移動と停止を均一の周期で繰り返しながら、鋼板の一方の幅端部から他方の幅端部へ直線状に走査して照射していたのである。   Now, as shown in FIG. 1 showing a conventional electron beam irradiation apparatus for magnetic domain subdivision, the electron beam irradiated from the filament anode 1 is focused by a focusing lens 2, and the focused electron beam 3 is deflected. Scanning is performed in the width direction of the steel plate 5 via the coil 4. Thus, conventionally, the electron beam was irradiated by scanning linearly from one width end of the steel sheet to the other width end while repeating constant speed or movement and stop at a uniform period. is there.

この走査速度(移動と停止を繰り返す場合は平均速度)が20m/s以下の場合は、本発明の微小振動を加えなくても被膜の損傷を抑制しながら、十分な磁区細分化効果を与える条件が存在するが、走査が速くなるとその分ビーム出力を大きくする必要があるため、とりわけ20m/s超では被膜の損傷を完全に抑制することは困難であった。   When this scanning speed (average speed when moving and stopping is repeated) is 20 m / s or less, it is a condition that provides sufficient magnetic domain subdivision effect while suppressing damage to the coating without applying minute vibrations of the present invention. However, since it is necessary to increase the beam output as the scanning speed increases, it is difficult to completely suppress the damage to the coating especially at a speed exceeding 20 m / s.

ここで、電子ビームを鋼板幅方向へ走査するに際し、走査方向の微小振動を加えて、任意の微小領域に複数回ビームが照射されるように制御して、電子ビームを照射することが有効である。この場合、ビーム移動速度は、同一箇所をビームが通過する回数で通過速度を割った擬似的な平均速度が20m/s以下となるように照射することが好ましい。なぜなら、同一箇所を実質的に長時間加熱するようにして、熱拡散に要する時間を確保することにより、局所的に高温化して被膜が損傷するのを抑制できるためである。
例えば、ビーム走査速度が60m/sの場合は、同一箇所を3回以上ビームが通過するように振動させることにより、平均速度を20m/s以下となるようにすることが好ましい。ただし、ビームが一度通過した後、温度が低下するほどに経過したのでは、ビーム加熱が複数回に分解されたようになり、十分な磁区細分化効果が得られない。従って、複数回のビーム通過の間隔は100μs以下とすることが好ましい。
また、走査速度20m/s以下の場合でも、本発明を適用して擬似的な平均速度をさらに低下させることにより被膜損傷が抑制されて、安定的に鉄損を低減できる出力の許容範囲が広がる、といった利点がある。
Here, when scanning the electron beam in the width direction of the steel sheet, it is effective to irradiate the electron beam by applying a minute vibration in the scanning direction so that the beam is irradiated a plurality of times to an arbitrary minute region. is there. In this case, it is preferable to irradiate the beam moving speed so that a pseudo average speed obtained by dividing the passing speed by the number of times the beam passes through the same portion is 20 m / s or less. This is because the same portion is heated substantially for a long time to secure the time required for thermal diffusion, thereby suppressing local damage to the coating due to high temperature.
For example, when the beam scanning speed is 60 m / s, it is preferable that the average speed be 20 m / s or less by oscillating so that the beam passes through the same portion three times or more. However, after the beam has passed once, if it has passed to such an extent that the temperature has decreased, the beam heating has been decomposed into a plurality of times, and a sufficient magnetic domain fragmentation effect cannot be obtained. Therefore, the interval between the multiple beam passages is preferably 100 μs or less.
In addition, even when the scanning speed is 20 m / s or less, the present invention is applied to further reduce the pseudo average speed, thereby suppressing film damage and widening the output allowable range in which iron loss can be stably reduced. There are advantages such as.

ビームを振動させる方法としては、偏向コイルの電流を制御する元の信号にビームスポットを振動させる信号を重畳することが、制御方法として簡便であり推奨される。すなわち、図2に示すように、図1に示した装置の偏向コイル4に対して、ビームスポットを走査する電流を供するための偏向信号発生回路10に、ビームスポットを振動させる電流を供するための振動信号発生回路11と、この回路からの信号を前記偏向信号に加算する加算回路12とからなる回路を付加することにより、電力増幅器13を介して重畳された所定の電流を供給すれば、電子ビーム3を鋼板5幅方向へ走査するに際し、走査方向の微小振動を加えることが可能になる。   As a method of vibrating the beam, it is simple and recommended as a control method to superimpose a signal for vibrating the beam spot on the original signal for controlling the current of the deflection coil. That is, as shown in FIG. 2, the deflection signal generating circuit 10 for supplying a current for scanning the beam spot to the deflection coil 4 of the apparatus shown in FIG. By adding a circuit comprising a vibration signal generation circuit 11 and an addition circuit 12 for adding the signal from this circuit to the deflection signal, if a predetermined current superimposed via the power amplifier 13 is supplied, When scanning the beam 3 in the width direction of the steel plate 5, it is possible to apply a minute vibration in the scanning direction.

または、図3に示すように、ビームスポットを走査させるように移動させる偏向コイル4の、ビーム進行方向に対して前または後に、ビームスポットを微小振動させるための磁場を生じる振動コイル6を設けて、走査方向の微小振動を加えてもよい。 Alternatively, as shown in FIG. 3, the deflection coils 4 to move so as to scan the bi Musupotto, before or after with respect to the beam traveling direction, provided with a vibration coil 6 resulting in a magnetic field for causing the micro-vibrating the beam spot A minute vibration in the scanning direction may be applied.

なお、ビームスポットに加える微小振動としては、振幅1mm以上10mm以下、周期0.1μs以上100μs以下で、同一箇所を2回以上ビームが走査するように調整することが好ましい。   The minute vibration applied to the beam spot is preferably adjusted so that the beam scans the same portion twice or more at an amplitude of 1 mm to 10 mm and a period of 0.1 μs to 100 μs.

ここで、本発明で対象とする方向性電磁鋼板は、理想的には鉄損を低減するために、圧延方向(L方向)に磁化容易軸をもった(110)[001]方位の結晶粒で構成された集合組織鋼板であることが望ましい。しかし、実際に工業的に製造し得る方向性電磁鋼板における磁化容易軸は圧延方向と完全に平行ではなく、磁化容易軸は圧延方向に対してずれ角度が存在する。また、方向性電磁鋼板の磁区細分化により鉄損を低減するためには、鋼板の磁化方向、つまり、磁化容易軸に対して直角方向に連続的または所定間隔で鋼板表面に引張残留応力および塑性歪からなる歪領域を形成するのが有効であると考えられる。   Here, the grain-oriented electrical steel sheet targeted by the present invention ideally has (110) [001] -oriented crystal grains having an easy magnetization axis in the rolling direction (L direction) in order to reduce iron loss. It is desirable that the steel sheet is a textured steel plate made of However, the easy magnetization axis in the grain-oriented electrical steel sheet that can be actually produced industrially is not completely parallel to the rolling direction, and the easy magnetization axis has a deviation angle with respect to the rolling direction. In order to reduce iron loss by subdividing magnetic domains of grain-oriented electrical steel sheets, the tensile residual stress and plasticity are applied to the steel sheet surface continuously or at predetermined intervals in the magnetization direction of the steel sheet, that is, in the direction perpendicular to the easy axis of magnetization. It is considered effective to form a strain region consisting of strain.

磁区細分化処理を施す方向性電磁鋼板において、二次再結晶の方位集積が高い方が、磁区細分化処理後の鉄損や励磁電流、変圧器の騒音はより小さくなることが知られている。この方位集積の目安としてB(800 A/mで磁化した際の磁束密度)がよく用いられる。本発明に用いる方向性電磁鋼板は、好ましくはBが1.88T以上、より好ましくは1.92T以上のものが好適である。 In grain-oriented electrical steel sheets subjected to magnetic domain refinement treatment, it is known that the higher the secondary recrystallization orientation accumulation, the smaller the iron loss, excitation current, and transformer noise after magnetic domain refinement treatment. . B 8 (magnetic flux density when magnetized at 800 A / m) is often used as a guide for this orientation accumulation. Oriented electrical steel sheet used in the present invention are preferably B 8 or more 1.88T, and more preferably is suitable more than 1.92 T.

さらに、電磁鋼板の表面には、張力コーティングが施されていることが好ましい。従来公知の張力コーティングで構わないが、リン酸アルミニウムやリン酸マグネシウム等のリン酸塩とシリカを主成分とするガラス質の張力絶縁コーティングであることが好ましい。
熱歪みを導入する線は、鋼板の幅方向(圧延方向と直交する方向)に線状に形成され、圧延方向には2mm以上、10mm以下の間隔で繰り返して形成する。2mm未満では鉄損の増加と変圧器騒音の増大が生じ、10mmよりも大きいと磁区細分化による鉄損低減効果が小さいためである。
Furthermore, it is preferable that tension coating is applied to the surface of the electromagnetic steel sheet. A conventionally known tension coating may be used, but a glassy tension insulating coating mainly composed of a phosphate such as aluminum phosphate or magnesium phosphate and silica is preferable.
The wire for introducing thermal strain is formed in a line shape in the width direction of the steel plate (direction orthogonal to the rolling direction), and is repeatedly formed in the rolling direction at intervals of 2 mm or more and 10 mm or less. If it is less than 2 mm, an increase in iron loss and an increase in transformer noise occur, and if it is greater than 10 mm, the effect of reducing iron loss due to magnetic domain fragmentation is small.

次いで、本発明に従う電子ビームの照射方法に関して説明する。
まず、電子ビームの照射条件について説明する。
加速電圧:40〜300kV
加速電圧は、40kV以上であって、高いほど同一出力を得るために必要な照射ビーム電流が少なくて済む。その結果、ビーム径を絞ることができ、ヒステリシス損の過度な増大を抑制することができるため好ましい。しかしながら、300kVを超えると、照射ビーム電流が過度に少なくなり、ビーム電流の微小な調整が困難となるおそれがある。
Next, an electron beam irradiation method according to the present invention will be described.
First, the electron beam irradiation conditions will be described.
Acceleration voltage: 40-300kV
The acceleration voltage is 40 kV or higher. The higher the acceleration voltage, the smaller the irradiation beam current required to obtain the same output. As a result, it is preferable because the beam diameter can be reduced and excessive increase in hysteresis loss can be suppressed. However, if it exceeds 300 kV, the irradiation beam current becomes excessively small, and it may be difficult to finely adjust the beam current.

ビームスポット径:400μm以下
ビームスポット径が太いと、熱歪みの導入領域が拡大し、鉄損(ヒステリシス損)が劣化する。そのため、ビームスポット径は400μm以下が好ましい。
なお、ビームスポット径の測定は、公知のスリット法で得られる電流(あるいは電圧)曲線の半値幅で規定した。また、ビームスポット径の下限は特に限定しないが、過度に小さいとビームエネルギ密度が過度に高くなり、被膜の損傷が生じやすくなって、耐電圧性や耐錆性が劣化するため、100μm程度以上とすることが好ましい。
Beam spot diameter: 400 μm or less If the beam spot diameter is large, the thermal strain introduction area is enlarged, and the iron loss (hysteresis loss) is deteriorated. Therefore, the beam spot diameter is preferably 400 μm or less.
The measurement of the beam spot diameter was defined by the half width of a current (or voltage) curve obtained by a known slit method. In addition, the lower limit of the beam spot diameter is not particularly limited, but if it is too small, the beam energy density becomes excessively high and the coating is liable to be damaged, and the voltage resistance and rust resistance deteriorate. It is preferable that

線間隔:1〜15mm
本発明における電子ビーム照射は、偏向コイルによって、被照射材の幅端から幅端へ走査させ、同様の走査を被照射材のライン方向に一定の間隔をおいて繰り返す。この間隔を、本発明では、線間隔と呼ぶ。
ここに、線間隔が1mmより狭いと、熱影響域が拡大し、鉄損(ヒステリシス損)が劣化するおそれがある。一方、15mmより広いと、十分に磁区細分化が成されず、鉄損が改善しない傾向にある。従って、本発明における線間隔は、1〜15mmの範囲とするのが好ましい。
Line spacing: 1-15mm
In the present invention, the electron beam irradiation is performed by scanning from the width end to the width end of the irradiated material by the deflection coil, and the same scanning is repeated at a certain interval in the line direction of the irradiated material. In the present invention, this interval is called a line interval.
Here, if the line spacing is narrower than 1 mm, the heat-affected zone is expanded and the iron loss (hysteresis loss) may be deteriorated. On the other hand, when the width is larger than 15 mm, the magnetic domain is not sufficiently subdivided and the iron loss tends not to be improved. Therefore, the line spacing in the present invention is preferably in the range of 1 to 15 mm.

照射エリアの圧力:3Pa以下
照射エリアの圧力の値が3Paを超えると、電子銃から発生した電子が散乱され、地鉄に熱影響を与える電子のエネルギが減少するため、十分に磁区細分化が成されず、鉄損が改善しないおそれがある。なお、下限に特に定めはなく圧力は低いほど良い。
Irradiation area pressure: 3 Pa or less When the irradiation area pressure value exceeds 3 Pa, electrons generated from the electron gun are scattered and the energy of the electrons that have a thermal effect on the ground iron is reduced. The iron loss may not be improved. There is no particular lower limit, and the lower the pressure, the better.

なお、幅方向に偏向して照射させる場合は、幅方向のビームが均一になるように、事前に収束電流を調整することが好ましい。
なお、始点から終点に向かう方向(電子ビームの走査方向)は、圧延方向から60°から120°の方向(90°方向が好ましい)とする。この方向を外れると、電子ビームによる磁区細分化効果が十分に発現しないからである。
In addition, when irradiating by deflecting in the width direction, it is preferable to adjust the convergence current in advance so that the beam in the width direction is uniform.
The direction from the start point to the end point (electron beam scanning direction) is 60 ° to 120 ° from the rolling direction (90 ° direction is preferable). If this direction is deviated, the magnetic domain fragmentation effect by the electron beam is not sufficiently exhibited.

板厚が0.23mm、圧延方向の磁束密度Bが1.94Tで、地鉄の表面に、フォルステライトを主成分とする被膜およびその上に無機物の処理液を焼き付けた被膜(シリカ・リン酸塩系コーティング)の2層の被膜を有する方向性電磁鋼板を用意した。鋼板のサイズは、幅100mmおよび長さ400mmとした。この鋼板に対して、幅方向に電子ビームを走査するように照射して磁区細分化を行った。電子ビームは加速電圧60kV、ビーム径0.3mmで、照射線間隔は5mmとした。 Thickness is 0.23 mm, at a magnetic flux density B 8 in the rolling direction is 1.94T, the surface of the base steel, coating (silica phosphate baked inorganic process liquid onto the film and composed mainly of forsterite A grain-oriented electrical steel sheet having a two-layer coating) was prepared. The size of the steel sheet was 100 mm wide and 400 mm long. This steel plate was irradiated with an electron beam in the width direction so as to be subdivided into magnetic domains. The electron beam had an acceleration voltage of 60 kV, a beam diameter of 0.3 mm, and an irradiation line interval of 5 mm.

まず、電子ビームを一方向のみに一定速度で走査し、ビーム電流は走査速度に応じて、単位長さ当たりの入熱量が15J/mになるように速度に比例したビーム電流で電子ビームを照射した。走査速度が10m/s、および20m/sでは鉄損W17/50が0.69W/kgと十分に低い値が得られ、しかも絶縁被膜は絶縁性、および耐食性を劣化させるような損傷が生じなかった。しかし、25m/sでは鉄損W17/50は0.69W/kgが得られたが、絶縁被膜が断続的に剥離し、絶縁性と耐食性が劣化した。 First, the electron beam is scanned in only one direction at a constant speed, and the beam current is irradiated with a beam current proportional to the speed so that the heat input per unit length is 15 J / m according to the scanning speed. did. When the scanning speed is 10 m / s and 20 m / s, the iron loss W 17/50 is 0.69 W / kg, which is a sufficiently low value, and the insulation coating does not cause damage that degrades the insulation and corrosion resistance. It was. However, at 25 m / s, the iron loss W 17/50 was 0.69 W / kg, but the insulation film peeled off intermittently and the insulation and corrosion resistance deteriorated.

ここに、図2に示した回路を用いて、一方向のビーム走査に加えて、振幅5mmを25μsで走査方向に移動する微小な振動を幅方向の走査に重畳するように制御したところ、走査速度25m/sでも、鉄損W17/50を0.69W/kgまで低減させながら、絶縁性、および耐食性を劣化させるような絶縁被膜の損傷を抑制することができた。この場合、微小振動の振幅5mmの範囲をビームが通過するのに200μsを要する。200μsの間に、微小振動によって8回ビームが同一箇所を照射するため、あたかも走査速度が1/8の3.1m/sに低下させたのと同様の効果が得られたものと推測される。さらに、60m/sに走査速度を増加させても、同様に絶縁被膜の損傷が抑制され、0.69W/kgまでの鉄損改善効果が得られた。 Here, using the circuit shown in FIG. 2, in addition to the beam scanning in one direction, a fine vibration that moves in the scanning direction at an amplitude of 5 mm in 25 μs is controlled to be superimposed on the scanning in the width direction. Even at a speed of 25 m / s, it was possible to suppress damage to the insulating coating, which deteriorated the insulation and corrosion resistance, while reducing the iron loss W 17/50 to 0.69 W / kg. In this case, 200 μs is required for the beam to pass through the range of the minute vibration amplitude of 5 mm. It is estimated that the same effect as if the scanning speed was reduced to 3.1 m / s, which was 1/8, was obtained because the beam irradiates the same part 8 times by minute vibration during 200 μs. Furthermore, even when the scanning speed was increased to 60 m / s, damage to the insulating film was similarly suppressed, and an iron loss improvement effect up to 0.69 W / kg was obtained.

また、図3に示した構成の装置を用いて、一方向に走査するビームを、さらに振動コイルによって振幅5mmを25μsで走査方向に移動する微小な振動を幅方向の走査に重畳するようにしたところ、走査速度25m/s、および60m/sでも鉄損W17/50を0.69W/kgまで低減させながら、さらに絶縁被膜の損傷を抑制することができた。 In addition, the apparatus configured as shown in FIG. 3 is used to superimpose a beam that scans in one direction, and a minute vibration that moves in the scanning direction with an amplitude of 5 mm in 25 μs by the vibration coil in the scanning in the width direction. However , it was possible to further suppress damage to the insulating coating while reducing the iron loss W 17/50 to 0.69 W / kg even at a scanning speed of 25 m / s and 60 m / s.

1 フィラメントアノード
2 集束レンズ
3 電子ビーム
4 偏向コイル
5 鋼板
6 振動コイル
10 偏向信号発生回路
11 振動信号発生回路
12 加算回路
13 電力増幅器
DESCRIPTION OF SYMBOLS 1 Filament anode 2 Focusing lens 3 Electron beam 4 Deflection coil 5 Steel plate 6 Vibration coil
10 deflection signal generator
11 Vibration signal generation circuit
12 Adder circuit
13 Power amplifier

Claims (3)

仕上焼鈍済みの方向性電磁鋼板の表面に、電子ビームを照射して磁区を細分化するに当たり、前記鋼板の圧延方向と交差する向きに前記電子ビームの照射スポットを走査する際に、該走査方向に前記照射スポットを振幅1mm以上10mm以下、周期0.1μs以上100μs以下で振動させて同一箇所を2回以上電子ビームで走査することを特徴とする方向性電磁鋼板の鉄損改善方法。 When irradiating the surface of a directionally annealed grain-oriented electrical steel sheet with an electron beam to subdivide the magnetic domain, the scanning direction of the electron beam irradiation spot is scanned in a direction crossing the rolling direction of the steel sheet. the irradiation amplitude 1mm 10mm or more or less the spot, iron loss improvement method of the grain-oriented electrical steel sheet is vibrated at a cycle 0.1μs than 100μs or less characterized that you scanned by the electron beam two or more times the same location on. 仕上焼鈍済みの方向性電磁鋼板の表面に、電子ビームを照射する装置であって、前記電子ビームの照射スポットを、前記鋼板の圧延方向と交差する向きに走査させる偏向コイルを有し、該偏向コイルの電流に、前記電子ビームを往復振動させる電流を重畳させる回路をそなえることを特徴とする方向性電磁鋼板の鉄損改善装置。   An apparatus for irradiating the surface of a directional electromagnetic steel sheet that has been subjected to finish annealing with an electron beam, comprising a deflection coil that scans the irradiation spot of the electron beam in a direction that intersects the rolling direction of the steel sheet. An iron loss improvement apparatus for grain-oriented electrical steel sheets, comprising a circuit for superimposing a current for reciprocally vibrating the electron beam on a current of a coil. 仕上焼鈍済みの方向性電磁鋼板の表面に、電子ビームを照射する装置であって、前記電子ビームの照射スポットを、前記鋼板の圧延方向と交差する向きに走査させる偏向コイルを有し、さらに前記電子ビームを前記走査方向に往復振動させる振動コイルを有することを特徴とする方向性電磁鋼板の鉄損改善装置。 An apparatus for irradiating an electron beam on the surface of a directional electromagnetic steel sheet that has been subjected to finish annealing, comprising a deflection coil that scans the irradiation spot of the electron beam in a direction that intersects the rolling direction of the steel sheet, and An iron loss improvement apparatus for grain-oriented electrical steel sheets, comprising a vibration coil for reciprocally vibrating an electron beam in the scanning direction.
JP2012023369A 2012-02-06 2012-02-06 Iron loss improvement method and apparatus for grain-oriented electrical steel sheet Active JP5867126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023369A JP5867126B2 (en) 2012-02-06 2012-02-06 Iron loss improvement method and apparatus for grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023369A JP5867126B2 (en) 2012-02-06 2012-02-06 Iron loss improvement method and apparatus for grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2013159833A JP2013159833A (en) 2013-08-19
JP5867126B2 true JP5867126B2 (en) 2016-02-24

Family

ID=49172350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023369A Active JP5867126B2 (en) 2012-02-06 2012-02-06 Iron loss improvement method and apparatus for grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5867126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866796B2 (en) * 2019-06-17 2024-01-09 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264036A (en) * 1985-09-13 1987-03-20 Nec Corp Electron beam apparatus
JP3399991B2 (en) * 1992-10-23 2003-04-28 川崎製鉄株式会社 Method for producing low iron loss unidirectional silicon steel sheet
US5296051A (en) * 1993-02-11 1994-03-22 Kawasaki Steel Corporation Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics

Also Published As

Publication number Publication date
JP2013159833A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP6176282B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101421391B1 (en) Grain oriented electrical steel sheet
JP5158285B2 (en) Oriented electrical steel sheet
KR101638890B1 (en) Device to improve iron loss properties of grain-oriented electrical steel sheet
US10465259B2 (en) Grain-oriented electrical steel sheet and production method therefor
CN110352255B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP7031752B2 (en) Directional electrical steel sheet and its manufacturing method
JP2013510239A (en) Oriented electrical steel sheet with low iron loss and high magnetic flux density
CA2939336C (en) Grain-oriented electrical steel sheet for low-noise transformer, and method for manufacturing said sheet
CN107075601B (en) Grain-oriented magnetic steel sheet and its manufacturing method
JP5867126B2 (en) Iron loss improvement method and apparatus for grain-oriented electrical steel sheet
JP6015723B2 (en) Manufacturing method of grain-oriented electrical steel sheet for low noise transformer cores
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JP7468677B2 (en) Grain-oriented electrical steel sheet
JP6160376B2 (en) Directional electrical steel sheet for transformer core and method of manufacturing the same
JP7287506B2 (en) Oriented electrical steel sheet
JP7180763B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5870580B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017106117A (en) Oriented electromagnetic steel sheet for transformer iron core and manufacturing method therefor
JPWO2014068963A1 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5867126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250