JPS63186826A - Production of grain-orientated silicon steel plate having super low iron loss - Google Patents

Production of grain-orientated silicon steel plate having super low iron loss

Info

Publication number
JPS63186826A
JPS63186826A JP1612387A JP1612387A JPS63186826A JP S63186826 A JPS63186826 A JP S63186826A JP 1612387 A JP1612387 A JP 1612387A JP 1612387 A JP1612387 A JP 1612387A JP S63186826 A JPS63186826 A JP S63186826A
Authority
JP
Japan
Prior art keywords
silicon steel
steel plate
annealing
film
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1612387A
Other languages
Japanese (ja)
Other versions
JPH0672266B2 (en
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62016123A priority Critical patent/JPH0672266B2/en
Priority to US07/095,527 priority patent/US4909864A/en
Priority to DE8787308134T priority patent/DE3785632T2/en
Priority to EP87308134A priority patent/EP0260927B1/en
Publication of JPS63186826A publication Critical patent/JPS63186826A/en
Priority to US07/444,050 priority patent/US4985635A/en
Publication of JPH0672266B2 publication Critical patent/JPH0672266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Abstract

PURPOSE:To produce a grain-orientated silicon steel plate having super low iron loss, by irradiating an electron beam on insulating film of the steel plate toward traversing direction to rolling direction after coating the insulating film having phosphate and colloidal silica as main composition to the orientated silicon steel plate. CONSTITUTION:The insulating coating film having the phosphate and the colloidal silica as main composition is coated on the orientated silicon steel plate after completing the finish annealing of a secondary recrystallized annealing and purified annealing. Before coating the above film, as necessity requires, the above the surface oxide of the above steel plate is removed and next, after the surface is mirror-finished, extremely thin tension coating of nitriding, carbide oxide, etc., of Ti, Zr, etc., may be coated by CVD, etc. Next, on the above insulating coating film, the electron beam irradiation is executed toward traversing direction to rolling direction. The above irradiation is desirable to execute at the interval of about 0-15mm toward about 60-90 deg. to the rolling direction. In this way, film quantity of the insulating coating is changed, and magnetic domain is made to fine and even if the high temp. stress relief annealing is executed, the low iron loss characteristic without deterioration is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超鉄損一方向性珪素鋼板の製造方法に関するも
ので、とくに仕上げ焼鈍後に被成したコーティング被膜
上であるいは仕上焼鈍後の鏡面仕上げした綱板表面上に
窒化物、炭化物、酸化物等のCVD 、イオンブレーテ
ィングあるいはイオンインプランテーション処理を行な
ったのち、その張力被膜上に絶縁コーティング被膜を被
成し、該被膜上で圧延方向を横切る方向にEB照射を施
すことによって超低鉄損を達成しようとするものである
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a super core loss unidirectional silicon steel sheet, and in particular, it relates to a method for producing a super core loss unidirectional silicon steel sheet, and in particular, it relates to a method for producing a super iron loss unidirectional silicon steel sheet, and in particular, it relates to a method for producing a super iron loss unidirectional silicon steel sheet, and in particular, a method for manufacturing a super iron loss unidirectional silicon steel sheet, and in particular for producing a mirror finish on a coating film formed after finish annealing or a mirror finish after finish annealing. After applying CVD, ion brating, or ion implantation treatment of nitride, carbide, oxide, etc. on the steel plate surface, an insulating coating film is formed on the tension film, and the rolling direction is controlled on the film. The aim is to achieve ultra-low iron loss by applying EB irradiation in the transverse direction.

一方向性珪素鋼板の電気・磁気的特性の改善、なかでも
鉄損の低減に係わる極限的な要請を満たそうとする近年
来の目覚ましい開発努力は、逐次その実を挙げつつある
Remarkable development efforts in recent years to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme requirements of reducing iron loss, are gradually bearing fruit.

さて一方向性珪素鋼板は、よく知られているとおり製品
の2次再結晶粒を(110) <001> 、すなわち
ゴス方位に、高度に集積させたもので、主として変圧器
その他の電気機器の鉄心として使用され電気磁気的特性
として製品の磁束密度(Bl。値で代表される)が高く
、鉄損(WB/s。値で代表される)の低いことが要求
される。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) <001>, or Goss, orientation, and are mainly used in transformers and other electrical equipment. When used as an iron core, the product is required to have a high magnetic flux density (represented by the Bl value) and a low iron loss (WB/s, represented by the value) as electromagnetic properties.

この一方向性珪素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までにおびただしい発明改善が加えられ
、今日では板厚0.30mmの製品の磁気特性がBIG
値1.90T以上、WIT/S。値1.05に/kg以
下、または板厚0 、23n+mの製品の磁気特性が8
1゜値1.89T以上、匈1./、。値0.90匈/k
g以下の超低鉄損一方向性珪素鋼板が製造されるように
なって来ている。
This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today the magnetic properties of a product with a thickness of 0.30 mm are BIG.
Value 1.90T or more, WIT/S. The magnetic properties of products with a value of 1.05/kg or less or a plate thickness of 0 or 23n+m are 8
1° value 1.89T or more, 1. /,. Value 0.90 匈/k
Unidirectional silicon steel sheets with ultra-low iron loss of less than 100 g are now being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請求が著しく強まり、欧米では損失の少ない変圧器
を作る場合に鉄損の減少分を金額に換算して変圧器価格
に上積みする「ロス・エバリユエーション」 (鉄損評
価)制度が普及している。
Particularly in recent years, demand for reducing power loss has become much stronger from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性珪素鋼板の仕
上焼鈍後の綱板表面に圧延方向にほぼ直角方向でのレー
ザー照射により局部微小ひずみを導入して磁区を細分化
し、もって鉄損を低下させることが提案された(特公昭
57−2252号、特公昭57−53419号、特公昭
5B−26405号及び特公昭58−26406号公報
参照)。
(Prior art) Under these circumstances, recently, the surface of a unidirectional silicon steel plate after finish annealing is irradiated with a laser in a direction substantially perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce iron loss by this method (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 5B-26405 and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として巻鉄心トランス材料にあっては、
レーザー照射によって折角に導入された局部微小ひずみ
が焼鈍処理により開放されて磁区幅が広(なるため、レ
ーザー照射効果がなくなるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for laminated core transformers that are not subjected to strain relief annealing, but for material for wound core transformers that are subjected to strain relief annealing,
The disadvantage is that the local minute strain introduced by laser irradiation is released by the annealing process and the magnetic domain width becomes wider, thereby eliminating the laser irradiation effect.

一方これより先に特公昭52−24499号公報におい
ては、一方向性珪素鋼板の仕上げ焼鈍後の綱板表面を鏡
面上げするか又はその鏡面仕上げ面上に金属メッキやさ
らにその上に絶縁被膜を塗布焼付けすることによる、超
低鉄損一方向性珪素鋼板の製造方法が提案さている。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of the steel plate after finish annealing of a unidirectional silicon steel sheet was polished to a mirror finish, or the mirror finish surface was plated with metal or an insulating coating was applied thereon. A method for manufacturing ultra-low core loss unidirectional silicon steel sheets by coating and baking has been proposed.

しかしながらこの鏡面仕上げによる鉄構向上手法は、工
程的に採用するには、著しいコストアップになる割に鉄
損低減への寄与が充分でない上、と(に鏡面仕上後に不
可欠な絶縁被膜を塗布焼付した後の密着性に問題がある
ため、現在の製造工程において採用されるに至ってはい
ない。また特公昭56−4150号公報においても綱板
表面を鏡面仕上げした後、酸化物系セラミックス薄膜を
蒸着する方法が提案されている。しかしながらこの方法
も600℃以上の高温焼鈍を施すと鋼板とセラミックス
層とが剥離するため、実際の製造工程では採用できない
However, this method of improving the steel structure by mirror finishing cannot be adopted from a process perspective, as it does not contribute enough to reducing iron loss at the cost of significantly increasing the cost. Due to problems with adhesion after coating, it has not been adopted in the current manufacturing process.In addition, in Japanese Patent Publication No. 56-4150, a thin film of oxide ceramics is deposited after mirror-finishing the surface of the steel plate. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer separate when subjected to high-temperature annealing at 600° C. or higher.

さらに特開昭59−229419号公報において珪素綱
板表面に局部的に熱エネルギーを加えることにより熱歪
領域を形成させる方法が提案されている。
Furthermore, Japanese Patent Application Laid-Open No. 59-229419 proposes a method of forming thermally strained regions by locally applying thermal energy to the surface of a silicon steel plate.

しかしながらこの局所熱歪領域の優先形成は600℃以
上の高温焼鈍によってその効果がなくなるという欠点を
有している。
However, this preferential formation of local thermal strain regions has the disadvantage that its effect is lost by high-temperature annealing at 600° C. or higher.

(発明が解決しようとする問題点) 前記の不利を補ってあまりある鉄損の低減を成就するこ
とがこの発明の目的である。
(Problems to be Solved by the Invention) It is an object of the present invention to compensate for the above-mentioned disadvantages and achieve a significant reduction in iron loss.

(問題点を解決するための手段) この発明は、仕上焼鈍済みの方向性珪素鋼板上にリン酸
塩とコロイダルシリカを主成分とする絶縁コーティング
被膜を被成した後、該被膜上で圧延方向を横切る向きに
EB照射を施すことを特徴とする超低鉄損一方向性珪素
鋼板の製造方法(第1発明)、またさらに 仕上げ焼鈍済みの方向性珪素鋼板につき、その表面酸化
物を除去し、ついで研磨により綱板表面を中心線平均粗
さRaで0.4μm以下の鏡面状態に仕上げた後、CV
D 、イオンブレーティングあるいはイオンインプラン
テーションにより、Ti 、 Zr 。
(Means for Solving the Problems) This invention involves forming an insulating coating film containing phosphate and colloidal silica as main components on a finish annealed grain-oriented silicon steel sheet, and then rolling the film on the film in the rolling direction. A method for producing an ultra-low iron loss unidirectional silicon steel sheet (first invention) characterized by applying EB irradiation in a direction transverse to Then, after polishing the steel plate surface to a mirror-like state with a center line average roughness Ra of 0.4 μm or less, CV
D, Ti, Zr by ion blating or ion implantation.

Hf、  V 、 Nb 、 Ta 、 Cr 、 M
o + W 、 Mn + Co +Ni + AI 
、 B 、 siの窒化物及び/又は炭化物並びに八1
1  Nl + Cu、 wl Si及びZnの酸化物
のうちから選ばれた少なくとも1種からなる極薄張力被
膜を被成し、さらにリン酸塩とコロイダルシリカを主成
分とする絶縁コーティング被膜を被成し、ついで該被膜
上で圧延方向を横切る向きにEB照射を施すことを特徴
とする超低鉄損一方向性珪素鋼板の製造方法(第2発明
)である。
Hf, V, Nb, Ta, Cr, M
o + W, Mn + Co + Ni + AI
, B, nitride and/or carbide of Si and 81
1 An ultra-thin tension film made of at least one selected from oxides of Nl + Cu, wl Si, and Zn is formed, and an insulating coating film whose main components are phosphate and colloidal silica is further formed. A method for producing an ultra-low core loss unidirectional silicon steel sheet (second invention), which is characterized in that EB irradiation is then performed on the coating in a direction transverse to the rolling direction.

これら発明の成功が導かれた具体的な実験に従って説明
を進める。
The explanation will proceed according to specific experiments that led to the success of these inventions.

C: 0.046重量%(以下単に%で示す)、Si:
3.44%、 Mn:0.068%、 Se: 0.0
21%、 Sb: 0.025%及びMo:0.013
%を含有する珪素鋼連鋳スラブを1350℃で4時間加
熱後熱間圧延して2.On+m厚さの熱延板とした。
C: 0.046% by weight (hereinafter simply expressed as %), Si:
3.44%, Mn: 0.068%, Se: 0.0
21%, Sb: 0.025% and Mo: 0.013
A continuously cast silicon steel slab containing 2.0% was heated at 1350°C for 4 hours and then hot rolled. A hot-rolled sheet with a thickness of On+m was obtained.

その後900℃で3分間の均一化焼鈍後、950℃で3
分間の中間焼鈍をはさむ2回の冷間圧延を施して0.2
3mm厚の最終冷延板とした。
After that, after homogenization annealing at 900℃ for 3 minutes, at 950℃ for 3 minutes.
Cold rolled twice with intermediate annealing for 0.2 min.
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後820℃の湿水素雰囲気中で脱炭・−次再結晶焼
鈍を施した後、綱板表面に不活性Alz(h (75%
)とMgO(25%)から成る焼鈍分離剤を塗布し、つ
いで850℃で50時間の2次再結晶焼鈍と、1200
℃で5時間軟水素中で純化焼鈍とを施した。
Thereafter, after decarburization and second recrystallization annealing in a wet hydrogen atmosphere at 820°C, the steel plate surface was coated with inert Alz (h (75%
) and MgO (25%), followed by secondary recrystallization annealing at 850°C for 50 hours and 1200°C.
Purification annealing was performed in soft hydrogen at ℃ for 5 hours.

得られた仕上焼鈍板の一部を次の(al及び(blに示
す処理に供した。
A part of the obtained finish annealed plate was subjected to the following treatments shown in (al and (bl).

(81仕上焼鈍板表面上に真空中で圧延方向に直角方向
にエレクトロンビーム照射(EB照射、加速電圧: 5
0kV、加速電流: 0.75mA、ビーム径0.IN
φ、ビーム走査間隔:10mm)した。
(Electron beam irradiation (EB irradiation, acceleration voltage: 5
0kV, acceleration current: 0.75mA, beam diameter 0. IN
φ, beam scanning interval: 10 mm).

(b)仕上げ焼鈍板表面上にリン酸塩とコロイダルシリ
カを主成分とする絶縁コーティング被膜を施した後、真
空中で圧延方向の直角方向に上記fa)と同一条件にて
EB照射した。
(b) Finish After applying an insulating coating film mainly composed of phosphate and colloidal silica on the surface of the annealed plate, it was irradiated with EB in a direction perpendicular to the rolling direction in vacuum under the same conditions as fa) above.

また比較のため(CIEB照射を施さない仕上焼鈍板お
よび+d)仕上焼鈍後に絶縁コーティングを施し、EB
照射は施さなし゛A製品板も用意した。
For comparison, (finish annealed plate without CIEB irradiation and +d) insulating coating was applied after final annealing, and EB
A product plate without irradiation was also prepared.

さらに残りの仕上焼鈍板はその表面を軽く酸洗(10%
のHC1液中)した後、3%IPとHzO□の液中で化
学研磨し綱板表面平均粗さ0.03μmの鏡面状態に仕
上げた後4群の試料に分け、それぞれ次の条件で処理し
た。
Furthermore, the surface of the remaining finish annealed plate was lightly pickled (10%
After chemical polishing in a solution of 3% IP and HzO□ to give a mirror finish with an average surface roughness of 0.03 μm, the specimens were divided into four groups and treated under the following conditions. did.

(a)  鏡面鋼板の上に連続イオンブレーティング装
置()ICD法)によりTiNの1,0μm厚の薄膜を
形成させた。
(a) A thin film of TiN with a thickness of 1.0 μm was formed on a mirror-finished steel plate using a continuous ion brating device (ICD method).

ff)  鏡面鋼板の上に連続イオンプレーティンク装
置によりTiNの1.0μm厚の薄膜を形成させた後、
ひきつづき真空中で圧延方向に直角方向にEB照射(加
速電圧: 45KV 、加速電流: 0.75mA 。
ff) After forming a 1.0 μm thick TiN film on a mirror steel plate using a continuous ion plating device,
Subsequently, EB irradiation was performed in a direction perpendicular to the rolling direction in a vacuum (acceleration voltage: 45 KV, acceleration current: 0.75 mA).

ビーム径o、i鶴、ビーム走査問隔:10mm)した。Beam diameter: o, i: beam scanning interval: 10 mm).

(gl  鏡面鋼板の上に連続イオンブレーティング装
置によりTiNの1.0μm厚の薄膜を形成させた後、
リン酸塩とコロイダルシリカを主成分とする絶縁コーテ
ィング被膜の被成処理を行った。
(gl After forming a 1.0 μm thick TiN film on a mirror steel plate using a continuous ion blating device,
An insulating coating film mainly composed of phosphate and colloidal silica was applied.

fh)  鏡面鋼板上に連続イオンブレーティング処理
によりTiNの1.0μm厚の薄膜を形成し、ついでリ
ン酸塩とコロイダルシリカを主成分とする絶縁コーティ
ング被膜の被成処理を施した後、真空中で圧延方向に対
して直角方向に上記(flと同一条件にてEB照射した
fh) A thin film of TiN with a thickness of 1.0 μm was formed on a mirror-polished steel plate by continuous ion blating treatment, and then an insulating coating film mainly composed of phosphate and colloidal silica was applied, and then the film was coated in a vacuum. EB irradiation was performed in the direction perpendicular to the rolling direction under the same conditions as above (fl).

以上の処理を経た各試料の磁気特性値を、第1表にまと
めて示す。
The magnetic property values of each sample subjected to the above treatment are summarized in Table 1.

第  1  表 第1表から明らかなように、通常の一方向性珪素鋼仕上
焼鈍板を対象としたEB照射を行った(a)および〜)
の場合の磁気特性はB1゜値が1.90〜1.91T、
WI?150値が0.82〜0.83W/kgで、EB
照射しない(C1および(d)の場合の磁気特性に比較
してWI7150値が0.05〜0.06W/kg向上
している。又仕上げ焼鈍板を研磨処理後イオンブレーテ
ィングによりTiN′#1.膜を形成してからEB照射
をした(f)および(hlの場合の磁気特性は、B10
値が1.91〜1.92T、W+tzs。値が0.65
〜0.66W/kgで、EB照射しない(elおよび(
g)(7)場合の磁気特性値に比較してWI?/S。値
が0.05〜0.07147kg向上している。
Table 1 As is clear from Table 1, EB irradiation was performed on a normal unidirectional silicon steel finish annealed plate (a) and ~)
The magnetic properties in the case of B1° value are 1.90 to 1.91T,
WI? 150 value is 0.82-0.83W/kg, EB
The WI7150 value is improved by 0.05 to 0.06 W/kg compared to the magnetic properties in the case of no irradiation (C1 and (d)).Furthermore, the TiN'#1 .The magnetic properties in the case of (f) and (hl) in which EB irradiation was performed after the film was formed are B10.
Value is 1.91-1.92T, W+tzs. value is 0.65
~0.66W/kg without EB irradiation (el and (
g) Compared to the magnetic property values in case (7), WI? /S. The value has improved by 0.05 to 0.07147 kg.

かくして一方向性珪素鋼仕上焼鈍板に絶縁コーティング
処理後EB照射することにより、あるいは一方向性珪素
鋼仕上焼鈍板を鏡面仕上し、その上にTiNの極薄張力
被膜をコーテング処理し、ついで絶縁コーティング処理
後、EB照射することによりきわめて低鉄損を有する製
品を得ることができる。
Thus, by applying EB irradiation to a unidirectional silicon steel finish annealed plate after insulating coating treatment, or by mirror-finishing a unidirectional silicon steel finish annealing plate, coating it with an ultra-thin tension film of TiN, and then insulating it. After coating, a product with extremely low core loss can be obtained by EB irradiation.

(作 用) 第1図に第1表の(a)、 (b)、 if)、 (h
)の処理を行った製品に焼鈍を施した後の鉄損特性の変
化を示す。
(Function) Figure 1 shows (a), (b), if), (h
) shows the change in iron loss characteristics after annealing the product.

同図から明らかなように、第1表中の(b)および(h
)の場合はその後に高温の焼鈍処理を施しても鉄損特性
の劣化が起こらない。このように、高温処理を施しても
鉄損特性が劣化しない理由は完全に解明されたわけでは
ないが、真空中でのEB照射を絶縁被膜上に行った場合
に絶縁被膜の質的変化が起こりEB照射領域と無照射領
域との不均質が起こるため、高温焼鈍を施しても磁区細
分化させることが可能となり、したがって鉄損特性の劣
化が起らないと考えられる。
As is clear from the figure, (b) and (h
), the iron loss characteristics will not deteriorate even if a high-temperature annealing treatment is performed afterwards. Although the reason why the iron loss characteristics do not deteriorate even after high-temperature treatment has not been completely elucidated, it has been found that when EB irradiation is performed on an insulating film in a vacuum, qualitative changes occur in the insulating film. Since the EB irradiation region and the non-irradiation region are non-uniform, it is possible to refine the magnetic domains even if high-temperature annealing is performed, and therefore it is considered that deterioration of iron loss characteristics does not occur.

上にのべたように仕上焼鈍板上に絶縁被膜コーティング
を施した後、あるいは鏡面仕上げした綱板表面上に張力
被膜を形成してさらにその上に絶縁コーティング被膜を
形成させた後、その絶縁被膜上にEB照射を行うことに
よって絶縁被膜の膜質を変化させ磁区細分化を図ること
ができ、高温歪取り焼鈍を施しても鉄損特性の劣化が起
こらない。
After applying an insulating coating on a finished annealed plate as shown above, or forming a tension coating on a mirror-finished steel plate surface and then forming an insulating coating on top of that, the insulating coating By performing EB irradiation on the insulating film, it is possible to change the film quality of the insulating film and refine the magnetic domains, and even if high-temperature strain relief annealing is performed, the iron loss characteristics do not deteriorate.

次にこの発明による、一方向性珪素鋼板の製造工程につ
いて説明する。
Next, the manufacturing process of a unidirectional silicon steel plate according to the present invention will be explained.

出発素材は従来公知の一方向性珪素鋼素材成分、例えば ■ C: 0.01〜0.050 %、 Si: 2.
50〜4.5 %、 Mn:0.01〜0.2%、 M
o: 0.003〜0.050 Sb: 0.005〜
0.2%、SあるいはSeの1種あるいは2種合計で、
0.005〜0.05%を含有する組成■   C二 
0.01 〜0.050.   Si:  2.0 〜
4.0  %、  S:0.005 〜0.050. 
八1:  0.005 〜0.06%、N:  0.0
01〜0.01%、  Sn:  0.01〜0.5 
 %、  Cu:0.01 〜0.3  %。
The starting material is a conventionally known unidirectional silicon steel material, such as: C: 0.01 to 0.050%, Si: 2.
50-4.5%, Mn: 0.01-0.2%, M
o: 0.003~0.050 Sb: 0.005~
0.2%, a total of one or two types of S or Se,
Composition containing 0.005 to 0.05%■ C2
0.01 to 0.050. Si: 2.0 ~
4.0%, S: 0.005 to 0.050.
81: 0.005 to 0.06%, N: 0.0
01-0.01%, Sn: 0.01-0.5
%, Cu: 0.01 to 0.3%.

Mn: 0.01〜0.2%を含有する組成■ C: 
0.011〜0.06%、 Si: 2.0〜4.0%
、S:0.005〜0.05%、 B:0.0003〜
0.0040%、 N :0.001〜o、oi%、 
Mn:0.01〜0.2%を含有する組成の如きにおい
て適用可能である。
Composition containing Mn: 0.01 to 0.2% ■C:
0.011-0.06%, Si: 2.0-4.0%
, S: 0.005~0.05%, B: 0.0003~
0.0040%, N: 0.001~o, oi%,
It is applicable to compositions containing Mn: 0.01 to 0.2%.

次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050℃の中間焼鈍をはさんでさらに冷
延する2回冷延法にて、後者の場合最初の圧下率は50
%から80%程度、1144%の圧下率は50%から8
5%程度で0.15mmから0.35mmの最終冷延板
厚とする。
Next, the hot-rolled sheet undergoes uniform annealing at 800 to 1100°C.
One-time cold rolling method, in which the final plate thickness is obtained by two cold rolling steps, or two-step cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, and then further cold rolling is performed.In the latter case, the first rolling rate is 50
% to about 80%, the rolling reduction rate of 1144% is from 50% to 80%.
At about 5%, the final cold-rolled sheet thickness is from 0.15 mm to 0.35 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750℃から850℃の湿水素中で脱炭・1次再結晶
焼鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is subjected to decarburization and primary recrystallization annealing treatment in wet hydrogen at 750°C to 850°C after surface degreasing.

その後は通常綱板表面にMgOを主成分とする焼鈍分離
材を塗布する。
Thereafter, an annealing separation material containing MgO as a main component is usually applied to the steel plate surface.

この際、一般的には仕上げ焼鈍後フォルステライト被膜
の形成を不可欠とする場合はMgOを主成分とする焼鈍
分離剤を塗布するが、フォルステライトを特に形成させ
ない場合、その後の鋼板の鏡面化処理を簡便にするのに
有効であるので、焼鈍分離剤としてAl2O2やZrO
2,TiO2の如きを50%以上でMgOに混入した焼
鈍分離剤を使用するのが好ましい。
At this time, if it is essential to form a forsterite film after final annealing, an annealing separator containing MgO as a main component is generally applied, but if forsterite is not to be formed, the steel sheet is then mirror-polished. Since it is effective in simplifying the process, Al2O2 and ZrO are used as annealing separators.
2. It is preferable to use an annealing separator containing 50% or more of MgO, such as TiO2.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>  方位の2次再結晶粒を充分発達させる
ために施されるもので、通常箱焼鈍によって直ちに10
00℃以上に昇温し、その温度に保持することによって
行われる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is carried out to sufficiently develop secondary recrystallized grains with the <001> orientation, and is usually performed immediately after box annealing.
This is done by raising the temperature to 00°C or higher and maintaining it at that temperature.

この場合(110) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保定焼鈍する方が有利であり、そのほか
例えば0.5〜b 鈍でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (110) <001> orientation, the
It is more advantageous to carry out retention annealing at a low temperature of 00°C, and in addition, for example, 0.5-b annealing may be used.

2次再結晶焼鈍後の純化焼鈍は軟水素中で1100℃以
上で1〜20時間焼鈍を行って鋼板の純化を達成するこ
とが必要である。
Purification annealing after secondary recrystallization annealing requires annealing in soft hydrogen at 1100° C. or higher for 1 to 20 hours to achieve purification of the steel sheet.

その後さらにリン酸塩とコロイダルシリカを主成分とす
る絶縁被膜を形成する。
Thereafter, an insulating film containing phosphate and colloidal silica as main components is further formed.

ついでこの絶縁被膜上で圧延方向を横切る方向、好適に
は60〜90°の方向、3〜15 n程度の間隔でEB
照射を施す。このときのEB照射条件は10〜100K
Vの加速電圧、0.005〜IOmAの電流、ビーム径
は0.005〜1nを用いて点状あるいは線状に施すの
が効果的である。
Next, EB is applied on this insulating coating in a direction transverse to the rolling direction, preferably in a direction of 60 to 90 degrees, at intervals of about 3 to 15 nm.
Apply irradiation. The EB irradiation conditions at this time are 10 to 100K.
It is effective to use an accelerating voltage of V, a current of 0.005 to IOmA, and a beam diameter of 0.005 to 1n to apply the beam in a dotted or linear manner.

又純化焼鈍後に綱板表面の酸化物被膜を硫酸、硝酸又は
弗酸などの強酸によるような酸洗か又は機械的研削、切
削等により除去すると、さらに磁気特性が向上する。
Furthermore, if the oxide film on the surface of the steel plate is removed by pickling with a strong acid such as sulfuric acid, nitric acid, or hydrofluoric acid, or by mechanical grinding or cutting, the magnetic properties are further improved.

次に化学研磨および/又は電解研磨など従来から既知の
手法により綱板表面を鏡面状態つまり中心線平均粗さR
aで0.4μm以下に仕上げる。
Next, by conventionally known methods such as chemical polishing and/or electrolytic polishing, the steel plate surface is polished to a mirror-like state, that is, to a center line average roughness R.
A is finished to 0.4 μm or less.

その後CVD 、イオンプレーテングあるいは・イオン
インプランテーションによりTi+ Zr+ V+ N
b 。
Afterwards, Ti+Zr+V+N is formed by CVD, ion plating or ion implantation.
b.

Ta、 Cr、 Mo、 W、 Mn、 Got Ni
、 A1.8. siの窒化物及び/又は炭化物、AL
 Nt、 Cu+ W、 StおよびZnの酸化物のう
ちから選んだ少なくとも1種から成る0、05〜5μm
程度の極薄被膜を形成させる。
Ta, Cr, Mo, W, Mn, Got Ni
, A1.8. Si nitride and/or carbide, AL
0.05-5 μm consisting of at least one selected from oxides of Nt, Cu+W, St and Zn
Forms an ultra-thin film of approximately

ついでその上にリン酸塩とコロイダルシリカを主成分と
する絶縁被膜を形成する。
Then, an insulating film containing phosphate and colloidal silica as main components is formed thereon.

その後この絶縁被膜上に圧延方向を横切る方向、好適に
は60〜90°の方向、3〜15重層程重層間隔でHa
照射を施す。このときのEB照射条件は前述と同様であ
る。
After that, on this insulating coating, Ha
Apply irradiation. The EB irradiation conditions at this time are the same as those described above.

上記のように処理された珪素鋼板は600℃以上の温度
で鉄損特性を劣化させることな(歪み取り、平たん化熱
処理を行うことができる。
The silicon steel plate treated as described above can be heat-treated for strain relief and flattening at temperatures of 600° C. or higher without deteriorating its core loss characteristics.

(実施例) 2土班−1 C: 0.045%、 St: 3.40%、 Mn:
 0.066%、−〇=0.020%、 Se: 0.
020%、 Sb: 0.025%を含有する熱延板を
、900℃で3分間の均−化焼鈍後、950℃の中間焼
鈍をはさんで2回の冷延圧延を行って0.23mm厚の
最終冷延板とした。
(Example) 2 soil group-1 C: 0.045%, St: 3.40%, Mn:
0.066%, -〇=0.020%, Se: 0.
A hot rolled sheet containing Sb: 0.020% and Sb: 0.025% was uniformly annealed at 900°C for 3 minutes and then cold-rolled twice with an intermediate annealing at 950°C to obtain a sheet of 0.23mm. A thick final cold-rolled sheet was obtained.

その後820℃の湿水素中で脱炭焼鈍後綱板表面にMg
Oを主成分とする焼鈍分離剤を塗布した後850℃で5
0時間の2次再結晶焼鈍し、1200℃で8時間乾水素
中で純化焼鈍を行った。
After decarburization annealing in wet hydrogen at 820°C, Mg is deposited on the steel plate surface.
After applying an annealing separator mainly composed of O, it was heated at 850℃ for 5
Secondary recrystallization annealing was performed for 0 hours, and purification annealing was performed in dry hydrogen at 1200° C. for 8 hours.

その後リン酸塩とコロイダルシリカを主成分とする絶縁
被膜を形成した後、圧延方向にほぼ直角方向に7111
間隔で線状にEB照射(加熱電圧=45にν。
After that, after forming an insulating film mainly composed of phosphate and colloidal silica, 7111
EB irradiation linearly at intervals (heating voltage = 45 ν).

電流: 1.OmA 、スポット直径は0.15mφ)
を行った。その後800℃で3時間窒素雰囲気中で焼鈍
を行ったところ、製品の磁気特性はB、。値が1.91
T 。
Current: 1. OmA, spot diameter is 0.15mφ)
I did it. After that, annealing was performed at 800°C for 3 hours in a nitrogen atmosphere, and the magnetic properties of the product were B. The value is 1.91
T.

WIT/S。値は0.82 W/kgであった。WIT/S. The value was 0.82 W/kg.

尖施拠−叢 C: 0.052%、 Si: 3.46%、 Mn:
 0.077%、A1:0.024%、 S: 0.0
020%、 Cu: 0.1%、 Sn: 0.06%
を含有する熱延板を、1130℃で3分間の均−化焼鈍
後急冷処理を行い、その後300℃の温間圧延を施して
0.20mm厚の最終冷延板とした。
Apical base-plexus C: 0.052%, Si: 3.46%, Mn:
0.077%, A1: 0.024%, S: 0.0
020%, Cu: 0.1%, Sn: 0.06%
The hot-rolled sheet containing the following was uniformly annealed at 1130°C for 3 minutes and then rapidly cooled, and then warm-rolled at 300°C to obtain a final cold-rolled sheet with a thickness of 0.20 mm.

その後850℃湿水素中で脱炭焼鈍後、表面にAlz(
h(80%)とMgO(15%)とZr0z(5%)を
主成分とする焼鈍分離剤を塗布した後850℃から11
50℃まで10℃/hrで昇温しで2次再結晶させた後
、1200℃で8時間乾水素中で純化焼鈍を行った。
After decarburization annealing in wet hydrogen at 850°C, Alz (
After applying an annealing separator containing h (80%), MgO (15%) and Zr0z (5%) as main components, it was heated from 850°C to 11
After secondary recrystallization by raising the temperature to 50°C at a rate of 10°C/hr, purification annealing was performed at 1200°C for 8 hours in dry hydrogen.

その後酸洗により酸化被膜を除去後、3%HFとH2O
,液中で化学研磨して鏡面仕上げした後、CVD 。
After that, after removing the oxide film by pickling, add 3% HF and H2O.
, Chemically polished in liquid to give a mirror finish, then CVD.

イオンブレーティング(HCD法)及びイオンインプラ
ンテーションにより(1)BN、 (21Ti(CN)
、 f3)SiJ*。
By ion blating (HCD method) and ion implantation, (1) BN, (21Ti(CN))
, f3) SiJ*.

(4)VN、 f5)ZrN、 (6)CrgN、 (
7)AIN、 (8)HfNの如き窒化物、(9)Zr
C,α0)HfC,αυSiC,(12Tac、α31
 Z r C+α、4)MnCの如き炭化物およびα’
JZn(L G*NxO,Q7)S+O2,Q8)WO
+(1!1lAI!03. QφCuOの酸化物の薄膜
(0,5〜1.9μm厚)を形成させた。その後リン酸
塩とコロイダルシリカを主成分とする絶縁被膜を形成し
た。
(4) VN, f5) ZrN, (6) CrgN, (
7) AIN, (8) Nitride such as HfN, (9) Zr
C, α0) HfC, αυSiC, (12Tac, α31
Z r C + α, 4) Carbide such as MnC and α'
JZn(L G*NxO,Q7)S+O2,Q8)WO
+(1!1lAI!03. A thin film (0.5 to 1.9 μm thick) of QφCuO oxide was formed. Thereafter, an insulating film containing phosphate and colloidal silica as main components was formed.

ついで圧延方向に直角方向に10鶴間隔で線状にEB照
射(EB照射条件:加速電圧60KV、電流0.8mA
 。
Then, EB irradiation was applied linearly at 10-tsuru intervals in the direction perpendicular to the rolling direction (EB irradiation conditions: acceleration voltage 60 KV, current 0.8 mA).
.

ビーム径0.05鶴)を行い、ついで800℃で2時間
の歪み取り焼鈍を行った。得られた製品の磁気特性を第
2表に示す。
(beam diameter: 0.05), and then strain relief annealing was performed at 800° C. for 2 hours. The magnetic properties of the obtained product are shown in Table 2.

第2表 B;イオンブレーティング処理 C:イオンインブランテーション処理 去f C: 0.044%、 Si: 3.38%、 Mn:
 0.072%、 Se:0.020%、 Sb: 0
.026%、 Mo: 0.15%を含有する熱延板を
、1000℃で1分間の均一化焼鈍後、950℃で3分
間の中間焼鈍をはさんで2回の冷間圧延を行なって0.
18+mm厚の最終冷延板とした。その後820℃湿水
素中で脱炭を兼ねる1次再結晶焼鈍を施した後、綱板表
面にA1□0s(70%)とMgO(30%)とを主成
分とする焼鈍分離剤を塗布した後850℃で50時間2
次再結晶を施した後、1200℃でlO時間乾水素中で
純化焼鈍を行った。
Table 2 B; Ion brating treatment C: Ion imblation treatment f C: 0.044%, Si: 3.38%, Mn:
0.072%, Se: 0.020%, Sb: 0
.. A hot rolled sheet containing 0.026% and Mo: 0.15% was uniformly annealed at 1000°C for 1 minute and then cold rolled twice with an intermediate annealing of 3 minutes at 950°C. ..
The final cold rolled sheet was 18+mm thick. After that, primary recrystallization annealing was performed in wet hydrogen at 820°C, which also served as decarburization, and then an annealing separator containing A1□0s (70%) and MgO (30%) as main components was applied to the steel plate surface. After 50 hours at 850℃2
After recrystallization, purification annealing was performed in dry hydrogen at 1200° C. for 10 hours.

その後酸洗により酸化被膜を除去後、3%肝とH20□
液中で化学研磨して鏡面仕上げした後、イオンブレーテ
ィング(FICD法)により(1)TiN、 (2)N
bN。
Then, after removing the oxide film by pickling, 3% liver and H20□
After chemically polishing in liquid to give a mirror finish, ion blating (FICD method) was performed to form (1) TiN, (2) N
bN.

(3)MozN、 (4)WJ、(5)CoN、(6)
NiN、(7)Tic、(8)NbC,(91MozC
(3) MozN, (4) WJ, (5) CoN, (6)
NiN, (7) Tic, (8) NbC, (91MozC
.

αIWC,αυCoC,α3NiC,α31VC,α4
)CrC,QS)AICの張力薄膜(目標1.0μm厚
)を形成させた。その後リン酸塩と・コロイダルシリカ
を主成分とする絶縁被膜を形成した。次に圧延方向の直
角方向に8關間隔で線状にBB照射(加速電圧50KV
、電流0.9mA、ビーム径0 、1 m )行って、
ついで800℃で2時間窒素中で歪み取り焼鈍を行った
αIWC, αυCoC, α3NiC, α31VC, α4
) CrC, QS) A tensile thin film (target thickness of 1.0 μm) of AIC was formed. After that, an insulating film mainly composed of phosphate and colloidal silica was formed. Next, BB irradiation is performed linearly at 8-square intervals in the direction perpendicular to the rolling direction (acceleration voltage 50KV).
, current 0.9 mA, beam diameter 0, 1 m),
Strain relief annealing was then performed at 800° C. for 2 hours in nitrogen.

得られた製品の磁気特性を第3表に示す。The magnetic properties of the obtained product are shown in Table 3.

第3表 (発明の効果) 第1発明によれば仕上焼鈍済みの方向性珪素綱板表面を
鏡面仕上をすることによるコスト増しの難点を償ってあ
まりある鉄損の著しい低減を達成することができる。ま
た第2発明により上記の鉄損低域に加えて、絶縁性の有
効な増強が実現される。
Table 3 (Effects of the Invention) According to the first invention, it is possible to achieve a significant reduction in iron loss by compensating for the disadvantage of increased cost due to mirror finishing of the surface of the grain-oriented silicon steel plate that has been finish annealed. can. Further, according to the second invention, in addition to the above-described low iron loss, effective enhancement of insulation properties is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はEB処理材に焼鈍を施した際の磁気特性を示す
グラフである。
FIG. 1 is a graph showing the magnetic properties when an EB-treated material is annealed.

Claims (1)

【特許請求の範囲】 1、仕上焼鈍済みの方向性珪素鋼板上にリン酸塩とコロ
イダルシリカを主成分とする絶縁コーティング被膜を被
成した後、該被膜上で圧延方向を横切る向きにEB照射
を施すことを特徴とする超低鉄損一方向性珪素鋼板の製
造方法 2、仕上げ焼鈍済みの方向性珪素鋼板につき、その表面
酸化物を除去し、ついで研磨により綱板表面を中心線平
均粗さRaで0.4μm以下の鏡面状態に仕上げた後、
CVD、イオンプレーティングあるいはイオンインプラ
ンテーションにより、Ti、Zr、Hf、V、Nb、T
a、Cr、Mo、W、Mn、Co、Ni、Al、B、S
iの窒化物及び/又は炭化物並びにAl、Ni、Cu、
W、Si及びZnの酸化物のうちから選ばれた少なくと
も1種からなる極薄張力被膜を被成し、さらにリン酸塩
とコロイダルシリカを主成分とする絶縁コーティング被
膜を被成し、ついで該被膜上で圧延方向を横切る向きに
EB照射を施すことを特徴とする超低鉄損一方向性珪素
鋼板の製造方法。
[Claims] 1. After forming an insulating coating film mainly composed of phosphate and colloidal silica on a grain-oriented silicon steel sheet that has been finish annealed, EB irradiation is performed on the film in a direction transverse to the rolling direction. Method 2 for producing an ultra-low core loss unidirectional silicon steel sheet, which is characterized in that the surface oxides are removed from the finish annealed grain oriented silicon steel sheet, and then the steel sheet surface is polished to a center line average roughness. After finishing it to a mirror state with an Ra of 0.4μm or less,
Ti, Zr, Hf, V, Nb, T by CVD, ion plating or ion implantation.
a, Cr, Mo, W, Mn, Co, Ni, Al, B, S
i nitride and/or carbide and Al, Ni, Cu,
An ultra-thin tensile coating consisting of at least one selected from oxides of W, Si, and Zn is formed, and an insulating coating whose main components are phosphate and colloidal silica is formed. A method for producing an ultra-low iron loss unidirectional silicon steel sheet, comprising applying EB irradiation on the coating in a direction transverse to the rolling direction.
JP62016123A 1986-09-16 1987-01-28 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet Expired - Lifetime JPH0672266B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62016123A JPH0672266B2 (en) 1987-01-28 1987-01-28 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
US07/095,527 US4909864A (en) 1986-09-16 1987-09-10 Method of producing extra-low iron loss grain oriented silicon steel sheets
DE8787308134T DE3785632T2 (en) 1986-09-16 1987-09-15 METHOD FOR PRODUCING CORNORIENTED SILICON STEEL SHEETS WITH VERY LOW ROLL LOSS.
EP87308134A EP0260927B1 (en) 1986-09-16 1987-09-15 Method of producing extra-low iron loss grain oriented silicon steel sheets
US07/444,050 US4985635A (en) 1986-09-16 1989-11-30 Method of producing extra-low iron loss grain oriented silicon steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016123A JPH0672266B2 (en) 1987-01-28 1987-01-28 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS63186826A true JPS63186826A (en) 1988-08-02
JPH0672266B2 JPH0672266B2 (en) 1994-09-14

Family

ID=11907731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016123A Expired - Lifetime JPH0672266B2 (en) 1986-09-16 1987-01-28 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0672266B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281708A (en) * 1988-03-03 1989-11-13 Allegheny Internatl Inc Method of fractionalize magnetic domain in electrical steel to reduce core loss
JPH01281709A (en) * 1988-03-03 1989-11-13 Allegheny Internatl Inc Method of obtaining heat-resistant fractionalized magnetic domains in electrical steel to reduce core loss
JPH02277780A (en) * 1988-10-26 1990-11-14 Kawasaki Steel Corp Grain-oriented silicon steel sheet having small iron loss and production thereof
JPH0347975A (en) * 1989-07-13 1991-02-28 Kawasaki Steel Corp Low-iron loss grain-oriented silicon steel sheet
JP2012035288A (en) * 2010-08-05 2012-02-23 Jfe Steel Corp Electron beam irradiation method
WO2020149330A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927754B2 (en) 2010-06-29 2016-06-01 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
MX2013001392A (en) 2010-08-06 2013-04-03 Jfe Steel Corp Grain-oriented magnetic steel sheet and process for producing same.
CN103080352B (en) 2010-08-06 2015-05-20 杰富意钢铁株式会社 Directional magnetic steel plate
JP5593942B2 (en) 2010-08-06 2014-09-24 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5919617B2 (en) 2010-08-06 2016-05-18 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
WO2012017655A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Oriented electromagnetic steel plate and production method for same
JP5998424B2 (en) 2010-08-06 2016-09-28 Jfeスチール株式会社 Oriented electrical steel sheet
US9875832B2 (en) 2011-12-26 2018-01-23 Jfe Steel Corporation Grain-oriented electrical steel sheet
CN107012309B (en) 2011-12-27 2020-03-10 杰富意钢铁株式会社 Apparatus for improving iron loss of grain-oriented electromagnetic steel sheet
RU2570250C1 (en) 2011-12-27 2015-12-10 ДжФЕ СТИЛ КОРПОРЕЙШН Textured sheet of electrical steel
WO2013099274A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and method for ameliorating iron losses therein
EP2799579B1 (en) 2011-12-28 2018-06-20 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
US10629346B2 (en) 2012-04-26 2020-04-21 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP5668795B2 (en) 2013-06-19 2015-02-12 Jfeスチール株式会社 Oriented electrical steel sheet and transformer core using the same
MX2016009420A (en) 2014-01-23 2016-09-16 Jfe Steel Corp Directional magnetic steel plate and production method therefor.
CN111670480B (en) 2018-01-31 2022-09-20 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet, laminated core for transformer using same, and method for manufacturing laminated core
CN113366125B (en) 2019-01-31 2023-01-20 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and iron core using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
JPS6046325A (en) * 1984-05-07 1985-03-13 Nippon Steel Corp Treatment of electromagnetic steel plate
JPS61235514A (en) * 1985-04-10 1986-10-20 Kawasaki Steel Corp Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
JPS6046325A (en) * 1984-05-07 1985-03-13 Nippon Steel Corp Treatment of electromagnetic steel plate
JPS61235514A (en) * 1985-04-10 1986-10-20 Kawasaki Steel Corp Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281708A (en) * 1988-03-03 1989-11-13 Allegheny Internatl Inc Method of fractionalize magnetic domain in electrical steel to reduce core loss
JPH01281709A (en) * 1988-03-03 1989-11-13 Allegheny Internatl Inc Method of obtaining heat-resistant fractionalized magnetic domains in electrical steel to reduce core loss
JPH02277780A (en) * 1988-10-26 1990-11-14 Kawasaki Steel Corp Grain-oriented silicon steel sheet having small iron loss and production thereof
JPH0347975A (en) * 1989-07-13 1991-02-28 Kawasaki Steel Corp Low-iron loss grain-oriented silicon steel sheet
JP2012035288A (en) * 2010-08-05 2012-02-23 Jfe Steel Corp Electron beam irradiation method
WO2020149330A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
CN113366123A (en) * 2019-01-16 2021-09-07 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
JPWO2020149330A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
EP3913088A4 (en) * 2019-01-16 2022-09-21 Nippon Steel Corporation Method for manufacturing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JPH0672266B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JP3067164B2 (en) Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPS62290844A (en) Grain-oriented silicon steel sheet having very small iron loss
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPS61246321A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPH04272166A (en) Manufacture of ultralow core loss grain-oriented silicon steel sheet
JPH0577749B2 (en)
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS63278209A (en) Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties
JPS6222407A (en) Manufacture of ultra-low iron loss unidirectional silicon steel plate
JPS6269502A (en) Manufacture of very low iron loss grain oriented silicon steel plate
JPH0327632B2 (en)
JPS62141706A (en) Manufacture of very low iron loss grain oriented silicon steel plate
JPS6324018A (en) Production of extra-low iron loss grain oriented silicon steel sheet