JPS63278209A - Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties - Google Patents

Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties

Info

Publication number
JPS63278209A
JPS63278209A JP63024001A JP2400188A JPS63278209A JP S63278209 A JPS63278209 A JP S63278209A JP 63024001 A JP63024001 A JP 63024001A JP 2400188 A JP2400188 A JP 2400188A JP S63278209 A JPS63278209 A JP S63278209A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
steel plate
tension
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63024001A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63024001A priority Critical patent/JPS63278209A/en
Publication of JPS63278209A publication Critical patent/JPS63278209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a silicon steel plate having excellent thermostable and unidirectional properties without bring about the deterioration in the performance because of a high temperature treatment by forming a mixture phase among Fe atoms, accelarating ions, and evaporation inos between tension films on the polishing treatment surface of the silicon steel phate as a substrate. CONSTITUTION:A mixture phase with base steels is mainly formed with at least on kind of nitrides and/or carbides chosen out of the above nitrides and/or carbides of Ti, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo, W, Co, Ni, Al, B, and Si at the surface of a unidirectional silicon steel plate where its finishing annealing is performed and non-metallic substances are removed or further at its flat surface finished by polishing and through the mixture phase with these base steels, tension films having a layer of 0.005-5 mum, at least are firmly deposited on the surface of the above steel plate and further, another tension film is deposited by putting it together with an insulation coating baking layer on the initial tension film. The film thickness of the tension films is adaptable within a range 0.005-5 mum. When it is less than 0.005 mum, it does not contribute toword necessary tension and on the other hand, when it exceeds 5 mum, space factor and adhesion decrease.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性けい素鋼板の電気・磁気的特性の改善、なかで
も、鉄損の低減に係わる極限的な要請を満たそうとする
近年来の目覚ましい開発努力は、逐次その実を挙げつつ
あるが、その実施に伴う重大な弊害として、一方向性け
い素鋼板の使用に当たっての加工、組立てを経たのちい
わゆるひずみ取り焼鈍がほどこされた場合に、特性劣化
の随伴を不可避に生じて、使途についての制限を受ける
不利が指摘される。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, efforts have been made to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. The remarkable development efforts are gradually bearing fruit, but one serious problem associated with their implementation is that when unidirectional silicon steel sheets are processed and assembled and then subjected to so-called strain relief annealing, their characteristics deteriorate. It has been pointed out that the disadvantage is that it inevitably causes deterioration and limits its usage.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を招くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development that will lead to a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

さて一方向性けい素鋼板は、よく知られているとおり製
品の2次再結晶粒を(110)  (OOILすなわち
ゴス方位に、高度に集積させたもので、主として変圧器
その他の電気機器の鉄心として使用され電気・磁気的特
性として製品の磁束密度(Bo。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) (OOIL or Goss orientation), and are mainly used in iron cores of transformers and other electrical equipment. The product's magnetic flux density (Bo.

で代表される)が高く、鉄損(Ltzs。値で代表され
る)の低いことが要求される。
It is required that the iron loss (represented by the Ltzs value) be high and the iron loss (represented by the Ltzs value) be low.

この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明・改善が加え
られ、今日では板厚0.30mmの製品の磁気特性がB
oo 1.90T以上、l’1171501.05W/
kg以下、また板厚0.23mmの製品の磁気特性が8
,01、89T以上、Lt/so 0.90W/kg以
下の超低鉄損一方向性けい素鋼板が製造されるようにな
って来ている。
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today a product with a thickness of 0.30 mm has magnetic properties of B.
oo 1.90T or more, l'1171501.05W/
The magnetic properties of products weighing less than 8 kg and with a plate thickness of 0.23 mm are 8.
, 01, unidirectional silicon steel sheets with ultra-low core loss of 89T or more and Lt/so 0.90W/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及している。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性けい素鋼板の
仕上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレ
ーザ照射により局部微小ひずみを導入して磁区を細分化
し、もって鉄損を低下させることが提案された(特公昭
57−2252号、特公昭57−53419号、特公昭
5B−26405号及び特公昭58−26406号各公
報参照)。
(Prior Art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after finish annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce iron loss (see Japanese Patent Publications No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 5B-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として鉄心トランス材料にあっては、レ
ーザー照射によって折角に導入された局部微小ひずみが
焼鈍処理により解放されて磁区幅が広くなるため、レー
ザー照射効果がなくなるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for stacked iron cores that are not subjected to strain relief annealing. There is a drawback that the laser irradiation effect disappears because microstrains are released by annealing and the magnetic domain width becomes wider.

一方これより先に特公昭52−24499号公報におい
ては、一方向性けい素鋼板の仕上げ焼鈍後の鋼板表面を
鏡面仕上げするか又はその鏡面仕上げ面上に金属薄めっ
きやさらにその上に絶縁被膜を塗布焼付けすることによ
る、超低鉄損一方向性けい素鋼板の製造方法が提案され
ている。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel sheet after finish annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating or an insulating coating was applied thereon. A method for manufacturing ultra-low core loss unidirectional silicon steel sheets has been proposed by coating and baking.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上後に
不可欠な絶縁被膜を塗布焼付し、さらに600℃以上の
高温で長時間の歪み取り焼鈍を施した後に鋼板との密着
性に問題があるため、現在の製造工程において採用され
るに至ってはいない。また特公昭56−4150号公報
においても鋼板表面を鏡面仕上げした後、酸化物系セラ
ミックス薄膜を蒸着する方法が提案されている。しかし
ながらこの方法も600℃以上の高温焼鈍を施すと鋼板
とセラミック層とが剥離するため、実際の製造工程では
採用できない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective, as it does not contribute enough to reducing iron loss despite the significant increase in cost. Furthermore, it has not been adopted in current manufacturing processes because it has problems with adhesion to steel plates after being subjected to strain relief annealing at a high temperature of 600° C. or higher for a long time. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher.

(発明が解決しようとする問題点) 発明者らは上記した鏡面仕上による鉄損向上の実効をよ
り有利に引き出すことにより、特に今日の省エネ材料開
発の観点では上記のごときコストアップの不利を凌駕す
る特性、とくに高温処理でも特性劣化を伴うことのない
張力被膜層の密着性、耐久性の問題の克服こそが肝要と
考え、この基本認識に立脚し、とくにPVD処理におけ
る張力被膜形成条件に根本的改善を加えることによって
有利な超低鉄損化を達成することがこの発明の目的であ
る。
(Problems to be Solved by the Invention) The inventors have overcome the disadvantage of increased costs, especially from the perspective of today's development of energy-saving materials, by taking advantage of the effect of improving iron loss due to the mirror finish described above. We believe that it is essential to overcome the problems of adhesion and durability of the tensile coating layer, which does not deteriorate in properties even during high-temperature treatment.Based on this basic understanding, we have developed fundamental changes in the conditions for forming the tensile coating, especially in PVD processing. It is an object of the present invention to achieve an advantageous ultra-low iron loss by making improvements.

(問題点を解決するための手段) 上記検討の結果、仕上焼鈍済みの一方向性けい素鋼板表
面上の非金属物質を除去した面あるいはさらに研磨によ
る平滑な仕上表面に、Ti、 Zr、 Hf。
(Means for solving the problem) As a result of the above study, Ti, Zr, and Hf are applied to the surface of the finish-annealed unidirectional silicon steel sheet from which non-metallic substances have been removed or the smooth finished surface by further polishing. .

V、 Nb、 Ta、 Mn、 Cr、 Mo、 W、
 Co、 Ni、 Al、 B及びSiの窒化物及び/
又は炭化物のうちから選んだ少なくとも1種から主とし
てなり、それらの地鉄との混合相を介し鋼板表面上へ強
固に被着した少なくとも1層の0.005〜5μmの張
力被膜を具備し、あるいはさらにこの張力被膜上に重ね
て被着した、絶縁性塗布焼付層とともに具備することを
特徴とする熱安定性、超低鉄損一方向性けい素鋼板を発
明したものである。
V, Nb, Ta, Mn, Cr, Mo, W,
Co, Ni, Al, B and Si nitrides and/or
or at least one layer of a tensile coating of 0.005 to 5 μm, which is mainly composed of at least one kind selected from carbides, and is firmly adhered to the surface of the steel plate through a mixed phase of these carbides with the base iron, or Furthermore, we have invented a thermally stable, ultra-low core loss unidirectional silicon steel sheet that is characterized by having an insulating coated baking layer overlaid on this tension coating.

この発明の成功が導かれた具体的実験例に従って説明を
進める。
The explanation will proceed according to a specific experimental example that led to the success of this invention.

C: 0.046重量%(以下単に%で示す)、Si:
3.34%、 Mn : 0.068%、 Se:0.
023%、Sb : 0.025%、Mo : 0.0
25%を含有するけい素鋼スラブを1360℃で4時間
加熱後熱間圧延して2.0m+n厚の熱延板とした。
C: 0.046% by weight (hereinafter simply expressed as %), Si:
3.34%, Mn: 0.068%, Se: 0.
023%, Sb: 0.025%, Mo: 0.0
A silicon steel slab containing 25% was heated at 1360° C. for 4 hours and then hot-rolled into a hot-rolled plate with a thickness of 2.0 m+n.

その後950℃で3分間の均一化焼鈍後、950℃で3
分間の中間燃焼をはさむ2回の冷間圧延を施して0.2
3+nm厚の最終冷延板とした。
After that, after homogenization annealing at 950℃ for 3 minutes,
It is cold rolled twice with an intermediate combustion of 0.2 minutes in between.
The final cold rolled sheet was 3+nm thick.

その後900℃の湿水紫雲囲気中で脱炭・−次男結晶焼
鈍を施した後、鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布し、850℃で50時間の二次再結晶焼鈍と
、1200℃で飽水素中5時間の純化焼鈍を施した。
After that, decarburization and crystal annealing were performed in a wet Shiun atmosphere at 900°C, and then an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, followed by secondary recrystallization annealing at 850°C for 50 hours. , purification annealing was performed at 1200° C. in saturated hydrogen for 5 hours.

その後はまず80℃の82SOJ液中で酸洗して鋼板表
面のフォルステライト質下地被膜を除去した。
Thereafter, the steel plate was first pickled in 82SOJ solution at 80°C to remove the forsterite base film on the surface of the steel plate.

次に3%HFとH2O2の溶液中で化学研磨し鋼板表面
を中心線平均粗さ0.1μの鏡面状態に仕上げた。
Next, chemical polishing was performed in a solution of 3% HF and H2O2 to finish the surface of the steel plate into a mirror surface with a center line average roughness of 0.1 μm.

その後第1図に示したイオンプレーテング装置を使用し
て研磨表面に、膜厚0.5μmでTiNのイオンブレー
ティングを行った。
Thereafter, using the ion plating apparatus shown in FIG. 1, ion blating of TiN was performed on the polished surface to a film thickness of 0.5 μm.

なお第1図において1は鏡面研磨を施した供試用の基板
、2はシャッタ、3はるつぼ、4は電子銃、5はビーム
、6はイオン化電極、7は熱電子放射電極、8はN2.
 C2H2あるいは02等の反応ガス導入口である。
In FIG. 1, 1 is a mirror-polished test substrate, 2 is a shutter, 3 is a crucible, 4 is an electron gun, 5 is a beam, 6 is an ionization electrode, 7 is a thermionic emission electrode, 8 is an N2.
This is an inlet for introducing a reactive gas such as C2H2 or 02.

上記のイオンブレーティングについでりん酸塩とコロイ
ダルシリカとを主成分とするコーテイング液でコーティ
ング処理(絶縁性塗布焼付層の形成)を行った後800
℃で5時間の歪み取り焼鈍を行った。
After the above ion blasting, a coating treatment (formation of an insulating coated baked layer) with a coating liquid containing phosphate and colloidal silica as main components was performed.
Strain relief annealing was performed at ℃ for 5 hours.

これに対する比較のために従来の公知技術に従b)1μ
mの銅めっき処理を同様の研磨表面に施した後、やはり
りん酸塩とコロイダルシリカとを主成分とするコーテイ
ング液でコーティング焼付処理を行った後、800℃で
5時間の歪み取り焼鈍を行った。
For comparison with this, according to the conventional known technology b) 1μ
After performing copper plating treatment of m on the same polished surface, coating baking treatment was also performed with a coating liquid mainly composed of phosphate and colloidal silica, and then strain relief annealing was performed at 800 ° C. for 5 hours. Ta.

このときの製品の磁気特性および密着性の実験結果をま
とめて表1に示す。
Table 1 summarizes the experimental results of the magnetic properties and adhesion of the product.

表1から明らかなように現在工程的に製造されている、
仕上げ焼鈍中、鋼板表面上に形成されるフォルステライ
ト質下地被膜の上に、コーティング処理を加えたのち8
00℃で5時間の歪み取り焼鈍後の通常処理製品(a)
の磁気特性はB、Oが1.905T。
As is clear from Table 1, currently manufactured by process,
After applying a coating treatment on the forsterite base film formed on the steel plate surface during final annealing, 8
Normally processed product (a) after strain relief annealing at 00℃ for 5 hours
The magnetic properties of B and O are 1.905T.

W17zsoが0.87W/kg程度であって絶縁被膜
の密着性は一応良好であるのに対し、仕上焼鈍後にフォ
ルステライト質被膜を酸洗で除去し、ついで表面を化学
研磨して鏡面仕上し、この研磨処理表面に銅めっきを経
て、コーティング処理した製品ら)の磁気特性はBlo
が1.913T、 IL715oが0.74W/kg程
度にやや改善される反面、密着性が悪い。
W17zso is about 0.87 W/kg and the adhesion of the insulating film is good, but after final annealing, the forsterite film is removed by pickling, and then the surface is chemically polished to a mirror finish. The magnetic properties of products whose polished surfaces are coated with copper plating are as follows:
is 1.913T and IL715o is slightly improved to about 0.74W/kg, but adhesion is poor.

ところがこの発明に従い、仕上焼鈍後フォルステライト
質被膜を除去し、表面を化学研磨して鏡面仕上した上で
とくにイオンフッ−ティング処理を経て同様なコーティ
ング処理をした製品(C)の磁気特性はBloが1.9
20T、 ’IIysaが0.88W/kgときゎだっ
た特性改善のみならず、張力被膜はもちろん絶性塗布焼
付層の密着性もきわめて良好であった。
However, according to the present invention, the forsterite coating was removed after final annealing, the surface was chemically polished to a mirror finish, and the magnetic properties of the product (C), which was subjected to a similar coating treatment through ion footing treatment, were as follows. 1.9
20T, 'IIysa was 0.88 W/kg, which was not only an improvement in properties, but also extremely good adhesion of not only the tension coating but also the permanent coating and baking layer.

(作 用) この発明に従う磁気特性と密着性の向上は、第2図の模
式図で示すように、基板1としてのけい素鋼板の研磨処
理表面上にFe原子と加速イオン1と蒸着原子aとの混
合相8が張力被膜9との間に形成されることによってそ
の密着性が格段に強められることにあわせ、その結果強
い張力被膜が珪素鋼板の面上に働いて従来比類のない超
低鉄損が実現される。ここに塑性的な微少ひずみの働き
を利用するわけではないので、熱安定性に何らの問題な
く、歪み取り焼鈍の如き高温の熱履歴の下に電気・磁気
的特性に影響されるところがない。
(Function) The improvement in magnetic properties and adhesion according to the present invention is achieved by forming Fe atoms, accelerated ions 1, and evaporated atoms a on the polished surface of a silicon steel plate serving as the substrate 1, as shown in the schematic diagram of FIG. By forming a mixed phase 8 with the tension film 9, the adhesion is greatly strengthened, and as a result, a strong tension film acts on the surface of the silicon steel plate, resulting in an ultra-low Iron loss is realized. Since the function of plastic microstrain is not used here, there is no problem with thermal stability, and the electrical and magnetic properties are not affected by high-temperature thermal history such as strain relief annealing.

ここに仕上表面の中心線平均粗さを、Ra≦0.4μm
の鏡面状態とすることが最良であり、Ra >Q、 4
μmのときは表面が粗いために、著しい鉄損低減は期待
薄になる。
Here, the center line average roughness of the finished surface is Ra≦0.4μm
It is best to have a mirror state of Ra>Q, 4
When the thickness is μm, the surface is rough, so there is little hope for a significant reduction in iron loss.

次に張力被膜の膜厚は0.005〜5umの範囲で適合
し、0.005μmに満たないときは、必要な張力付与
に寄与し得ない一方、5μmをこえると、占積率及び密
着性の不利が生じる。
Next, the thickness of the tension coating is suitable in the range of 0.005 to 5 um; if it is less than 0.005 um, it will not be able to contribute to providing the necessary tension, while if it exceeds 5 um, the space factor and adhesion will be affected. disadvantages arise.

この張力被膜の混合相を介した鏡面状態の仕上表面上に
おける強固な被着は、イオンブレーティング若しくはイ
オンインプランテーションにょるPVD(Physic
al Vapor Deposition)あるいはC
VD (Che−micalVapor Deposi
tion)の何れによっても有利にもたらされる。
Strong adhesion on the mirror-finished surface via the mixed phase of this tensile coating is achieved by PVD (Physical
al Vapor Deposition) or C
VD (Che-mical Vapor Deposit
tion).

次にこの発明による、一方向性けい素鋼板の製造工程に
ついて説明する。
Next, the manufacturing process of a unidirectional silicon steel sheet according to the present invention will be explained.

出発素材は従来公知の一方向性けい素鋼素材成分、例え
ば ■C:0.旧〜0.050%、Si:2.50〜4.5
%、Mn : 0.01〜0.2%、 Mo : 0.
003〜0.1%、Sb : 0.005〜0.2%、
 SまたはSeの1種あるい2種合計で、0.005〜
0.05%を含有する組成■C:0.01〜0.08%
、 Si:2.0〜4.0%、Sol Al : 0.
005〜0.06%、°S:0.005〜0.05%、
N:0.001〜0.旧%、Sn : 0.01〜0.
5%、 Cu : 0.01−0.3%、Mn:Q、旧
〜0.2%を含有する組成■C:0.旧〜0.06%、
 Si:2.0〜4.0%、3:0.005〜0.05
%、B : 0.0003〜0.020 %、N :O
,OOl 〜0.01%、Mn : 0.01〜0.2
%を含有する組成 の如きにおいて適用可能である 次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050℃の中間焼鈍をはさんでさらに冷
延する2回冷延法にて、後者の場合最初の圧下率は50
%から80%程度、最終の圧下率は50%から85%程
度で0.15mmから0.35mm厚の最終冷延板厚と
する。
The starting material is a conventionally known unidirectional silicon steel material composition, such as ■C: 0. Old ~ 0.050%, Si: 2.50 ~ 4.5
%, Mn: 0.01-0.2%, Mo: 0.
003-0.1%, Sb: 0.005-0.2%,
Total of one or two types of S or Se, 0.005~
Composition containing 0.05% ■C: 0.01-0.08%
, Si: 2.0-4.0%, Sol Al: 0.
005-0.06%, °S: 0.005-0.05%,
N: 0.001-0. Old %, Sn: 0.01-0.
5%, Cu: 0.01-0.3%, Mn: Q, composition containing old ~ 0.2% ■C: 0. Old ~0.06%,
Si: 2.0-4.0%, 3: 0.005-0.05
%, B: 0.0003-0.020%, N:O
,OOl ~0.01%, Mn: 0.01~0.2
Next, the hot-rolled sheet is subjected to homogenization annealing at 800 to 1100°C and then
One-time cold rolling method, in which the final plate thickness is obtained by two cold rolling steps, or two-step cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, and then further cold rolling is performed.In the latter case, the first rolling rate is 50
% to about 80%, the final rolling reduction is about 50% to 85%, and the final cold rolled plate thickness is 0.15 mm to 0.35 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は表面脱脂後
750℃から850℃の湿水素中で脱炭・1次再結晶焼
鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is surface degreased and then subjected to decarburization and primary recrystallization annealing in wet hydrogen at 750°C to 850°C.

このような処理を行った後鋼板表面に焼鈍分離剤を塗布
する。この際一般的には仕上げ焼鈍後の成形を不可欠と
していたフォルステライトをとくに形成させない方がそ
の後の鋼板の鏡面処理を簡便にするのに有効であるので
、焼鈍分離剤としてMgO主体のものを用いる場合のほ
か、とくにAl2O3,ZrO2,TlO2などを、5
0%以上MgOに混入するのが好ましい。
After performing such treatment, an annealing separator is applied to the surface of the steel sheet. At this time, it is generally effective to prevent the formation of forsterite, which is essential for forming after final annealing, in order to simplify the subsequent mirror finishing of the steel sheet, so an MgO-based separator is used as the annealing separator. In addition to cases, especially Al2O3, ZrO2, TlO2, etc.
It is preferable to mix 0% or more of MgO into MgO.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
℃以上に昇温し、その温度に保持することによって行わ
れる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
This is done by raising the temperature above ℃ and maintaining it at that temperature.

この場合(110) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保定焼鈍する方が有利であり、そのほか
例えば0.5〜b 鈍でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (110) <001> orientation, the
It is more advantageous to carry out retention annealing at a low temperature of 00°C, and in addition, for example, 0.5-b annealing may be used.

2次再結晶焼鈍後の純化焼鈍は、飽水素中で1100℃
以上で1〜20時間焼鈍を行って、鋼板の純化を達成す
ることが必要である。
Purification annealing after secondary recrystallization annealing is performed at 1100°C in saturated hydrogen.
It is necessary to perform annealing for 1 to 20 hours to achieve purification of the steel plate.

この純化焼鈍後に鋼板表面の非金属物質例えばフォルス
テライト被膜ないしは酸化物被膜を公知の酸洗などの化
学除去法や切削、研削などの機械的除去法またはそれら
の組合せにより除去する。
After this purification annealing, nonmetallic substances such as forsterite coatings or oxide coatings on the surface of the steel sheet are removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof.

この酸化物除去処理の後、必要に応じて化学研磨、電解
研磨などの化学的研磨や、パフ研磨などの機械的研磨あ
るいはそれらの組合せなど従来の手法により鋼板表面を
鏡面状態(中心線平均粗さで0.4 μm以下)に仕上
げる。
After this oxide removal treatment, if necessary, the steel plate surface is polished to a mirror-like state (centerline average roughness 0.4 μm or less).

非金属物質除去後又は鏡面研磨後、CvD、イオンブレ
ーティング若しくはイオンインプランテーションにより
、Ti、 Zr、 Hf、 V、 Nb、 Ta、 M
n、 Cr。
After removing non-metallic substances or mirror polishing, Ti, Zr, Hf, V, Nb, Ta, M are processed by CvD, ion blasting or ion implantation.
n, Cr.

Mo、  W、 Co、 Ni、 Al、 B  およ
びSiの窒化物および/または炭化物のうちから選んだ
少なくとも1種から主としてなる少なくとも一層の極薄
張力被膜を形成させる。
At least one ultra-thin tensile coating is formed which mainly consists of at least one selected from Mo, W, Co, Ni, Al, B, and Si nitrides and/or carbides.

またこの極薄張力被膜は0.005〜5μm程度の厚み
で形成させるのが効果的である。0.005 μm以下
の被膜は張力効果が小さいため鉄損低下させる効果が小
さく、また5μm以上では膜厚が厚くなるため占積率が
低下するのと経済的ではないので張力被膜の膜厚は0.
005〜5μmが好適である。
Moreover, it is effective to form this ultra-thin tension coating with a thickness of about 0.005 to 5 μm. A coating with a thickness of 0.005 μm or less has a small tension effect, so it has little effect on reducing iron loss, and a film with a thickness of 5 μm or more thickens the space factor and is not economical, so the thickness of the tension coating is 0.
0.005 to 5 μm is suitable.

さらにこのように生成した極薄張力被膜上にコロイダル
シリカあるいはりん酸塩とコロイダルシリカを主成分と
する絶縁被膜の塗布焼付を行ない、さらに600℃以上
の高温での長時間の歪み取り焼鈍を施しても磁気特性の
劣化がなく、かつ密着性が良好であることがトランスの
使途に当然に必要であり、この絶縁性焼付層の形成およ
びその後の歪み取り焼鈍方法は、従来公知の手法をその
まま用いて良い。
Furthermore, an insulating film containing colloidal silica or phosphate and colloidal silica as main components is applied and baked on the ultra-thin tensile film produced in this way, and then subjected to long-term strain relief annealing at a high temperature of 600°C or higher. Naturally, it is necessary for transformers to have good adhesion and no deterioration of magnetic properties even when exposed to heat, and the formation of this insulating baked layer and the subsequent strain relief annealing method can be done using conventionally known methods. May be used.

さらに加えてこの発明により磁歪の圧縮特性の改善も達
成し得る。
In addition, improvements in magnetostrictive compression properties can also be achieved with the present invention.

(実施例) 実施例I C:0.047%、Si:3.4%、Mn : 0.0
62%、Mo + 0.025%、Se : 0.02
2%、Sb : 0.020%を含有する熱延板を、9
00℃で3分間の均一化焼鈍後、950℃の中間焼鈍を
はさんで2回の冷間圧延を行って0.23mm厚の最終
冷延板とした。
(Example) Example I C: 0.047%, Si: 3.4%, Mn: 0.0
62%, Mo + 0.025%, Se: 0.02
2%, Sb: 0.020%.
After uniform annealing at 00° C. for 3 minutes, cold rolling was performed twice with intermediate annealing at 950° C. to obtain a final cold rolled sheet with a thickness of 0.23 mm.

その後820℃の湿水素中で脱炭焼鈍後鋼板表面にMg
Dを主成分とする焼鈍分離剤を塗布した後850℃で5
0時間の2次再結晶焼鈍し、1200℃で8時間飽水素
中で純化焼鈍を行った。
After decarburization annealing in wet hydrogen at 820°C, Mg is deposited on the surface of the steel sheet.
After applying an annealing separator containing D as the main component, it was heated at 850℃ for 5
Secondary recrystallization annealing was performed for 0 hours, and purification annealing was performed in saturated hydrogen at 1200° C. for 8 hours.

その後酸洗によりフォルステライト質被膜を除去後、3
%HFとH2O2液中で化学研磨して鏡面仕上げした。
After that, after removing the forsterite film by pickling, 3
%HF and H2O2 solution to give a mirror finish.

その後第1図の装置を用いてl0KVのイオン化電圧で
3分間イオンブレーティングし膜厚0.5μmのTiN
張力被膜を形成させた。
After that, using the apparatus shown in Figure 1, ion blating was performed for 3 minutes at an ionization voltage of 10 KV to form a TiN film with a thickness of 0.5 μm.
A tension film was formed.

次にりん酸塩とコロイダルシリカとを主成分とする絶縁
性塗布焼付層を形成し、その後800℃で2時間のひず
み取り焼鈍を行った。
Next, an insulating coated and baked layer containing phosphate and colloidal silica as main components was formed, and then strain relief annealing was performed at 800° C. for 2 hours.

そのときの製品の磁気特性および密着性は次のとおりで
あった。
The magnetic properties and adhesion of the product at that time were as follows.

磁気特性: B1o=1,917 、11117/So
 −0,69W/kg密着性: 曲げ半径30mmで1
80°曲げてもはく離せず密着性は良好であった。
Magnetic properties: B1o=1,917, 11117/So
-0.69W/kg Adhesion: 1 at bending radius 30mm
Even after bending by 80 degrees, the film could not be peeled off and the adhesion was good.

実施例2 C:0.062%、Si:3.3%、Mn : 0.0
90%、Al  :0.025%、S:0.030%、
N : 0.0068%を含有する熱延板を、1150
℃で3分間の均−化焼鈍後急冷処理を行い、その後30
0℃の温間圧延を施して0.20+++m厚の最終冷延
板とした。
Example 2 C: 0.062%, Si: 3.3%, Mn: 0.0
90%, Al: 0.025%, S: 0.030%,
A hot rolled sheet containing N: 0.0068% was heated to 1150
After equalization annealing for 3 minutes at ℃, rapid cooling treatment was performed, and then 30
Warm rolling was performed at 0° C. to obtain a final cold-rolled sheet with a thickness of 0.20+++ m.

その後850℃の湿水素中で脱炭焼鈍後、表面にMgO
を主成分とする焼鈍分離剤を塗布した後850℃から1
150℃まで8℃/hrで昇温しで2次再結晶させた後
、1200℃で8時間飽水素中で純化焼鈍を行った。
After decarburization annealing in wet hydrogen at 850°C, the surface is coated with MgO.
After applying an annealing separator mainly composed of
After secondary recrystallization by raising the temperature to 150°C at a rate of 8°C/hr, purification annealing was performed at 1200°C for 8 hours in saturated hydrogen.

その後酸洗によりフォルステライト質被膜を除去し、つ
いで3%HPとH2O2液中で化学研磨して鏡面仕上げ
した。
Thereafter, the forsterite film was removed by pickling, and then chemically polished in 3% HP and H2O2 solution to give a mirror finish.

その後イオンインプランテーション法によりイオン加速
電圧49KVで3分間窒素イオンを注入して膜厚0.2
μmにてSi3N、極薄の張力被膜を形成させ、次にり
ん酸塩とコロイダルシリカとを主成分とする絶縁性塗布
焼付層を形成させた後、800℃で2時間の歪み取り焼
鈍を行った。
After that, nitrogen ions were implanted for 3 minutes at an ion acceleration voltage of 49 KV using the ion implantation method to form a film with a thickness of 0.2
After forming an ultra-thin tension film of Si3N at μm, and then forming an insulating coating and baking layer containing phosphate and colloidal silica as main components, strain relief annealing was performed at 800°C for 2 hours. Ta.

そのときの製品の磁気特性および密着性は次のとおりで
あった。
The magnetic properties and adhesion of the product at that time were as follows.

磁気特性: B+o=1.93T 、 W+、zso 
=0.68W/kg密着性: 曲げ半径30mmで18
0°曲げてもはく離せず密着性は良好であった。
Magnetic properties: B+o=1.93T, W+, zso
=0.68W/kg Adhesion: 18 at bending radius 30mm
Even when bent by 0°, it could not be peeled off, and the adhesion was good.

実施例3 ’  C:0.044%、Si:3.45%、Mn :
 0.066%、Se:Q、 023  %、Sb :
 0.025  %、Mo : 0.026  %を含
有する一方向性けい素鋼板を1360℃で4時間加熱し
た後、熱間圧延して2.20mm厚の熱延板とした。そ
の後900℃で3分間の均−化焼鈍後、950℃で3分
間の中間焼鈍をはさんで2回の冷間圧延を施して0.2
3+++m厚の最終冷延板とした。
Example 3' C: 0.044%, Si: 3.45%, Mn:
0.066%, Se:Q, 023%, Sb:
A unidirectional silicon steel sheet containing Mo: 0.025% and Mo: 0.026% was heated at 1360° C. for 4 hours, and then hot rolled into a hot rolled sheet having a thickness of 2.20 mm. Thereafter, after equalization annealing at 900°C for 3 minutes, cold rolling was performed twice with an intermediate annealing at 950°C for 3 minutes, resulting in a 0.2
The final cold-rolled sheet had a thickness of 3+++m.

その後820℃の湿水素中で脱炭を兼ねる1次再結晶焼
鈍を施した後、Al2O3(60%)、 Mg0(30
%)。
After that, after performing primary recrystallization annealing which also serves as decarburization in wet hydrogen at 820°C, Al2O3 (60%), Mg0 (30%)
%).

ZrO□(5%)、 T102(5%)を主成分とする
焼鈍分離剤を塗布した後、850℃で50時間の2次再
結晶焼鈍後、’1200℃で8時間乾H2ガス中で純化
焼鈍を行った。
After applying an annealing separator mainly composed of ZrO□ (5%) and T102 (5%), secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification in dry H2 gas at 1200°C for 8 hours. Annealing was performed.

その後軽酸洗により鋼板表面上の酸化物を除去した後、
電解研磨を行って鋼板表面を鏡面状態に仕上げた。
After removing oxides on the steel plate surface by light pickling,
The surface of the steel plate was polished to a mirror finish by electrolytic polishing.

その後(a)マグネトロンスパッタリング法、(b)B
 B(Blectron Beam) + RF(Ra
dio Frequency)法、(C)HCD(Ho
llow Cathode Discharge)およ
びω)MultiArc法によるイオンブレーティング
装置を用いてTiNの張力被膜を形成させた後、800
℃で3時間の歪み取り焼鈍を行って製品とした。そのと
きの製品の磁気特性値とTiN被膜のX線回折結果を表
2に示す。
Then (a) magnetron sputtering method, (b) B
B (Blectron Beam) + RF (Ra
dio Frequency) method, (C) HCD (Ho
After forming a tension film of TiN using an ion blating device using the MultiArc method,
Strain relief annealing was performed at ℃ for 3 hours to obtain a product. Table 2 shows the magnetic property values of the product and the X-ray diffraction results of the TiN coating.

表  2 表2から明らかなように4種類のイオンブレーティング
法によるTiN薄膜を形成させたときの磁気特性ハ[t
o カ1.91〜1.92T 、 Lt7soが0.6
9〜0.72W、/kgのように何れもきわめて良好で
ある。また表面の薄膜のX線回折結果では(a) 、t
よび(6)の条件ではTiN peaksのみ、(b)
の条件ではTiN peaksが主であるが、Ti p
eaks若干、また(C)の条件ではTiNpeaks
が主であるが、T12NとTiN peaksがわずか
に検出されたが、TiN以外のこの程度のピークは磁気
特性に大きな影響を与えない。なおこのときの製品の密
着性はすべて曲げ半径25+nm以下で18o。
Table 2 As is clear from Table 2, the magnetic properties [t
o Mo 1.91~1.92T, Lt7so is 0.6
All of them are extremely good, such as 9 to 0.72W/kg. In addition, the X-ray diffraction results of the thin film on the surface show (a), t
and (6), only TiN peaks, (b)
Under the conditions of , TiN peaks are dominant, but Ti p
peaks slightly, and under condition (C) TiNpeaks
is the main component, but a small amount of T12N and TiN peaks were detected, but peaks of this magnitude other than TiN do not have a large effect on the magnetic properties. The adhesion of all products at this time was 18o with a bending radius of 25+nm or less.

曲げてもはく離がなく良好であった。It was good with no peeling even after bending.

実施例4 C:0.042%、Si:3.32%、Mn : 0.
062 %、Mo : 0.022%、 Se:0.0
21%およびSb : 0.025 %を含有する熱延
板に900 t’で3分間の均−化焼鈍後、950℃で
3分間の中間焼鈍をはさんで2回の冷間圧延を施して0
.23mm厚の最終冷延板とした。
Example 4 C: 0.042%, Si: 3.32%, Mn: 0.
062%, Mo: 0.022%, Se: 0.0
A hot rolled sheet containing 21% and Sb: 0.025% was homogenized at 900 t' for 3 minutes, then cold rolled twice with an intermediate annealing at 950°C for 3 minutes. 0
.. A final cold-rolled sheet with a thickness of 23 mm was obtained.

その後820℃の湿水素中で脱炭を兼ねた1次再結晶焼
鈍を施したのち、鋼板表面にAl2O3(70%>、 
MgO(25%)、 2rO2(5%)からなる焼鈍分
離剤を塗布したしてから、850℃で50時間の2次再
結晶焼鈍、ついで飽水素中で1200℃で7時間の純化
焼鈍を施した。
After that, after performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 820°C, the steel plate surface is coated with Al2O3 (70%>
After applying an annealing separator consisting of MgO (25%) and 2rO2 (5%), secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification annealing at 1200°C for 7 hours in saturated hydrogen. did.

その後(a)は酸洗により鋼板表面上の酸化被膜を除去
、ら)は酸洗により酸化被膜を除去後、電解研磨を施し
て中心線平均粗さ0.04μm以下の鏡面状態に仕上げ
た。しかるのちにイオンブレーティングにより1.2μ
m厚のTiN被膜を形成した。
Thereafter, in (a) the oxide film on the surface of the steel plate was removed by pickling, and in (g) the oxide film was removed by pickling, followed by electrolytic polishing to give a mirror finish with a center line average roughness of 0.04 μm or less. After that, 1.2μ was obtained by ion brating.
A TiN film with a thickness of m was formed.

その後1部はさらにりん酸塩とコロイダルシリカを主成
分とするコーティング被膜を被成した後800℃で5時
間の歪み取り焼鈍を施して製品とした。それときの製品
の磁気特性を現行のフォルステライト被膜を有する製品
と比較して表3に示す。
Thereafter, one part was coated with a coating film mainly composed of phosphate and colloidal silica, and then subjected to strain relief annealing at 800° C. for 5 hours to produce a product. The magnetic properties of the product at that time are shown in Table 3 in comparison with the current product having a forsterite coating.

なお現行製品は820℃の湿水素中で脱炭を兼ねた1次
再結晶焼鈍を施したのち、鋼板表面にMgOを主成分と
する焼鈍分離剤を塗布したから、850℃で50時間の
2次再結晶焼鈍、ついで飽水素中で1200℃で7時間
の純化焼鈍を施した。その後ホオルステライト被膜を焼
付処理した後、800℃で5時間の歪み取り焼鈍を行っ
て製品としたものである。
The current product undergoes primary recrystallization annealing that also serves as decarburization in wet hydrogen at 820°C, and then coats the surface of the steel plate with an annealing separator containing MgO as the main component. Next, recrystallization annealing was performed, followed by purification annealing at 1200° C. for 7 hours in saturated hydrogen. Thereafter, the whole stellite film was baked and then subjected to strain relief annealing at 800° C. for 5 hours to produce a product.

なお、このときの製品の密着性は、すべて曲げ半径25
mm以下で、180°曲げてもはく離がなく良好であっ
た。
In addition, the adhesion of the product at this time is based on the bending radius of 25.
mm or less, and there was no peeling even when bent by 180°, which was good.

表  3 実施例5 C:0.043%、Si:3.32%、 Mn :0.
066%。
Table 3 Example 5 C: 0.043%, Si: 3.32%, Mn: 0.
066%.

Se : 0.019%、 Sb : 0.025%お
よびMo : 0.023%を含有するけい素鋼熱延板
(2,Omm厚)を950℃で3分間の中間焼鈍をはさ
んで2回の冷間圧延を施して0.23+n+n厚の冷間
圧延板とした。その後820℃で3分間の脱炭を兼ねた
1次再結晶焼鈍を施したのち、Al2O3(60%>、
 Mg0(35%)、 Zr02(3%)、 T102
(2%)を主成分とする焼鈍分離剤をスラリー状に塗布
した。
A hot rolled silicon steel plate (2,0 mm thick) containing Se: 0.019%, Sb: 0.025% and Mo: 0.023% was annealed twice at 950°C with intermediate annealing for 3 minutes in between. A cold rolled plate having a thickness of 0.23+n+n was obtained by cold rolling. After that, after primary recrystallization annealing was performed at 820℃ for 3 minutes, which also served as decarburization, Al2O3 (60%>
Mg0 (35%), Zr02 (3%), T102
(2%) was applied as a slurry.

その後850℃で50時間の2次再結晶焼鈍を行った後
、さらにその後1200℃で6時間乾水素萎えて純化焼
鈍を行なった後、酸洗により表面酸化物を除去し、電解
研磨により鋼板表面を鏡面状態にした。その後CVD 
(表4中無印)、イオンブレーティング(表4中の○印
)およびイオンインプランテーション(表4中のΔ印)
により種々の薄膜(約0.7〜1.5μ厚)を形成させ
た後、りん酸塩とコロイダルシリカを主成分とするコー
ティング被膜の焼付処理の後800℃で5時間の歪み取
り焼鈍を行った。そのときの製品の磁気特性を表4にま
とめて示す。
After that, after performing secondary recrystallization annealing at 850°C for 50 hours, and after that, purifying annealing with dry hydrogen at 1200°C for 6 hours, surface oxides were removed by pickling, and the steel plate surface was electrolytically polished. was made into a mirror state. Then CVD
(no mark in Table 4), ion brating (○ mark in Table 4), and ion implantation (Δ mark in Table 4)
After forming various thin films (approximately 0.7 to 1.5μ thick) by baking the coating film, which mainly consists of phosphate and colloidal silica, strain relief annealing was performed at 800°C for 5 hours. Ta. Table 4 summarizes the magnetic properties of the products at that time.

なお、このときの製品の密着性は、すべて曲げ半径25
mm以下で180°曲げてはく離がなく良好であった。
In addition, the adhesion of the product at this time is based on the bending radius of 25.
It was good with no peeling after bending 180° with a diameter of 180° or less.

表4 実施例6 C:0.043%、Si:3.37%、Mn : 0.
063%、Mo : 0.025%、Se : 0.0
22%、Sb : 0.025%を含有する熱延板を用
意した。
Table 4 Example 6 C: 0.043%, Si: 3.37%, Mn: 0.
063%, Mo: 0.025%, Se: 0.0
A hot rolled sheet containing Sb: 22% and Sb: 0.025% was prepared.

この熱延板は900℃で3分間の均一化焼鈍後、950
℃の中間焼鈍をはさんで2回の冷間圧延を行って0.2
3mm厚の最終冷延板とした。
This hot-rolled sheet was homogenized at 900°C for 3 minutes and then heated to 950°C.
Cold rolling was performed twice with intermediate annealing at 0.2 °C.
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後820℃の湿水素中で脱炭焼鈍後、鋼板表面にA
l2O3(75%)、 Mg0(20%)、 Zr02
(5%)を主成分とする焼鈍分離剤を塗布した後850
℃で50時間の2次再結晶焼鈍および1200℃で8時
間のH2中での純化焼鈍を行った。
After that, after decarburization annealing in wet hydrogen at 820℃, A
l2O3 (75%), Mg0 (20%), Zr02
After applying an annealing separator mainly composed of (5%) 850
A secondary recrystallization annealing at 1200° C. for 50 hours and a purification annealing in H 2 at 1200° C. for 8 hours were performed.

その後酸洗により鋼板表面上の酸化被膜を除去し、次い
で3%IIFとH2O2液中で化学研磨して鏡面仕上げ
した。その後CVD (表5中無印)イオンブレーティ
ング(表5中の○印)およびイオンインプランテーショ
ン(表5中のΔ印)により種々の化合物薄膜を0.7〜
0.9μm厚で形成させた。
Thereafter, the oxide film on the surface of the steel plate was removed by pickling, and then chemically polished in 3% IIF and H2O2 solution to give a mirror finish. Thereafter, various compound thin films were formed by CVD (no mark in Table 5), ion blating (○ mark in Table 5) and ion implantation (Δ mark in Table 5).
It was formed to have a thickness of 0.9 μm.

その後これらの処理をした試料は表面にりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜を焼付処理した後
、800℃で2時間の歪み取り焼鈍を行った。
Thereafter, the surface of the sample subjected to these treatments was subjected to a baking treatment to form an insulating coating mainly composed of phosphate and colloidal silica, and then strain relief annealing was performed at 800° C. for 2 hours.

そのときの製品の磁気特性および磁歪の圧縮応力特性、
(圧縮応力σが0.4および0.6 kg/mm2での
磁気歪みの値λpp)を表5にまとめて示す。
The magnetic properties and magnetostrictive compressive stress properties of the product at that time,
(Magnetostriction values λpp when the compressive stress σ is 0.4 and 0.6 kg/mm2) are summarized in Table 5.

実施例7 C:0.056%、Si:3.29%、Mn : 0.
078%、Al : 0.025%、S:0.030%
、Cu:Q、1%。
Example 7 C: 0.056%, Si: 3.29%, Mn: 0.
078%, Al: 0.025%, S: 0.030%
, Cu:Q, 1%.

Sn : 0.05%を含有する一方向性けい素鋼を1
440℃で5時間加熱した後、熱間圧延して1.6〜2
.7+nn+厚の熱延板とした。
Sn: 1 unidirectional silicon steel containing 0.05%
After heating at 440℃ for 5 hours, hot rolling
.. A hot rolled sheet having a thickness of 7+nn+ was obtained.

その後1100℃で3分間の均一化焼鈍を施した後急冷
処理した。その後350℃での温間圧延を施して0.2
0.0.23.0.27および0.30+n+n厚の最
終冷延板とした。
Thereafter, uniform annealing was performed at 1100° C. for 3 minutes, followed by rapid cooling. After that, it was warm rolled at 350°C to 0.2
The final cold rolled sheets had thicknesses of 0.0.23, 0.27 and 0.30+n+n.

その後850℃の湿水素中で脱炭を兼ねる1次再結晶焼
鈍を施した後、A1203(70%)、 Mg0(20
%)。
After that, after performing primary recrystallization annealing which also serves as decarburization in wet hydrogen at 850°C, A1203 (70%), Mg0 (20
%).

T102(5%)、 Zr02(5%) f:l)焼鈍
分[FIJヲ塗布1.り後、850℃で50時間の2次
再結晶焼鈍後、1200℃で5時間乾■2ガス中で純化
焼鈍を行った。
T102 (5%), Zr02 (5%) f:l) Annealing [FIJ coating 1. After that, secondary recrystallization annealing was performed at 850°C for 50 hours, and purification annealing was performed at 1200°C for 5 hours in dry gas.

そのあと酸洗により鋼板表面上の酸化被膜を除去した後
、電解研磨を行って鋼板表面を鏡面状態に仕上げた。
Thereafter, the oxide film on the surface of the steel plate was removed by pickling, and then electropolishing was performed to finish the surface of the steel plate to a mirror finish.

その後PVD (イオンブレーティング装置)を用いて
Cr2Nの薄膜を形成させた後、りん酸塩とコロイダル
シリカを主成分とする絶縁被膜の焼付処理をした後、8
00℃で3時間の歪み取り焼鈍を行った。
After that, a thin film of Cr2N was formed using PVD (ion blating device), and then an insulating film mainly composed of phosphate and colloidal silica was baked.
Strain relief annealing was performed at 00°C for 3 hours.

そのときの製品の板厚別磁気特性、Cr2N薄膜の膜厚
および磁歪の圧縮応力特性(圧縮能力σが0.4kg/
mm2および0.6 kg/m+n2での磁気歪みの値
λ1.)を表6にまとめて示す。
At that time, the product's magnetic properties by plate thickness, the film thickness of the Cr2N thin film, and the compressive stress properties of magnetostriction (compressive capacity σ is 0.4 kg/
The magnetostriction value λ1.mm2 and 0.6 kg/m+n2. ) are summarized in Table 6.

表  6 32一 実施例8 (a)  C:0.042%、Si:3.36%、Mn
 : 0.062%、Mo : 0.024%、Se 
: 0.021%、Sb:0.025%(b)  C:
0.056%、Si:3.36%、Mn : 0.06
8%、AI=(LO26%、S:0.029%、 N 
: 0.0069%。
Table 6 32-Example 8 (a) C: 0.042%, Si: 3.36%, Mn
: 0.062%, Mo: 0.024%, Se
: 0.021%, Sb: 0.025% (b) C:
0.056%, Si: 3.36%, Mn: 0.06
8%, AI=(LO26%, S:0.029%, N
: 0.0069%.

Cu:0.1%、 Sn :0.05%をそれぞれ含有
する熱延板を用意した。
Hot rolled sheets containing Cu: 0.1% and Sn: 0.05% were prepared.

まず(a)の熱延板は900℃で3分間の均一化焼鈍後
950℃の中間焼鈍をはさんで2回の冷間圧延を行って
0.20mm厚の最終冷延板とした。
First, the hot-rolled sheet (a) was uniformly annealed at 900° C. for 3 minutes and then cold-rolled twice with intermediate annealing at 950° C. to obtain a final cold-rolled sheet with a thickness of 0.20 mm.

一方(b)の熱延板は1080℃で3分間の均−化焼鈍
後急冷処理を行い、その後300℃の温間圧延を施して
0.20mm厚の最終冷延板とした。
On the other hand, the hot rolled sheet (b) was uniformly annealed at 1080° C. for 3 minutes and then rapidly cooled, and then warm rolled at 300° C. to obtain a final cold rolled sheet having a thickness of 0.20 mm.

その後何れの冷延板についても830℃の湿水素中で脱
炭焼鈍後、鋼板表面に八1□03(75%)、 Mg0
(20%)、 Zr02(5%)を主成分とする焼鈍分
離剤を塗布した後、(a)の素材による試料は850℃
で50時間の2次再結晶焼鈍後、1200℃で5時間の
飽水素中で純化焼鈍、(b)の素材による試料は850
℃から5℃/hrで1050℃まで昇温しで2次再結晶
させた後、1200℃で8時間飽水素中で純化焼鈍をそ
れぞれ行った。
After that, all cold rolled sheets were decarburized and annealed in wet hydrogen at 830°C, and 81□03 (75%) and Mg0 were added to the surface of the steel sheets.
(20%), after applying an annealing separator mainly composed of Zr02 (5%), the sample made of material (a) was heated to 850°C
After secondary recrystallization annealing for 50 hours at
After secondary recrystallization by raising the temperature from .degree. C. to 1050.degree. C. at a rate of 5.degree. C./hr, purification annealing was performed in saturated hydrogen at 1200.degree. C. for 8 hours.

その後酸洗により酸化物被膜を除去し、次いで3%HP
と820□液中で化学研磨して鏡面仕上げした。
After that, the oxide film was removed by pickling, and then 3% HP
Chemically polished in 820□ liquid to give a mirror finish.

その後CVD装置を用イテ(i)TiC14とH2とN
20)混合ガスによりTiNの薄膜、(ii)TiC1
4とH2とN2とCH4混合ガスにより、Ti(CN)
の薄膜および(iii )TiC1,とH2とN2とC
H4の混合ガスによりTiCの薄膜を、いずれも0.7
 μm厚で形成させた。またイオンブレーティングおよ
びイオンインプランテーション装置を用いて(iv) 
Ti(CN)および(v)TiCの0.7〜0.9μm
厚の薄膜を形成させた。
Then use CVD equipment (i) TiC14, H2 and N
20) TiN thin film by mixed gas, (ii) TiC1
4, H2, N2, and CH4 mixed gas, Ti(CN)
and (iii) TiC1, H2, N2 and C
A thin film of TiC is coated with a mixed gas of H4 at a temperature of 0.7
It was formed to have a thickness of μm. Also using ion brating and ion implantation equipment (iv)
0.7-0.9μm of Ti(CN) and (v)TiC
A thick thin film was formed.

その後これらの処理をした試料は表面にりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜の焼付処理をした
後、800℃で2時間の歪み取り焼鈍を行った。
Thereafter, the surface of the sample subjected to these treatments was subjected to a baking treatment to form an insulating coating mainly composed of phosphate and colloidal silica, and then strain relief annealing was performed at 800° C. for 2 hours.

そのときの製品の磁気特性および磁歪の圧縮応力特性(
圧縮応力σが0.4.$よび0.6 kg/mm2下で
の磁気歪みλ2.の値)を表7に示す。
The magnetic properties and magnetostrictive compressive stress properties of the product at that time (
Compressive stress σ is 0.4. Magnetostriction λ2 under $ and 0.6 kg/mm2. ) are shown in Table 7.

−34= 実施例9 C:O1O’43%、 Si:3.42%、 Mn:0
.069%、 Se: 0.021%。
-34= Example 9 C: O1O'43%, Si: 3.42%, Mn: 0
.. 069%, Se: 0.021%.

Sb:Q、 025%、 MO:0.025%を含有す
る一方向性けい素鋼を1400℃で3時間加熱した後、
熱間圧延して1.8〜2.7+nmO熱延板とした。そ
の後900℃で3分間の均一焼鈍後、950℃で3分間
の中間焼鈍をはさんで2回の冷間圧延を施して0.20
.0.23.0.27 m+++および0.30mm厚
の最終冷延板とした。
After heating unidirectional silicon steel containing Sb:Q, 025% and MO:0.025% at 1400°C for 3 hours,
It was hot rolled into a 1.8-2.7+nmO hot rolled sheet. After that, after uniform annealing at 900°C for 3 minutes, cold rolling was performed twice with an intermediate annealing at 950°C for 3 minutes to obtain a 0.20
.. The final cold rolled sheet was 0.23, 0.27 m+++ and 0.30 mm thick.

その後830℃の湿水素中で脱炭を兼ねる1次再結晶焼
鈍を施した後、MgO(20%)、八1203(70%
)。
After that, after primary recrystallization annealing which also serves as decarburization in wet hydrogen at 830°C, MgO (20%), 81203 (70%)
).

T102(5%)、 Zr02(5%)の焼鈍分離剤を
塗布した後、850℃で50時間の2次再結晶焼鈍後、
1200℃で5時間の乾H2ガス中で純化焼鈍を行った
。その後軽酸洗により鋼板表面上の酸化物を除去した後
、電解研磨を行って鋼板表面を鏡面状態に仕上げた。
After applying an annealing separator of T102 (5%) and Zr02 (5%), secondary recrystallization annealing was performed at 850°C for 50 hours.
Purification annealing was performed in dry H2 gas at 1200°C for 5 hours. Thereafter, oxides on the surface of the steel plate were removed by light pickling, and then electrolytic polishing was performed to finish the surface of the steel plate to a mirror finish.

その後PVD装置(イオンブレーティング装置)を用い
てTiNの薄膜を形成させた後、りん酸塩とコロイダル
シリカを主成分とする絶縁被膜の焼付処理をした後、8
00℃で3時間の歪み取り焼鈍を行った。そのときの製
品の板厚側磁気特性、TiN薄膜の膜厚および磁歪の圧
縮応力特性(圧縮応力σが0.4 kg/++++n2
および0.6 kg/mm”での磁気歪みλ2.の値)
を表8に示す。
After that, a thin film of TiN was formed using a PVD device (ion blating device), and an insulating coating mainly composed of phosphate and colloidal silica was baked.
Strain relief annealing was performed at 00°C for 3 hours. At that time, the thickness side magnetic properties of the product, the film thickness of the TiN thin film, and the compressive stress properties of magnetostriction (compressive stress σ is 0.4 kg/++++n2
and the value of magnetostriction λ2. at 0.6 kg/mm”)
are shown in Table 8.

表8 7mm2 =37− (発明の効果) 各発明によって歪み取り焼鈍のような、高温熱履歴を経
ることとなる一方向性けい素鋼板の使途で何ら高温処理
に由来する性能劣化を来すことなく、熱安定性にすぐれ
た、一方向性けい素鋼板が与えられる。
Table 8 7mm2 = 37- (Effects of the Inventions) Each of the inventions prevents any performance deterioration resulting from high-temperature treatment when using unidirectional silicon steel sheets that undergo high-temperature thermal history, such as strain relief annealing. A unidirectional silicon steel sheet with excellent thermal stability is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオンプレーテングの模式図、第2図は加速イ
オンおよび蒸着原子の被着挙動を示す説明図である。
FIG. 1 is a schematic diagram of ion plating, and FIG. 2 is an explanatory diagram showing deposition behavior of accelerated ions and vapor deposited atoms.

Claims (1)

【特許請求の範囲】 1、仕上焼鈍済みの一方向性けい素鋼板表面上の非金属
物質を除去した面に、Ti、Zr、Hf、V、Nb、T
a、Mn、Cr、Mo、W、Co、Ni、Al、B及び
Siの窒化物及び/又は炭化物のうちから選んだ少なく
とも1種から主としてなり、それらの地鉄との混合相を
介し鋼板表面と強固に被着した少なくとも1層の0.0
05〜5μmの張力被膜を具備することを特徴とする熱
安定性、超低鉄損一方向性けい素鋼板。 2、仕上焼鈍済みの一方向性けい素鋼板表面上の非金属
物質を除去後研磨処理して平滑とした仕上げ表面に、T
i、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、
W、Co、Ni、Al、B及びSiの窒化物及び/又は
炭化物のうちから選んだ少なくとも1種から主としてな
り、それらの地鉄との混合相を介し鋼板表面上へ強固に
被着した少なくとも1層の0.005〜5μmの張力被
膜を具備することを特徴とする熱安定性、超低鉄損一方
向性けい素鋼板。 3、仕上焼鈍済みの一方向性けい素鋼板表面上の非金属
物質を除去した面に、Ti、Zr、Hf、V、Nb、T
a、Mn、Cr、Mo、W、Co、Ni、Al、B及び
Siの窒化物及び/又は炭化物のうちから選んだ少なく
とも1種から主としてなり、それらの地鉄との混合相を
介し鋼板表面上へ強固に被着した少なくとも1層の0.
005〜5μmの張力被膜を具備し、この張力被膜上に
重ねて被着した、絶縁性塗布焼付層とともに具備するこ
とを特徴とする熱安定性、超低鉄損一方向性けい素鋼板
。 4、仕上焼鈍済みの一方向性けい素鋼板表面上の非金属
物質を除去後研磨処理して平滑とした仕上げ表面に、T
i、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、
W、Co、Ni、Al、B及びSiの窒化物及び/又は
炭化物のうちから選んだ少なくとも1種から主としてな
り、それらの地鉄との混合相を介し鋼板表面上へ強固に
被着した少なくとも1層の0.005〜5μmの張力被
膜を具備し、この張力被膜上に重ねて被着した、絶縁性
塗布焼付層とともに具備することを特徴とする熱安定性
、超低鉄損一方向性けい素鋼板。
[Claims] 1. Ti, Zr, Hf, V, Nb, T
It mainly consists of at least one kind selected from nitrides and/or carbides of a, Mn, Cr, Mo, W, Co, Ni, Al, B and Si, and forms a surface of the steel sheet through a mixed phase with the base iron. and at least one layer firmly adhered to 0.0
A thermally stable, ultra-low core loss unidirectional silicon steel sheet characterized by having a tensile coating of 0.05 to 5 μm. 2. After removing the non-metallic substances on the surface of the unidirectional silicon steel plate that has been finish annealed, the T
i, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo,
The at least one material is mainly composed of at least one kind selected from nitrides and/or carbides of W, Co, Ni, Al, B, and Si, and is firmly adhered to the surface of the steel sheet through a mixed phase of these with the base iron. A thermally stable, ultra-low iron loss unidirectional silicon steel sheet, characterized by having one layer of a tensile coating of 0.005 to 5 μm. 3. Ti, Zr, Hf, V, Nb, T
It mainly consists of at least one kind selected from nitrides and/or carbides of a, Mn, Cr, Mo, W, Co, Ni, Al, B and Si, and forms a surface of the steel sheet through a mixed phase with the base iron. At least one layer of O.
1. A thermally stable, ultra-low iron loss unidirectional silicon steel sheet comprising a tensile coating of 0.005 to 5 μm, together with an insulating coated and baked layer overlaid on the tensile coating. 4. After removing the non-metallic substances on the surface of the unidirectional silicon steel sheet that has been finish annealed, polish the surface to make it smooth.
i, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo,
The at least one material is mainly composed of at least one kind selected from nitrides and/or carbides of W, Co, Ni, Al, B, and Si, and is firmly adhered to the surface of the steel sheet through a mixed phase of these with the base iron. Thermal stability, ultra-low iron loss unidirectionality characterized by having one layer of 0.005 to 5 μm tension coating, and having an insulating coated and baked layer deposited on top of this tension coating. Silicon steel plate.
JP63024001A 1985-02-22 1988-02-05 Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties Pending JPS63278209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63024001A JPS63278209A (en) 1985-02-22 1988-02-05 Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3293585 1985-02-22
JP60-32935 1985-02-22
JP63024001A JPS63278209A (en) 1985-02-22 1988-02-05 Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61036565A Division JPS621820A (en) 1985-02-22 1986-02-21 Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss

Publications (1)

Publication Number Publication Date
JPS63278209A true JPS63278209A (en) 1988-11-15

Family

ID=26361455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63024001A Pending JPS63278209A (en) 1985-02-22 1988-02-05 Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties

Country Status (1)

Country Link
JP (1) JPS63278209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034377A1 (en) * 1997-12-24 1999-07-08 Kawasaki Steel Corporation Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034377A1 (en) * 1997-12-24 1999-07-08 Kawasaki Steel Corporation Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same

Similar Documents

Publication Publication Date Title
KR910006011B1 (en) Extra-low iron loss grain oriented silicon steel sheets
EP0215134B1 (en) Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS6332849B2 (en)
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS63278209A (en) Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPS62103374A (en) Grain-oriented silicon steel sheet having superior magnetic characteristic
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPS62290844A (en) Grain-oriented silicon steel sheet having very small iron loss
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH0577749B2 (en)
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPH0327633B2 (en)
JPS62192581A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPS63293112A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS63227719A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS61246321A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate