JPS621820A - Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss - Google Patents

Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss

Info

Publication number
JPS621820A
JPS621820A JP61036565A JP3656586A JPS621820A JP S621820 A JPS621820 A JP S621820A JP 61036565 A JP61036565 A JP 61036565A JP 3656586 A JP3656586 A JP 3656586A JP S621820 A JPS621820 A JP S621820A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
silicon steel
ultra
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61036565A
Other languages
Japanese (ja)
Other versions
JPS6354767B2 (en
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPS621820A publication Critical patent/JPS621820A/en
Publication of JPS6354767B2 publication Critical patent/JPS6354767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To provide a titled steel sheet which can sustain and provide an ultra-low iron loss characteristics even when subjected to a high-temp. treatment such as stress relief annealing by forming a tensile film under the conditions added with a fundamental improvement onto the surface of a grain oriented silicon steel sheet from which a non-metallic material is removed and which is subjected to finish annealing. CONSTITUTION:The non-metallic material is removed from the surface of the grain oriented silicon steel sheet subjected to finish annealing or further the surface if finished smooth. The tensile film 9 essentially consisting of >=1 kinds of the nitrides or carbides of Ti, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo, W, Co, Ni, Al, B and Si is formed to 0.005-5mu by ion plating or ion implantation on such surface. The film 9 which is securely deposited onto the surface of the steel sheet 1 via a mixed phase 8 composed of the base iron of the sheet 1 and the film 9, is free from the deterioration in the characteristics even after the high- temp. treatment and has good adhesiveness and durability is thus obtd. A baked layer of an insulation coating may be formed on the film 9 in superposition thereon.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性けい素鋼板の電気・磁気的特性の改善、なかで
も、鉄損の低減に係わる極限的な要請を満たそうとする
近年来の目覚ましい開発努力は、逐次その実を挙げつつ
あるが、その実施に伴う重大な弊害として、一方向性け
い素鋼板の使用に当たっての加工、組立てを経たのちい
わゆるひずみ取り焼鈍がほどこされた場合に、特性劣化
の随伴を不可避に生じて、使途についての制限を受ける
不利が指摘される。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, efforts have been made to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. The remarkable development efforts are gradually bearing fruit, but one serious problem associated with their implementation is that when unidirectional silicon steel sheets are processed and assembled and then subjected to so-called strain relief annealing, their characteristics deteriorate. It has been pointed out that the disadvantage is that it inevitably causes deterioration and limits its use.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を招くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development that will lead to a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

さて一方向性けい素鋼板は、よく知られているとおり製
品の2次再結晶粒を(110)  [:001)、すな
わちゴス方位に、高度に集積させたもので、主として変
圧器その他の電気機器の鉄心として使用され電気・磁気
的特性として製品の磁束密度(Bl。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) [:001), that is, Goss orientation, and are mainly used in transformers and other electrical appliances. The magnetic flux density (Bl.

で代表される)が高く、鉄損(Ltzs。値で代表され
る)の低いことが要求される。
It is required that the iron loss (represented by the Ltzs value) be high and the iron loss (represented by the Ltzs value) be low.

この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明・改善が加え
られ、今日では板厚0.30+nmの製品の磁気特性が
Blo 1.90T以上、’A+ysa 1. 051
’l/kg以下、また板厚0。23mmの製品の磁気特
性が8101、 89T以上、W17,’so O.9
01リ/kg以下の超低鉄損一方向性けい素鋼板が製造
されるようになって来ている。
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of 0.30+ nm have magnetic properties of Blo 1.90T or higher. A+ysa 1. 051
'l/kg or less, and the magnetic properties of products with a plate thickness of 0.23mm are 8101, 89T or more, W17,'so O. 9
Unidirectional silicon steel sheets with ultra-low core loss of 0.01 Li/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を至上と
する要請が著しく強まり、欧米では損失の少ない変圧器
を作る場合に鉄損の減少分を金額に換算して変圧器価格
に上積みする「ロス・エバリユエーション」 (鉄損評
価)制度が普及している。
In particular, recently there has been a marked increase in the demand for reducing power loss as a top priority from the standpoint of energy conservation.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性けい素鋼板の
仕上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレ
ーザ照射により局部微小ひずみを導入して磁区を細分化
し、もって鉄損を低下させることが提案された(特公昭
57−2252号,特公昭57−53419号,特公昭
58−26405号及び特公昭58−26406号各公
報参照)。
(Prior Art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after finish annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce iron loss by this method (see Japanese Patent Publications No. 57-2252, 53419-1980, 26405-1985, and 26406-1986).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として鉄心トランス材料にあっては、レ
ーザー照射によって折角に導入された局部微小ひずみが
焼鈍処理により解放されて磁区幅が広くなるため、レー
ザー照射効果がなくなるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for stacked iron cores that are not subjected to strain relief annealing. There is a drawback that the laser irradiation effect disappears because microstrains are released by annealing and the magnetic domain width becomes wider.

一方これより先に特公昭52−24499号公報におい
ては、一方向性けい素鋼板の仕上げ焼鈍後の鋼板表面を
鏡面仕上げするか又はその鏡面仕上げ面上に金属薄めっ
きやさらにその上に絶縁被膜を塗布焼付けすることによ
る、超低鉄損一方向性けい素鋼板の製造方法が提案され
ている。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel sheet after finish annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating or an insulating coating was applied thereon. A method for manufacturing ultra-low core loss unidirectional silicon steel sheets has been proposed by coating and baking.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上後に
不可欠な絶縁被膜を塗布焼付し、さらに600℃以上の
高温で長時間の歪み取り焼鈍を施した後に鋼板との密着
性に問題があるため、現在の製造工程において採用され
るに至ってはいない。また特公昭56−4150号公報
においても鋼板表面を鏡面仕上げした後、酸化物系セラ
ミックス薄膜を蒸着する方法が提案されている。しかし
ながらこの方法も600℃以上の高温焼鈍を施すと鋼板
とセラミック層とが剥離するため、実際の製造工程では
採用できない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective, as it does not contribute enough to reducing iron loss despite the significant increase in cost. Furthermore, it has not been adopted in current manufacturing processes because it has problems with adhesion to steel plates after being subjected to strain relief annealing at a high temperature of 600° C. or higher for a long time. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher.

(発明が解決しようとする問題点) 発明者らは上記した鏡面仕上による鉄損向上の実効をよ
り有利に引き出すことにより、特に今日の省エネ材料開
発の観点では上記のごときコストアップの不利を凌駕す
る特性、とくに高温処理でも特性劣化を伴うことのない
張力被膜層の密着性、耐久性の問題の克服こそが肝要と
考え、この基本認識に立脚し、とくにPVD処理におけ
る張力被膜形成条件に根本的改善を加えることによって
有利な超低鉄損化を達成することがこの発明の目的であ
る。
(Problems to be Solved by the Invention) The inventors have overcome the disadvantage of increased costs, especially from the perspective of today's development of energy-saving materials, by taking advantage of the effect of improving iron loss due to the mirror finish described above. We believe that it is essential to overcome the problems of adhesion and durability of the tensile coating layer, which does not deteriorate in properties even during high-temperature treatment.Based on this basic understanding, we have developed fundamental changes in the conditions for forming the tensile coating, especially in PVD processing. It is an object of the present invention to achieve an advantageous ultra-low iron loss by making improvements.

(問題点を解決するための手段) 上記検討の結果、仕上焼鈍済みの一方向性けい素鋼板表
面上の非金属物質を除去した面あるいはさらに研磨によ
る平滑な仕上表面に、Ti、 Zr、 Hf。
(Means for solving the problem) As a result of the above study, Ti, Zr, and Hf are applied to the surface of the finish-annealed unidirectional silicon steel sheet from which non-metallic substances have been removed or the smooth finished surface by further polishing. .

V、 Nb、 Ta、 !An、 Cr、 Mo、 W
、 Co、 Ni、 Al、 B及びSiの窒化物及び
/又は炭化物のうちから選んだ少なくとも1種から主と
してなり、それらの地鉄との混合相を介し鋼板表面上へ
強固に被着した少なくとも1層の0.005〜5μmの
張力被膜を具備し、あるいはさらにこの張力被膜上に重
ねて被着した、絶縁性塗布焼付層とともに具備すること
を特徴とする熱安定性、超低鉄損一方向性けい素鋼板を
発明したものである。
V, Nb, Ta, ! An, Cr, Mo, W
, Co, Ni, Al, B, and Si nitrides and/or carbides, and is strongly adhered to the surface of the steel plate through a mixed phase of these with the base iron. Thermal stability, ultra-low core loss unidirectional, characterized by comprising a 0.005 to 5 μm tension coating, or further comprising an insulating coated and baked layer deposited on top of the tension coating. He invented silicon steel sheets.

この発明の成功が導かれた具体的実験例に従って説明を
進める。
The explanation will proceed according to a specific experimental example that led to the success of this invention.

C: 0.046重量%(以下単に%で示す)、Si:
3.34%、 Mn : 0.068%、 Se :0
.023%、sb : 0.025%、Mo : 0.
025%を含有するけい素鋼スラブを1360℃で4時
間加熱後熱間圧延して2.Omm厚の熱延板とした。
C: 0.046% by weight (hereinafter simply expressed as %), Si:
3.34%, Mn: 0.068%, Se: 0
.. 023%, sb: 0.025%, Mo: 0.
2. A silicon steel slab containing 0.025% was heated at 1360°C for 4 hours and then hot rolled. It was made into a hot-rolled sheet with a thickness of 0 mm.

その後950℃で3分間の均一化焼鈍後、950℃で3
分間の中間燃焼をはさむ2回の冷間圧延を施して0.2
3mm厚の最終冷延板とした。
After that, after homogenization annealing at 950℃ for 3 minutes,
It is cold rolled twice with an intermediate combustion of 0.2 minutes in between.
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後900℃の湿水素雰囲気中で脱炭・−次回結晶焼
鈍を施した後、鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布し、850℃で50時間の二次再結晶焼鈍と
、1200℃で飽水素中5時間の純化焼鈍を施した。
After that, after decarburization and next crystal annealing in a wet hydrogen atmosphere at 900°C, an annealing separator mainly composed of MgO is applied to the steel sheet surface, and secondary recrystallization annealing is performed at 850°C for 50 hours. Purification annealing was performed at 1200° C. in saturated hydrogen for 5 hours.

その後はまず80℃のH2SO,液中で酸洗して鋼板表
面のフォルステライト質下地被膜を除去した。
Thereafter, the steel plate was first pickled in H2SO solution at 80°C to remove the forsterite base film on the surface of the steel plate.

次に3%HFと820□の溶液中で化学研磨し鋼板表面
を中心線平均粗さ0.1 μの鏡面状態に仕上げた。
Next, chemical polishing was performed in a solution of 3% HF and 820□ to finish the surface of the steel plate into a mirror-like state with a center line average roughness of 0.1 μm.

その後第1図に示したイオンプレーテング装置を使用し
て研磨表面に、膜厚0.5μmでTiNのイオンプレー
ティングを行った。
Thereafter, using the ion plating apparatus shown in FIG. 1, TiN ion plating was performed on the polished surface to a film thickness of 0.5 μm.

なお第1図において1は鏡面研磨を施した供試用の基板
、2はシャッタ、3はるつぼ、4は電子銃、5はビーム
、6はイオン化電極、7は熱電子放射電極、8はN2.
 C21(2あるいは0□等の反応ガス導入口である。
In FIG. 1, 1 is a mirror-polished test substrate, 2 is a shutter, 3 is a crucible, 4 is an electron gun, 5 is a beam, 6 is an ionization electrode, 7 is a thermionic emission electrode, 8 is an N2.
C21 (2 or 0□, etc.) is a reaction gas inlet.

上記のイオンプレーティングについでりん酸塩とコロイ
ダルシリカとを主成分とするコーテイング液でコーティ
ング処理(絶縁性塗布焼付層の形成)を行った後800
℃で5時間の歪み取り焼鈍を行った。
After the above ion plating, a coating treatment (formation of an insulating coated baked layer) with a coating liquid mainly composed of phosphate and colloidal silica was performed.
Strain relief annealing was performed at ℃ for 5 hours.

これに対する比較のために従来の公知技術に従い1μm
の鋼めっき処理を同様の研磨表面に施した後、やはりり
ん酸塩とコロイダルシリカとを主成分とするコーテイン
グ液でコーティング焼付処理を行った後、800℃で5
時間の歪み取り焼鈍を行った。
For comparison, 1 μm according to conventional known technology.
After applying steel plating treatment to the same polished surface, a coating baking treatment was also performed with a coating liquid whose main components were phosphate and colloidal silica, and then the coating was baked at 800℃ for 5 minutes.
Time-distortion annealing was performed.

このときの製品の磁気特性および密着性の実験結果をま
とめて表1に示す。
Table 1 summarizes the experimental results of the magnetic properties and adhesion of the product.

表1から明らかなように現在工程的に製造されている、
仕上げ焼鈍中、鋼板表面上に形成されるフォルステライ
ト質下地被膜の上に、コーティング処理を加えたのち8
00℃で5時間の歪み取り焼鈍後の通常処理製品(a)
の磁気特性はBN)が1.905T、WB75oが0.
87W/kg程度であって絶縁被膜の密着性は一応良好
であるのに対し、仕上焼鈍後にフォルステライト質被膜
を酸洗で除去し、ついで表面を化学研磨して鏡面仕上し
、この研磨処理表面に銅 2めっきを経て、コーティン
グ処理した製品ら)の磁気特性はB、0が1.913T
、 L77soが0.741〜/kg程度にやや改善さ
れる反面、密着性が悪い。
As is clear from Table 1, currently manufactured by process,
After applying a coating treatment on the forsterite base film formed on the steel plate surface during final annealing, 8
Normally processed product (a) after strain relief annealing at 00℃ for 5 hours
The magnetic properties of BN) are 1.905T, and WB75o is 0.
Although the adhesion of the insulating film is approximately 87 W/kg, the forsterite film is removed by pickling after final annealing, and the surface is then chemically polished to a mirror finish. The magnetic properties of the products (products coated after copper plating) are B, 0 is 1.913T.
, L77so was slightly improved to about 0.741~/kg, but adhesion was poor.

ところがこの発明に従い、仕上焼鈍後フォルステライト
質被膜を除去し、表面を化学研磨して鏡面仕上した上で
とくにイオンプレーティング処理を経て同様なコーティ
ング処理をした製品(C)の磁気特性はB、Oが1.9
20’r、 111.7150が0.68W/kgとき
わだった特性改善のみならず、張力被膜はもちろん絶性
塗布焼付層の密着性もきわめて良好であった。
However, according to the present invention, after final annealing, the forsterite film was removed, the surface was chemically polished to a mirror finish, and the product (C) was subjected to a similar coating process through ion plating, and the magnetic properties were B. O is 1.9
20'r, 111.7150 was 0.68 W/kg, which was not only a remarkable improvement in properties, but also extremely good adhesion of not only the tension coating but also the permanent coating and baking layer.

(作 用) この発明に従う磁気特性と密着性の向上は、第2図の模
式図で示すように、基板1としてのけい素鋼板の研磨処
理表面上に加速イオン1と蒸着原子aとの混合相8が張
力被膜9との間に形成されることによってその密着性が
格段に強められることにあわせ、その結果強い珪素鋼板
の面上に働いて従来比類のない超低鉄損が実現される。
(Function) The improvement in magnetic properties and adhesion according to the present invention is achieved by mixing accelerated ions 1 and vapor deposited atoms a on the polished surface of a silicon steel plate serving as the substrate 1, as shown in the schematic diagram of FIG. The adhesion between the phase 8 and the tension coating 9 is greatly strengthened, and as a result, it acts on the surface of the strong silicon steel plate, achieving ultra-low iron loss unparalleled in the past. .

ここに塑性的な微少ひずみの働きを利用するわけではな
いので、熱安定性に何らの問題なく、歪み取り焼鈍の如
き高温の熱履歴の下に電気・磁気的特性に影響されると
ころがない。
Since the function of plastic microstrain is not used here, there is no problem with thermal stability, and the electrical and magnetic properties are not affected by high-temperature thermal history such as strain relief annealing.

ここに仕上表面の中心線平均粗さを、Ra≦0.4μm
の鏡面状態とすることが最良であり、Ra>0.4μm
のときは表面が粗いために、著しい鉄損低減は期待薄に
なる。
Here, the center line average roughness of the finished surface is Ra≦0.4μm
It is best to have a mirror state of Ra > 0.4 μm.
When , the surface is rough, so there is little hope for significant iron loss reduction.

次に張力被膜の膜厚は0.005〜5μmの範囲で適合
し、0.005μmに満たないときは、必要な張力付与
に寄与し得ない一方、5μmをこえると、占積率及び密
着性の不利が生じる。
Next, the thickness of the tension coating is suitable in the range of 0.005 to 5 μm; if it is less than 0.005 μm, it will not be able to contribute to providing the necessary tension, while if it exceeds 5 μm, the space factor and adhesion will deteriorate. disadvantages arise.

この張力被膜の混合相を介した鏡面状態の仕上表面上に
おける強固な被着は、イオンプレーティング、イオンイ
ンプランテーションによるPVD(Physical 
Vapor Deposition)  あるいはCV
D (Che−micalVapor Deposit
ion)の何れによっても有利にもたらされる。
Strong adhesion on the mirror-like finished surface through the mixed phase of this tension coating is achieved by PVD (Physical
Vapor Deposition) or CV
D (Che-mical Vapor Deposit
ion).

次にこの発明による、一方向性けい素鋼板の製造工程に
ついて説明する。
Next, the manufacturing process of a unidirectional silicon steel sheet according to the present invention will be explained.

出発素材は従来公知の一方向性けい素鋼素材成分、例え
ば ■C:0.旧〜0.050%、Si:2.50〜4.5
%、Mn : 0.0f 〜0.2  %、  Mo 
: 0.003 〜0. ]  %、Sb : 0.0
05〜0.2 %、 SまたはSeの1種あるい2種合
計で、0.005〜0.05%を含有する組成■C:0
.旧〜0.08%、 Si:2.Q〜4.0%、Sol
 Al : Q、005〜0.06%、S:0.005
〜0.05%、N:0.001〜0.01%、Sn :
 0.01〜0.5%、 Cu : 0.01〜0.3
%、Mn : 0.01〜0.2%を含有する組成■C
:0.01〜0.06%、 Si:2.0〜4.0%、
S:0.005 〜0.05%、B : 0.0003
〜0.020  %、N :0.001−0゜旧%、!
、4n : 0.01〜0.2%を含有する組成 の如きにおいて適用可能である 次に熱延板は800〜・1100℃の均一化焼鈍を経て
1回の冷間圧延で@終板厚とする1回冷延法か又は、通
常850℃から1050℃の中間焼鈍をはさんでさらに
冷延する2回冷延法にて、後者の場合最初の圧下率は5
0%から80%程度、最終の圧下率は50%から85%
程度で0.15mmから0.35mm厚の最終冷延板厚
とする。
The starting material is a conventionally known unidirectional silicon steel material composition, such as ■C: 0. Old ~ 0.050%, Si: 2.50 ~ 4.5
%, Mn: 0.0f ~ 0.2%, Mo
: 0.003 ~0. ] %, Sb: 0.0
Composition containing 0.05 to 0.2% and 0.005 to 0.05% of one or both of S or Se ■C: 0
.. Old ~0.08%, Si:2. Q~4.0%, Sol
Al: Q, 005-0.06%, S: 0.005
~0.05%, N: 0.001~0.01%, Sn:
0.01-0.5%, Cu: 0.01-0.3
%, Mn: Composition containing 0.01 to 0.2% ■C
:0.01~0.06%, Si:2.0~4.0%,
S: 0.005 to 0.05%, B: 0.0003
~0.020%, N: 0.001-0° old%,!
, 4n: Applicable to compositions containing 0.01 to 0.2%.Next, the hot rolled sheet is uniformly annealed at 800 to 1100°C and then cold rolled once to reduce @ final plate thickness. In the latter case, the initial rolling reduction is 5.
Approximately 0% to 80%, final reduction rate is 50% to 85%
The final cold rolled sheet thickness is approximately 0.15 mm to 0.35 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は表面脱脂後
750℃から850℃の湿水素中で脱炭・1次再結晶焼
鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is surface degreased and then subjected to decarburization and primary recrystallization annealing in wet hydrogen at 750°C to 850°C.

このような処理を行った後鋼板表面に焼鈍分離剤を塗布
する。この際一般的には仕上げ焼鈍後の成形を不可欠と
していたフォルステライトをとくに形成させない方がそ
の後の鋼板の鏡面処理を簡便にするのに有効であるので
、焼鈍分離剤としてMgO主体のものを用いる場合のほ
か、とくにAl2O,、ZrO□、 Tin、などを、
50%以上)4gOに混入するのが好ましい。
After performing such treatment, an annealing separator is applied to the surface of the steel sheet. At this time, it is generally effective to prevent the formation of forsterite, which is essential for forming after final annealing, in order to simplify the subsequent mirror finishing of the steel sheet, so an MgO-based separator is used as the annealing separator. In addition to cases, especially Al2O, ZrO□, Tin, etc.
50% or more) is preferably mixed into 4gO.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
℃以上に昇温し、その温度に保持することによって行わ
れる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
This is done by raising the temperature above ℃ and maintaining it at that temperature.

この場合(110) <ooi>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保定焼鈍する方が有利であり、そのほか
例えば0.5〜b 鈍でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (110) <ooi> orientation, the
It is more advantageous to carry out retention annealing at a low temperature of 00°C, and in addition, for example, 0.5-b annealing may be used.

2次再結晶焼鈍後の純化焼鈍は、飽水素中で1100℃
以上で1〜20時間焼鈍を行って、鋼板の純化を達成す
ることが必要である。
Purification annealing after secondary recrystallization annealing is performed at 1100°C in saturated hydrogen.
It is necessary to perform annealing for 1 to 20 hours to achieve purification of the steel plate.

この純化焼鈍後に鋼板表面の非金属物質例えばフォルス
テライト被膜ないしは酸化物被膜を公知の酸洗などの化
学除去法や切削、研削などの機械的除去法またはそれら
の組合せにより除去する。
After this purification annealing, nonmetallic substances such as forsterite coatings or oxide coatings on the surface of the steel sheet are removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof.

この酸化物除去処理の後、必要に応じて化学研摩、電解
研磨などの化学的研摩や、パフ研磨などの機械的研摩あ
るいはそれらの組合せなど従来の手法により鋼板表面を
鏡面状態(中心線平均粗さで0.4 μm以下)に仕上
げる。
After this oxide removal treatment, if necessary, the steel plate surface is polished to a mirror finish (centerline average roughness 0.4 μm or less).

非金属物質除去後又は鏡面研磨後、CVD 、イオンプ
レーティングまたはイオンインプランテーシE7により
、Ti、 Zr、 Hf、 V、 Nb、 Ta、 M
n、 Cr。
After removing non-metallic substances or mirror polishing, Ti, Zr, Hf, V, Nb, Ta, M are removed by CVD, ion plating or ion implantation E7.
n, Cr.

Mo、  W、 Co、 Ni、 Al、 B  およ
びSiの窒化物および/または炭化物のうちから選んだ
少なくとも1種から主としてなる少なくとも一層の極薄
張力被膜を形成させる。
At least one ultra-thin tensile coating is formed which mainly consists of at least one selected from Mo, W, Co, Ni, Al, B, and Si nitrides and/or carbides.

またこの極薄張力被膜は0.005〜5μm程度の厚み
で形成させるのが効果的である。0.005μm以下の
被膜は張力効果が小さいため鉄損低下させる効果が小さ
く、また5μm以上では膜厚が厚くなるため占積率が低
下するのと経済的ではないので張力被膜の膜厚は0.0
05〜5μmが好適である。
Moreover, it is effective to form this ultra-thin tension coating with a thickness of about 0.005 to 5 μm. A coating with a thickness of 0.005 μm or less has a small tension effect, so it has little effect on reducing iron loss, and if it is 5 μm or more, the film thickness becomes thick and the space factor decreases, which is not economical, so the thickness of the tension coating is 0. .0
05 to 5 μm is suitable.

さらにこのように生成した極薄張力被膜上にコロイダル
シリカあるいはりん酸塩とコロイダルシリカを主成分と
する絶縁被膜の塗布焼付を行ない、さらに600℃以上
の高温での長時間の歪み取り焼鈍を施しても磁気特性の
劣化がなく、かつ密着性が良好であることがトランスの
使途に当然に必要であり、この絶縁性焼付層の形成およ
びその後の歪み取り焼鈍方法は、従来公知の手法をその
まま用いて良い。
Furthermore, an insulating film containing colloidal silica or phosphate and colloidal silica as main components is applied and baked on the ultra-thin tensile film produced in this way, and then subjected to long-term strain relief annealing at a high temperature of 600°C or higher. Naturally, it is necessary for transformers to have good adhesion and no deterioration of magnetic properties even when exposed to heat, and the formation of this insulating baked layer and the subsequent strain relief annealing method can be done using conventionally known methods. May be used.

さらに加えてこの発明により磁歪の圧縮特性の改善も達
成し得る。
In addition, improvements in magnetostrictive compression properties can also be achieved with the present invention.

(実施例) 実施例I C:0.047%、Si:3.4%、Mn : 0.0
62%、Mo : 0.025%、Se : 0.02
2%、Sb : 0.020%を含有する熱延板を、9
00℃で3分間の均一化焼鈍後、950℃の中間焼鈍を
はさんで2回の冷間圧延を行って0.23mm厚の最終
冷延板としまた。
(Example) Example I C: 0.047%, Si: 3.4%, Mn: 0.0
62%, Mo: 0.025%, Se: 0.02
2%, Sb: 0.020%.
After uniform annealing at 00°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C to obtain a final cold-rolled sheet with a thickness of 0.23mm.

その後820℃の湿水素中で脱炭焼鈍後鋼板表面にMg
Oを主成分とする焼鈍分離剤を塗布した後850℃で5
0時間の2次再結晶焼鈍し、1200℃で8時間飽水素
中で純化焼鈍を行った。
After decarburization annealing in wet hydrogen at 820°C, Mg is deposited on the surface of the steel sheet.
After applying an annealing separator mainly composed of O, it was heated at 850℃ for 5
Secondary recrystallization annealing was performed for 0 hours, and purification annealing was performed in saturated hydrogen at 1200° C. for 8 hours.

その後酸洗によりフォルステライト質被膜を除去後、3
%HFとH,0□液中で化学研磨して鏡面仕上げした。
After that, after removing the forsterite film by pickling, 3
It was chemically polished in %HF and H,0□ solution to give a mirror finish.

その後第1図の装置を用いてl0KVのイオン化電圧で
3分間イオンプレーティングし膜厚0.5μmのTiN
張力被膜を形成させた。
After that, using the apparatus shown in Fig. 1, ion plating was performed for 3 minutes at an ionization voltage of 10 KV to form a TiN film with a thickness of 0.5 μm.
A tension film was formed.

次にりん酸塩とコロイダルシリカとを主成分とする絶縁
性塗布焼付層を形成し、その後800℃で2時間のひず
み取り焼鈍を行った。
Next, an insulating coated and baked layer containing phosphate and colloidal silica as main components was formed, and then strain relief annealing was performed at 800° C. for 2 hours.

そのときの製品の磁気特性および密着性は次のとおりで
あった。
The magnetic properties and adhesion of the product at that time were as follows.

磁気特性: B+o=1.91T 、 W+t7so 
=0.6911/kg密着性: 曲げ半径30順で18
0°曲げてもはく離せず密着性は良好であった。
Magnetic properties: B+o=1.91T, W+t7so
=0.6911/kg Adhesion: 18 in order of bending radius 30
Even when bent by 0°, it could not be peeled off, and the adhesion was good.

実施例2 C:0.062%、Si:3.3%、Mn : 0.0
90%、Al  :0.025%、S:0.030%、
N : 0.0068%を含有する熱延板を、1150
℃で3分間の均−化焼鈍後急冷処理を行い、その後30
0℃の温間圧延を施して0.20mm厚の最終冷延板と
した。
Example 2 C: 0.062%, Si: 3.3%, Mn: 0.0
90%, Al: 0.025%, S: 0.030%,
A hot rolled sheet containing N: 0.0068% was heated to 1150
After equalization annealing for 3 minutes at ℃, rapid cooling treatment was performed, and then 30
Warm rolling was performed at 0° C. to obtain a final cold-rolled sheet with a thickness of 0.20 mm.

その後850℃の湿水素中で脱炭焼鈍後、表面にMgO
を主成分とする焼鈍分離剤を塗布した後850℃から1
150℃まで8℃/hrで昇温しで2次再結晶させた後
、1200℃で8時間吃水素中で純化焼鈍を行った0 その後酸洗によりフォルステライト質被膜を除去し、つ
いで3%HFと820□液中で化学研磨して鏡面仕上げ
した。
After decarburization annealing in wet hydrogen at 850°C, the surface is coated with MgO.
After applying an annealing separator mainly composed of
After secondary recrystallization by raising the temperature to 150°C at a rate of 8°C/hr, purification annealing was performed in hydrogen hydrogen at 1200°C for 8 hours.Then, the forsterite film was removed by pickling, and then 3% It was chemically polished in HF and 820□ solution to give it a mirror finish.

その後イオンインプランテーション法によりイオン加速
電圧49KVで3分間窒素イオンを注入して膜厚0.2
μmにてSiN極薄の張力被膜を形成させ、次にりん酸
塩とコロイダルシリカとを主成分とする絶縁性塗布焼付
層を形成させた後、800℃で2時間の歪み取り焼鈍を
行った。
After that, nitrogen ions were implanted for 3 minutes at an ion acceleration voltage of 49 KV using the ion implantation method to form a film with a thickness of 0.2
After forming an ultra-thin tension film of SiN at μm, and then forming an insulating coating and baking layer mainly composed of phosphate and colloidal silica, strain relief annealing was performed at 800°C for 2 hours. .

そのときの製品の磁気特性および密着性は次のとおりで
あった。
The magnetic properties and adhesion of the product at that time were as follows.

磁気特性: B+o=1.93T 、 W+tzso 
=0.68W/kg密着性: 曲げ半径30mmで18
0°曲げてもはく離せず密着性は良好であった。
Magnetic properties: B+o=1.93T, W+tzso
=0.68W/kg Adhesion: 18 at bending radius 30mm
Even when bent by 0°, it could not be peeled off, and the adhesion was good.

実施例3 C:0.044%、Si:3.45%、Mn : 0.
066%、Se:0.023  %、Sb : 0.0
25  %、MO: 0.026  %を含有する一方
向性けい素鋼板を1360℃で4時間加熱した後、熱間
圧延して2.20aun厚の熱延板とした。その後90
0℃で3分間の均一化焼鈍後、950℃で3分間の中間
焼鈍をはさんで2回の冷間圧延を施して0.23+nm
厚の最終冷延板とした。
Example 3 C: 0.044%, Si: 3.45%, Mn: 0.
066%, Se: 0.023%, Sb: 0.0
A unidirectional silicon steel sheet containing MO: 25% and MO: 0.026% was heated at 1360° C. for 4 hours, and then hot rolled into a hot rolled sheet having a thickness of 2.20 aun. After that 90
After uniform annealing at 0°C for 3 minutes, cold rolling was performed twice with an intermediate annealing at 950°C for 3 minutes to obtain a 0.23+ nm
A thick final cold-rolled sheet was obtained.

その後820℃の湿水素中で脱炭を兼ねる1次再結晶焼
鈍を施した後、A1□03(60%)、 Mg0(30
%)。
After that, after performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 820°C, A1□03 (60%), Mg0 (30
%).

2rO□(5%)、 TiO□(5%)を主成分とする
焼鈍分離剤を塗布した後、850℃で50時間の2次再
結晶焼鈍後、1200℃で8時間乾H2ガス中で純化焼
鈍を行った。
After applying an annealing separator mainly composed of 2rO□ (5%) and TiO□ (5%), secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification in dry H2 gas at 1200°C for 8 hours. Annealing was performed.

その後軽酸洗により鋼板表面上の酸化物を除去した後、
電解研磨を行って鋼板表面を鏡面状態に仕上げた。
After removing oxides on the steel plate surface by light pickling,
The surface of the steel plate was polished to a mirror finish by electrolytic polishing.

その後(a)マグネトロンスパッタリング法、(5)[
B(Electron Beam) + RF(Rad
io Frequency)法、(C)HCD(HpH
ow Cathode Discharge)および(
d)MultiArc法によるイオンプレーティング装
置を用いてTiNの張力被膜を形成させた後、800℃
で3時間の歪み取り焼鈍を行って製品とした。そのとき
の製品の磁気特性値とTiN被膜のX線回折結果を表2
に示す。
Then (a) magnetron sputtering method, (5) [
B (Electron Beam) + RF (Rad)
io Frequency) method, (C) HCD (HpH
ow Cathode Discharge) and (
d) After forming a TiN tension film using an ion plating device using the MultiArc method, at 800°C
The product was then subjected to strain relief annealing for 3 hours. Table 2 shows the magnetic property values of the product at that time and the X-ray diffraction results of the TiN coating.
Shown below.

表  2 表2から明らかなように4種類のイオンプレーティング
法によるTiN薄膜を形成させたときの磁気特性は81
0が1.91〜1.92751117/Soが0.69
〜0.72W/kgのように何れもきわめて良好である
。また表面の薄膜のX線回折結果では(a)および(d
)の条件ではTiN peaksのみ、ら)の条件では
TiN peaksが主であるが、Ti peaks若
干、また(C)の条件ではTiNpeaksが主である
が、Ti2NとTiN peaksがわずかに検出され
たが、TiN以外のこの程度のピークは磁気特性に大き
な影響を与えない。なおこのときの製品の密着性はすべ
て曲げ半径25n+m以下で180゜曲げてもはく離が
なく良好であった。
Table 2 As is clear from Table 2, the magnetic properties of TiN thin films formed by four types of ion plating methods were 81
0 is 1.91 to 1.92751117/So is 0.69
~0.72 W/kg, which is extremely good. In addition, the X-ray diffraction results of the thin film on the surface are (a) and (d)
), only TiN peaks were detected; under condition (a), TiN peaks were the main one, but some Ti peaks were detected; and under condition (C), TiN peaks were the main one, although Ti2N and TiN peaks were detected slightly. , peaks of this magnitude for materials other than TiN do not have a significant effect on magnetic properties. The adhesion of all the products at this time was good, with no peeling even when bent by 180° with a bending radius of 25n+m or less.

実施例4 C:0.042%、Si:3.32%、Mn : 0.
062 %、Mo : 0.022%、 Se:0.0
21%およびSb : 0.025%を含有する熱延板
に900℃で3分間の均−化焼鈍後、950℃で3分間
の中間焼鈍をはさんで21回の冷間圧延を施して0.2
3mm厚の最終冷延板とした。
Example 4 C: 0.042%, Si: 3.32%, Mn: 0.
062%, Mo: 0.022%, Se: 0.0
A hot-rolled sheet containing 21% and Sb: 0.025% was homogenized at 900°C for 3 minutes, then cold-rolled 21 times with intermediate annealing at 950°C for 3 minutes. .2
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後820℃の湿水素中で脱炭を兼ねた1次再結晶焼
鈍を施したのち、鋼板表面にAl2O3(70%)、 
Mg0(25%)、 ZrO□(5%)からなる焼鈍分
離剤を塗布したしてから、850℃で50時間の2次再
結晶焼鈍、ついで乾水素中で1200℃で7時間の純化
焼鈍を施した。
After that, after performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 820°C, the surface of the steel plate is coated with Al2O3 (70%).
After applying an annealing separator consisting of Mg0 (25%) and ZrO□ (5%), secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification annealing at 1200°C for 7 hours in dry hydrogen. provided.

その後(a)は酸洗により鋼板表面上の酸化被膜を除去
、(b)は酸洗により酸化被膜を除去後、電解研摩を施
して中心線平均粗さ0.04μm以下の鏡面状態に仕上
げた。しかるのちにイオンプレーティングにより1.2
μm厚のTiN被膜を形成した。
After that, (a) the oxide film on the surface of the steel plate was removed by pickling, and (b) the oxide film was removed by pickling and then electrolytically polished to give a mirror finish with a center line average roughness of 0.04 μm or less. . Later, by ion plating, 1.2
A μm thick TiN film was formed.

その後1部はさらにりん酸塩とコロイダルシリカを主成
分とするコーティング被膜を被成した後800℃で5時
間の歪み取り焼鈍を施して製品とした。それときの製品
の磁気特性を現行のフォルステライト被膜を有する製品
と比較して表3に示す。
Thereafter, one part was coated with a coating film mainly composed of phosphate and colloidal silica, and then subjected to strain relief annealing at 800° C. for 5 hours to produce a product. The magnetic properties of the product at that time are shown in Table 3 in comparison with the current product having a forsterite coating.

なお現行製品は820℃の湿水素中で脱炭を兼ねた1次
再結晶焼鈍を施したのち、鋼板表面にMgOを主成分と
する焼鈍分離剤を塗布したから、850℃で50時間の
2次再結晶焼鈍、ついで乾水素中で1200℃で7時間
の純化焼鈍を施した。その後ホオルステライト被膜を焼
付処理した後、800℃で5時間の歪み取り焼鈍を行っ
て製品としたものである。
The current product undergoes primary recrystallization annealing that also serves as decarburization in wet hydrogen at 820°C, and then coats the surface of the steel plate with an annealing separator containing MgO as the main component. Next, recrystallization annealing was performed, followed by purification annealing at 1200° C. for 7 hours in dry hydrogen. Thereafter, the whole stellite film was baked and then subjected to strain relief annealing at 800° C. for 5 hours to produce a product.

なお、このときの製品の密着性は、すべて曲げ半径25
mm以下で、180°曲げてもはく離がなく良好であっ
た。
In addition, the adhesion of the product at this time is based on the bending radius of 25.
mm or less, and there was no peeling even when bent by 180°, which was good.

表  3 実施例5 C:0.043%、 Si :3.32%、 Mn :
 0.066%。
Table 3 Example 5 C: 0.043%, Si: 3.32%, Mn:
0.066%.

Se : 0.019%、 Sb :0.025%およ
びMO二0.023%を含有するけい素鋼熱延板(2,
0mm厚)を950℃で3分間の中間焼鈍をはさんで2
回の冷間圧延を施して0.23mm厚の冷間圧延板とし
た。その後820℃で3分間の脱炭を兼ねた1次再結晶
焼鈍を施したのち、Al2O3(60%>、 Mg0(
35%)、ZrO□(3%)、 TI[]2(2%)を
主成分とする焼鈍分離剤をスラリー状に塗布した。
Silicon steel hot rolled sheet containing Se: 0.019%, Sb: 0.025% and MO2 0.023% (2,
0mm thick) with intermediate annealing for 3 minutes at 950℃.
The sample was cold-rolled twice to obtain a cold-rolled plate with a thickness of 0.23 mm. After that, primary recrystallization annealing was performed at 820°C for 3 minutes for decarburization, and then Al2O3 (60%>, Mg0(
35%), ZrO□ (3%), and TI[]2 (2%) were applied in the form of a slurry.

その後850℃で50時間の2次再結晶焼鈍を行った後
、さらにその後1200℃で6時間乾水素萎えて純化焼
鈍を行なった後、酸洗により表面酸化物を除去し、電解
研摩により鋼板表面を鏡面状態にした。その後CVD 
(表4中無印)、イオンプレーティング(表4中の○印
)およびイオンインプランテーション(表4中のΔ印)
により種々の薄膜(約067〜1.5μ厚)を形成させ
た後、りん酸塩とコロイダルシリカを主成分とするコー
ティング被膜の焼付処理の後800℃で5時間の歪み取
り焼鈍を行った。そのときの製品の磁気特性を表4にま
とめて示す。
After that, secondary recrystallization annealing was performed at 850°C for 50 hours, and then purification annealing was performed at 1200°C for 6 hours with dry hydrogen. Surface oxides were removed by pickling, and the surface of the steel plate was polished by electrolytic polishing. was made into a mirror state. Then CVD
(no mark in Table 4), ion plating (○ mark in Table 4), and ion implantation (Δ mark in Table 4)
After forming various thin films (approximately 0.67 to 1.5 μm in thickness), a coating film containing phosphate and colloidal silica as main components was baked and then subjected to strain relief annealing at 800° C. for 5 hours. Table 4 summarizes the magnetic properties of the products at that time.

なお、このときの製品の密着性は、すべて曲げ半径25
+nm以下で180°曲げてはく離がなく良好であった
In addition, the adhesion of the product at this time is based on the bending radius of 25.
+nm or less and no peeling occurred after 180° bending.

実施例6 C:0.043  %、 Si:3.37%、Mn :
 0.063  %、Mo : 0.025%、Se 
: 0.022%、Sb : 0.025%を含有する
熱延板を用意した。
Example 6 C: 0.043%, Si: 3.37%, Mn:
0.063%, Mo: 0.025%, Se
A hot rolled sheet containing Sb: 0.022% and Sb: 0.025% was prepared.

この熱延板は900℃で3分間の均一化焼鈍後、950
℃の中間焼鈍をはさんで2回の冷間圧延を行って0.2
3mm厚の最終冷延板とした。
This hot-rolled sheet was homogenized at 900°C for 3 minutes and then heated to 950°C.
Cold rolling was performed twice with intermediate annealing at 0.2 °C.
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後820℃の湿水素中で脱炭焼鈍後、鋼板表面にA
”203 (75%)、 Mg口(20%)、Zr02
(5%)を主成分とする焼鈍分離剤を塗布した後850
℃で50時間の2次再結晶焼鈍および1200℃で8時
間のH2中での純化焼鈍を行った。
After that, after decarburization annealing in wet hydrogen at 820℃, A
"203 (75%), Mg mouth (20%), Zr02
After applying an annealing separator mainly composed of (5%) 850
A secondary recrystallization annealing at 1200° C. for 50 hours and a purification annealing in H 2 at 1200° C. for 8 hours were performed.

その後酸洗により鋼板表面上の酸化被膜を除去し、次い
で3%HF(!:8202液中で化学研磨して鏡面仕上
げした。その後CVD (表5中無印)イオンプレーテ
ィング(表5中の○印)およびイオンインプランテーシ
ョン(表5中のΔ印)により種々の化合物薄膜を0.7
〜0.9μm厚で形成させた。
Thereafter, the oxide film on the surface of the steel plate was removed by pickling, and then chemically polished in 3% HF (!:8202 solution) to give a mirror finish.Then, CVD (no mark in Table 5) ion plating (○ in Table 5) (marked) and ion implantation (marked Δ in Table 5) to form various compound thin films of 0.7
It was formed to have a thickness of ~0.9 μm.

その後これらの処理をした試料は表面にりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜を焼付処理した後
、800℃で2時間の歪み取り焼鈍を行った。
Thereafter, the surface of the sample subjected to these treatments was subjected to a baking treatment to form an insulating coating mainly composed of phosphate and colloidal silica, and then strain relief annealing was performed at 800° C. for 2 hours.

そのときの製品の磁気特性および磁歪の圧縮応力特性、
(圧縮応力σが0.4および0.6 ktr/mm2で
の磁気歪みの値λpp)を表5にまとめて示す。
The magnetic properties and magnetostrictive compressive stress properties of the product at that time,
(Magnetostriction values λpp when the compressive stress σ is 0.4 and 0.6 ktr/mm2) are summarized in Table 5.

実施例7 C:0.056%、Si:3.29%、Mn + 0.
078%、Al:0.025%、S:0.030%、C
u:0.1%。
Example 7 C: 0.056%, Si: 3.29%, Mn + 0.
078%, Al: 0.025%, S: 0.030%, C
u: 0.1%.

Sn:0.05%を含有する一方向性けい素鋼を144
0℃で5時間加熱した後、熱間圧延して1.6〜2.7
mm厚の熱延板とした。
144 unidirectional silicon steel containing Sn: 0.05%
After heating at 0°C for 5 hours, it is hot rolled to 1.6-2.7
It was made into a hot-rolled plate with a thickness of mm.

その後1100℃で3分間の均一化焼鈍を施した後急冷
処理した。その後350℃での温間圧延を施して0.2
Q、 0.23.0.27および(]、 30叩厚の最
終冷延板とした。
Thereafter, uniform annealing was performed at 1100° C. for 3 minutes, followed by rapid cooling. After that, it was warm rolled at 350°C to 0.2
Q, 0.23, 0.27 and (], The final cold-rolled sheet had a thickness of 30.

その後850℃の湿水素中で脱炭を兼ねる1次再結晶焼
鈍を施した後、”203 (70%)、 Mg0(20
%)。
After that, primary recrystallization annealing was performed in wet hydrogen at 850°C, which also served as decarburization.
%).

TlO□(5%)、 Zr03(5豹の焼鈍分離剤を塗
布した後、850℃で50時間の2次再結晶焼鈍後、1
200℃で5時間乾H2ガス中で純化焼鈍を行った。
TlO□ (5%), Zr03 (5%) After applying an annealing separator of 5%, after secondary recrystallization annealing at 850 °C for 50 hours, 1
Purification annealing was performed at 200°C for 5 hours in dry H2 gas.

そのあと酸洗により鋼板表面上の酸化被膜を除去した後
、電解研磨を行って鋼板表面を鏡面状態に仕上げた。
Thereafter, the oxide film on the surface of the steel plate was removed by pickling, and then electropolishing was performed to finish the surface of the steel plate to a mirror finish.

その後PVD(イオンプレーティング装置)を用いてC
r2Nの薄膜を形成させた後、りん酸塩とコロイダルシ
リカを主成分とする絶縁被膜の焼付処理をした後、80
0℃で3時間の歪み取り焼鈍を行った。
After that, using PVD (ion plating device), C
After forming a thin film of r2N and baking an insulating film mainly composed of phosphate and colloidal silica,
Strain relief annealing was performed at 0°C for 3 hours.

そのときの製品の板厚側磁気特性、Cr、N薄膜の膜厚
および磁歪の圧縮応力特性(圧縮能力σが0.4kg/
mff12および0.6 kg/ 1nn2での磁気歪
みの値λす)表を表66にまとめて示す。
At that time, the thickness side magnetic properties of the product, the film thickness of Cr and N thin films, and the compressive stress properties of magnetostriction (compressive capacity σ is 0.4 kg/
The values of magnetostriction λ at mff12 and 0.6 kg/1nn2 are summarized in Table 66.

実施例8 (a)  C:0.042%、Si:3.36%、Mn
 + 0.062%、Mo : 0.024%、Se 
: 0.021%、Sb:0.025%(b)  C:
0.056%、Si:3.36%、Mn : 0.06
8%、At: 0.026%、  S :0.029%
、 N : 0.0069%。
Example 8 (a) C: 0.042%, Si: 3.36%, Mn
+0.062%, Mo: 0.024%, Se
: 0.021%, Sb: 0.025% (b) C:
0.056%, Si: 3.36%, Mn: 0.06
8%, At: 0.026%, S: 0.029%
, N: 0.0069%.

Cu:0.1%、 Sn :0.05%をそれぞれ含有
する熱延板を用意した。
Hot rolled sheets containing Cu: 0.1% and Sn: 0.05% were prepared.

まず(a)の熱延板は900℃で3分間の均一化焼鈍後
950℃の中間焼鈍をはさんで2回の冷間圧延を行って
0.20at+n厚の最終冷延板とした。
First, the hot-rolled sheet (a) was uniformly annealed at 900° C. for 3 minutes and then cold-rolled twice with intermediate annealing at 950° C. to obtain a final cold-rolled sheet having a thickness of 0.20 at+n.

一方ら)の熱延板は1080℃で3分間の均−化焼鈍後
急冷処理を行い、その後300℃の温間圧延を施して0
.20mm厚の最終冷延板とした。
On the other hand, the hot-rolled sheets of (2) were uniformly annealed at 1080°C for 3 minutes, then rapidly cooled, and then warm rolled at 300°C.
.. A final cold-rolled sheet with a thickness of 20 mm was obtained.

その後回れの冷延板についても830℃の湿水素中で脱
炭焼鈍後、鋼板表面にAl2O3(75%)、 Mg0
(20℃、 ZrO□(5%)を主成分とする焼鈍分離
剤を塗布した後、(a)の素材による試料は850℃で
50時間の2次再結晶焼鈍後、1200℃で5時間の吃
水素中で純化焼鈍、(b)の素材による試料は850℃
から5℃/hrで1050℃まで昇温しで2次再結晶さ
せた後、1200℃で8時間吃水素中で純化焼鈍をそれ
ぞれ行った。
The subsequent cold-rolled sheet was also decarburized and annealed in wet hydrogen at 830°C, and Al2O3 (75%) and Mg0 were added to the surface of the steel sheet.
(20℃, after applying an annealing separator mainly composed of ZrO Purification annealing in hydrogen gas, sample made from material (b) at 850°C
After secondary recrystallization was performed by raising the temperature from 100° C. to 1050° C. at a rate of 5° C./hr, purification annealing was performed at 1200° C. for 8 hours in hydrogen hydroxide.

その後酸洗により酸化物被膜を除去し、次いで3%HF
と1120□液中で化学研磨して鏡面仕上げした。
After that, the oxide film was removed by pickling, and then 3% HF
and chemically polished in 1120□ solution to a mirror finish.

その後CVD装置を用1t”’C(i>TiCl4とH
2とN2(7)混合ガスによりTiNの薄膜、(ii)
TiC1,とH2とN2とCH4混合ガスにより、Ti
(CN)の薄膜および(iii)TIC14とH2とN
2とCH,の混合ガスによりTiCの薄膜を、いずれも
0.7 μm厚で形成させた。またイオンプレーティン
グおよびイオンインプランテーション装置を用いて(i
v) Ti(CN)および(v)Ticの0.7〜0.
9 μm厚の薄膜を形成させた。
After that, using a CVD device, 1t"'C (i>TiCl4 and H
2 and N2 (7) mixed gas to form a thin film of TiN, (ii)
TiC1, H2, N2 and CH4 mixed gas
(CN) thin film and (iii) TIC14, H2 and N
A thin film of TiC was formed using a mixed gas of 2 and CH, each having a thickness of 0.7 μm. Also, using ion plating and ion implantation equipment (i
v) Ti(CN) and (v) Tic from 0.7 to 0.
A thin film with a thickness of 9 μm was formed.

その後これらの処理をした試料は表面にりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜の焼付処理をした
後、800℃で2時間の歪み取り焼鈍を行った。
Thereafter, the surface of the sample subjected to these treatments was subjected to a baking treatment to form an insulating coating mainly composed of phosphate and colloidal silica, and then strain relief annealing was performed at 800° C. for 2 hours.

そのときの製品の磁気特性および磁歪の圧縮応力特性(
圧縮応力σが0.4および0.6 kg/mm’下での
磁気歪みλ、Pの値)を表7に示す。
The magnetic properties and magnetostrictive compressive stress properties of the product at that time (
Table 7 shows the values of magnetostriction λ and P under compressive stress σ of 0.4 and 0.6 kg/mm'.

実施例9 C:0.043%、 Si:3.42%、 Mll:0
.069%、 Se: 0.021%。
Example 9 C: 0.043%, Si: 3.42%, Mll: 0
.. 069%, Se: 0.021%.

3b:Q、 025%、 Mo+0.025%を含有す
る一方向性けい素鋼を1400℃で3時間加熱した後、
熱間圧延して1.8〜2,7n+mの熱延板とした。そ
の後900℃で3分間の均−焼鈍後、950℃で3分間
の中間焼鈍をはさんで2回の冷間圧延を施して0.20
.0.23.0.27+++mおよび0.30+nm厚
の最終冷延板とした。
3b: After heating unidirectional silicon steel containing Q, 025%, Mo + 0.025% at 1400 ° C. for 3 hours,
It was hot rolled into a hot rolled sheet of 1.8 to 2.7 n+m. After that, after uniform annealing at 900°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C for 3 minutes to obtain a 0.20
.. The final cold rolled sheets were 0.23, 0.27+++m and 0.30+nm thick.

その後830℃の湿水素中で脱炭を兼ねる1次再結晶焼
鈍を施した後、MgO(20%)、A1□03(70%
)。
After that, after performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 830°C, MgO (20%), A1□03 (70%
).

TiO,(5%)、 ZrO□(5%)の焼鈍分離剤を
塗布した後、850℃で50時間の2次再結晶焼鈍後、
1200℃で5時間の乾H2ガス中で純化焼鈍を行った
。その後軽酸洗により鋼板表面上の酸化物を除去した後
、電解研磨を行って鋼板表面を鏡面状態に仕上げた。
After applying an annealing separator of TiO, (5%) and ZrO□ (5%), secondary recrystallization annealing was performed at 850°C for 50 hours.
Purification annealing was performed in dry H2 gas at 1200°C for 5 hours. Thereafter, oxides on the surface of the steel plate were removed by light pickling, and then electrolytic polishing was performed to finish the surface of the steel plate to a mirror finish.

その後PVD装置(イオンプレーティング装置)を用い
てTiNの薄膜を形成させた後、りん酸塩とコロイダル
シリカを主成分とする絶縁被膜の焼付処理をした後、8
00℃で3時間の歪み取り焼鈍を行った。そのときの製
品の板厚側磁気特性、TiN薄膜の膜厚および磁歪の圧
縮応力特性(圧縮応力σが0.4 kg/mm”および
0.6 kg/mm”での磁気歪みλ1.の値)を表8
に示す。
After that, a thin film of TiN was formed using a PVD device (ion plating device), and an insulating coating mainly composed of phosphate and colloidal silica was baked.
Strain relief annealing was performed at 00°C for 3 hours. The thickness side magnetic properties of the product at that time, the film thickness of the TiN thin film, and the compressive stress characteristics of magnetostriction (the value of magnetostriction λ1 when the compressive stress σ is 0.4 kg/mm" and 0.6 kg/mm") ) in Table 8
Shown below.

(発明の効果) 第1〜第4各発明により、歪み取り焼鈍のような、高温
熱履歴を経ることとなる一方向性けい素鋼板の使途で何
ら高温処理に由来する性能劣化を来すことなく、熱安定
性にすぐれた、一方向性けい素鋼板が与えられ、第5発
明の方法により、上記の卓抜した超低鉄損特性を、高温
処理を経た場合になお持続発現することができる一方向
性けい素鋼板を適切に得ることができる。
(Effects of the Invention) According to each of the first to fourth inventions, when a unidirectional silicon steel sheet is used that undergoes high-temperature thermal history such as strain relief annealing, there is no performance deterioration resulting from high-temperature treatment. A unidirectional silicon steel sheet with excellent thermal stability is provided, and by the method of the fifth invention, the above-mentioned outstanding ultra-low iron loss property can be maintained even after high-temperature treatment. A unidirectional silicon steel plate can be appropriately obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオンプレーテングの模式図、第2図は加速イ
オンおよび蒸着原子の被着挙動を示す説明図である。 第1図 (フィプメフト) 第2図 1・・・刀ロシ蓼、イオン
FIG. 1 is a schematic diagram of ion plating, and FIG. 2 is an explanatory diagram showing deposition behavior of accelerated ions and vapor deposited atoms. Figure 1 (Fipmeft) Figure 2 1... Katana Roshi, Ion

Claims (1)

【特許請求の範囲】 1、仕上焼鈍済みの一方向性けい素鋼板表面上、の非金
属物質を除去した面に、Ti、Zr、Hf、V、Nb、
Ta、Mn、Cr、Mo、W、Co、Ni、Al、B及
びSiの窒化物及び/又は炭化物のうちから選んだ少な
くとも1種から主としてなり、それらの地鉄との混合相
を介し鋼板表面と強固に被着した少なくとも1層の0.
005〜5μmの張力被膜を具備することを特徴とする
熱安定性、超低鉄損一方向性けい素鋼板。 2、仕上焼鈍済みの一方向性けい素鋼板表面上の非金属
物質を除去後研磨処理して平滑とした仕上げ表面に、T
i、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、
W、Co、Ni、Al、B及びSiの窒化物及び/又は
炭化物のうちから選んだ少なくとも1種から主としてな
り、それらの地鉄との混合相を介し鋼板表面上へ強固に
被着した少なくとも1層の0.005〜5μmの張力被
膜を具備することを特徴とする熱安定性、超低鉄損一方
向性けい素鋼板。 3、仕上焼鈍済みの一方向性けい素鋼板表面上の非金属
物質を除去した面に、Ti、Zr、Hf、V、Nb、T
a、Mn、Cr、Mo、W、Co、Ni、Al、B及び
Siの窒化物及び/又は炭化物のうちから選んだ少なく
とも1種から主としてなり、それらの地鉄との混合相を
介し鋼板表面上へ強固に被着した少なくとも1層の0.
005〜5μmの張力被膜を具備し、この張力被膜上に
重ねて被着した、絶縁性塗布焼付層とともに具備するこ
とを特徴とする熱安定性、超低鉄損一方向性けい素鋼板
。 4、仕上焼鈍済みの一方向性けい素鋼板表面上の非金属
物質を除去後研磨処理して平滑とした仕上げ表面に、T
i、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo、
W、Co、Ni、Al、B及びSiの窒化物及び/又は
炭化物のうちから選んだ少なくとも1種から主としてな
り、それらの地鉄との混合相を介し鋼板表面上へ強固に
被着した少なくとも1層の0.005〜5μmの張力被
膜を具備し、この張力被膜上に重ねて被着した、絶縁性
塗布焼付層とともに具備することを特徴とする熱安定性
、超低鉄損一方向性けい素鋼板。 5、含けい素スラブを熱間圧延して得られた熱延板に1
回または中間焼鈍をはさむ2回の、冷間圧延を施して最
終板厚としたのち、脱炭・1次再結晶焼鈍を施し、つい
で鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し
てから最終仕上げ焼鈍を施す常法に従いフォルステライ
ト質下地被膜を形成する工程と、その後該フォルステラ
イト質下地被膜を除去し、ついで該表面を研磨処理して
平滑に仕上げる工程および該仕上げ表面上に、イオンプ
レーティング若しくはイオンインプランテーションによ
って、Ti、Zr、Hf、V、Nb、Ta、Mn、Cr
、Mo、W、Co、Ni、Al、B及びSiの窒化物及
び/又は炭化物のうちから選んだ少なくとも1種から主
として成る、0.005〜5μmの張力被膜を形成する
工程の結合に成ることを特徴とする磁気特性の熱安定性
に優れる超低鉄損一方向性けい素鋼板の製造方法。
[Claims] 1. Ti, Zr, Hf, V, Nb,
It mainly consists of at least one kind selected from nitrides and/or carbides of Ta, Mn, Cr, Mo, W, Co, Ni, Al, B, and Si, and forms a surface of the steel sheet through a mixed phase with the base iron. and at least one layer of 0.
A thermally stable, ultra-low iron loss unidirectional silicon steel sheet characterized by having a tensile coating of 0.005 to 5 μm. 2. After removing the non-metallic substances on the surface of the unidirectional silicon steel plate that has been finish annealed, the T
i, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo,
The at least one material is mainly composed of at least one kind selected from nitrides and/or carbides of W, Co, Ni, Al, B, and Si, and is firmly adhered to the surface of the steel sheet through a mixed phase of these with the base iron. A thermally stable, ultra-low iron loss unidirectional silicon steel sheet, characterized by having one layer of a tensile coating of 0.005 to 5 μm. 3. Ti, Zr, Hf, V, Nb, T
It mainly consists of at least one kind selected from nitrides and/or carbides of a, Mn, Cr, Mo, W, Co, Ni, Al, B and Si, and forms a surface of the steel sheet through a mixed phase with the base iron. At least one layer of O.
1. A thermally stable, ultra-low iron loss unidirectional silicon steel sheet comprising a tensile coating of 0.005 to 5 μm, together with an insulating coated and baked layer overlaid on the tensile coating. 4. After removing the non-metallic substances on the surface of the unidirectional silicon steel sheet that has been finish annealed, polish the surface to make it smooth.
i, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo,
The at least one material is mainly composed of at least one kind selected from nitrides and/or carbides of W, Co, Ni, Al, B, and Si, and is firmly adhered to the surface of the steel sheet through a mixed phase of these with the base iron. Thermal stability, ultra-low iron loss unidirectionality characterized by having one layer of 0.005 to 5 μm tension coating, and having an insulating coated and baked layer deposited on top of this tension coating. Silicon steel plate. 5. 1 to the hot-rolled plate obtained by hot-rolling the silicon-containing slab.
The steel plate is cold-rolled twice with intermediate annealing in between to achieve the final thickness, then subjected to decarburization and primary recrystallization annealing, and then an annealing separator mainly composed of MgO is applied to the steel plate surface. a step of forming a forsterite base film in accordance with a conventional method in which the forsterite base film is then subjected to final annealing; a step of removing the forsterite base film and then polishing the surface to give it a smooth finish; , Ti, Zr, Hf, V, Nb, Ta, Mn, Cr by ion plating or ion implantation.
, Mo, W, Co, Ni, Al, B, and Si nitride and/or carbide. A method for manufacturing an ultra-low core loss unidirectional silicon steel sheet with excellent thermal stability in magnetic properties.
JP61036565A 1985-02-22 1986-02-21 Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss Granted JPS621820A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-32935 1985-02-22
JP3293585 1985-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63024001A Division JPS63278209A (en) 1985-02-22 1988-02-05 Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties

Publications (2)

Publication Number Publication Date
JPS621820A true JPS621820A (en) 1987-01-07
JPS6354767B2 JPS6354767B2 (en) 1988-10-31

Family

ID=12372789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61036565A Granted JPS621820A (en) 1985-02-22 1986-02-21 Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss

Country Status (1)

Country Link
JP (1) JPS621820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239321A4 (en) * 2014-12-24 2018-01-03 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
EP3770290A4 (en) * 2018-03-22 2021-09-01 Nippon Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099455A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Directional electromagnetic steel sheet with coating, and method for producing same
JP6516064B2 (en) * 2016-10-18 2019-05-22 Jfeスチール株式会社 Directional electrical steel sheet and method of manufacturing directional electrical steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996920A (en) * 1973-01-22 1974-09-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996920A (en) * 1973-01-22 1974-09-13

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239321A4 (en) * 2014-12-24 2018-01-03 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
US10626474B2 (en) 2014-12-24 2020-04-21 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
US11174526B2 (en) 2014-12-24 2021-11-16 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
EP3770290A4 (en) * 2018-03-22 2021-09-01 Nippon Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
US11441215B2 (en) 2018-03-22 2022-09-13 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS6354767B2 (en) 1988-10-31

Similar Documents

Publication Publication Date Title
KR910006011B1 (en) Extra-low iron loss grain oriented silicon steel sheets
EP0215134B1 (en) Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS6332849B2 (en)
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS63278209A (en) Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties
JPH0220710B2 (en)
JPS6269501A (en) Manufacture of low iron loss grain oriented silicon steel plate
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
WO2024111568A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JPH0453084B2 (en)
JPH0577749B2 (en)
JPH0335377B2 (en)
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS63293112A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPS62192581A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPS63227719A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property