JPS621822A - Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss - Google Patents

Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss

Info

Publication number
JPS621822A
JPS621822A JP4539686A JP4539686A JPS621822A JP S621822 A JPS621822 A JP S621822A JP 4539686 A JP4539686 A JP 4539686A JP 4539686 A JP4539686 A JP 4539686A JP S621822 A JPS621822 A JP S621822A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
ultra
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4539686A
Other languages
Japanese (ja)
Other versions
JPS6332850B2 (en
Inventor
Masao Iguchi
征夫 井口
Toshihiko Funabashi
敏彦 船橋
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPS621822A publication Critical patent/JPS621822A/en
Publication of JPS6332850B2 publication Critical patent/JPS6332850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing

Abstract

PURPOSE:To improve the adhesiveness and durability of a tensile coating layer on a specular surface and to obtain the titled steel sheet in a method for improving the iron loss of a grain oriented silicon steel sheet by finishing the sheet to the specular surface by specifying a separating agent for annealing to be used in the stage of finish annealing. CONSTITUTION:A hot rolled sheet of a silicon steel slab is subjected to one or two passes of cold rolling including intermediate annealing to a final sheet thickness and is then subjected to decarburization and primary recrystallization annealing. The separating agent for annealing (for example, MgO contg. >=50%>=1 kinds among Al2O3, ZrO2 and TiO2) consisting of the component compsn. to suppress the reaction for forming forsterite with the surface layer of the steel sheet essentially consisting of Si and Fe oxide is thereafter coated on the surface of the steel sheet. Such steel sheet is subjected to the final finish annealing including secondary recrystallization and purification annealing and after the non-metallic layer on the surface is removed, the surface is polished to the specular surface having <=0.4mu center line average height. The tensile film consisting of >=1 kinds among the nitrides and/or carbides of Ti, Nb, Si, V, etc., and the oxides of Al, Si, Zn, etc., is deposited by a CVD or PVD method to 0.005-5mu thickness on such surface.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性珪素鋼板の電気・磁気的特性の改善、なかでも
、鉄損の低減に係わる極限的な要請を満たそうとする近
年来の目覚ましい開発努力は、逐次その実を挙げつつあ
るが、その実施に伴う重大な弊害として、一方向性珪素
鋼板の使用に当たっての加工、組立てを経たのちいわゆ
るひ1み取り焼鈍がほどこされた場合に、特性劣化の随
伴を不可避に生じて、使途についての制限を受ける不利
が指摘される。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, remarkable efforts have been made to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. The development efforts are gradually bearing fruit, but one serious problem associated with their implementation is that when unidirectional silicon steel sheets are processed and assembled and then subjected to so-called sludge annealing, their characteristics deteriorate. It has been pointed out that the disadvantage is that it inevitably causes deterioration and limits its use.

この明細書では、ひずみ取り焼鈍のような高温の熱雁歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を招くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development that led to a new method that can advantageously meet the above requirements, whether or not it undergoes a high-temperature thermal process such as strain relief annealing. I will explain.

さて一方向性珪素鋼板は、よく知られているとおり製品
の2次再結晶粒を(110)  〔001) 、すなわ
ちゴス方位に、高度に集積させたもので、主として変圧
器その他の電気機器の鉄心として使用され電気・磁気的
特性として製品の磁束密度(B r o値で代表される
)が高く、鉄損(Nu/S。値で代表される)のとくに
低いことが要求される。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) [001), or Goss, orientation, and are mainly used in transformers and other electrical equipment. When used as an iron core, the product is required to have a high magnetic flux density (represented by the B r o value) and a particularly low iron loss (represented by the Nu/S value) as electrical and magnetic properties.

この一方向性珪素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までにおびただしい発明改善が加えられ
、今日では板厚0.30mmの製品の磁気特性がBto
l、90T以上、W + 7ys o 1.05W/ 
kg以下、また板厚0.23111!I+の製品の磁気
特性がBtol、89T以上、VB−ry5aO,90
11!/kg以下の超低鉄損一方向性珪素鋼板が製造さ
れるようになって来ている。
This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today the magnetic properties of a product with a thickness of 0.30 mm have reached Bto
l, 90T or more, W + 7ys o 1.05W/
kg or less, and the plate thickness is 0.23111! The magnetic properties of I+ products are Btol, 89T or higher, VB-ry5aO, 90
11! Unidirectional silicon steel sheets with ultra-low iron loss of less than /kg are now being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及している。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性珪素鋼板の仕
上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレー
ザー照射により局部微少ひずみを導入して磁区を細分化
し、もって鉄損を低下させることが提案された(特公昭
57−2252号、特公昭57−53419号、特公昭
58−26405号及び特公昭58−26406号公報
参照)。
(Prior art) Under these circumstances, recently, the surface of a unidirectional silicon steel plate after finish annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce iron loss (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405 and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として巻鉄心トランス材料にあっては、
レーザー照射によって折角に導入された局部微少ひずみ
が焼鈍処理により開放されて磁区幅が広くなるため、レ
ーザー照射効果が失われるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for laminated core transformers that are not subjected to strain relief annealing, but for material for wound core transformers that are subjected to strain relief annealing,
There is a drawback that the local minute strain introduced by laser irradiation is released by annealing and the magnetic domain width is widened, so that the laser irradiation effect is lost.

一方これより先に特公昭52−24499号公報におい
ては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板表面を鏡
面仕上げするか又はその鏡面仕上げ面上に金属薄めっき
やさらにその上に絶縁被膜を塗布焼付けすることによる
、8低鉄損一方向性珪素鋼板の製造方法が提案されてい
る。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel sheet after finish annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating or an insulating coating was applied thereon. A method of manufacturing a unidirectional silicon steel plate with low core loss 8 by coating and baking has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上後に
不可欠な絶縁被膜を塗布焼付し、さらに600℃以上の
高温で長時間の歪み取り焼鈍を経る間に鋼板との密着性
に問題があるため、現在の製造工程において採用される
に至ってはいない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective, as it does not contribute enough to reducing iron loss despite the significant increase in cost. Furthermore, it has not been adopted in the current manufacturing process because it has problems with adhesion to the steel plate during long-time strain relief annealing at a high temperature of 600° C. or higher.

また特公昭56−4150号公報においても鋼板表面を
鏡面仕上げした後、酸化物系セラミックス薄膜を蒸着す
る方法が提案されている。しかしながらこの方法も60
0℃以上の高温焼鈍を施すと鋼板とセラミックス層とが
はく離するため、実際の製造工程では採用できない。
Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method also has 60
If high-temperature annealing is performed at a temperature of 0° C. or higher, the steel sheet and the ceramic layer will separate, so it cannot be used in actual manufacturing processes.

(発明が解決しようとする問題点) 発明者らは上記した鏡面仕上による鉄損向上の実効をよ
り有利に引き出すこと、とくに今日の省エネ材料開発の
観点では上記のごときコストアップの不利を凌駕する特
性、とくに高温処理でも特性劣化を伴うことなくして絶
縁層の密着性、耐久性の問題を克服することこそが肝要
と考え、この基本認識に立脚して、鏡面仕上後の鋼板処
理方法に根本的な再検討を加えてこの発明に到達した。
(Problems to be Solved by the Invention) The inventors have sought to more advantageously bring out the effectiveness of improving iron loss through mirror finishing, which outweighs the disadvantage of increased costs, especially from the perspective of today's development of energy-saving materials. We believe that it is essential to overcome the problems of adhesion and durability of the insulating layer without deteriorating the properties, especially during high-temperature treatment, and based on this basic understanding, we have developed a fundamental method for processing steel sheets after mirror finishing. This invention was arrived at after extensive reexamination.

ここに最終仕上焼鈍法の一方向性珪素鋼板には、先行行
程の脱炭・1次再結晶焼鈍を経た時点で通常MgOを主
成分とする焼鈍分離剤を塗布し、通常最終仕上焼鈍の初
期に鋼板表面で脱炭・1次再結晶焼鈍の際に生じた主と
してSi酸化物とMgOの間の反応に由来した、いわゆ
るフォルステライト質下地被膜が形成されているところ
、このフォルステライト質被膜は、上記鏡面仕上による
鉄損向上を目指すとき、酸洗での除去がかなりに厄介で
あるために板面鉄素地面を荒らす結果となって、鏡面仕
上げ操作を困難にする不利の著しいことが明らかになっ
たのである。
Here, unidirectional silicon steel sheets subjected to final finish annealing are usually coated with an annealing separator mainly composed of MgO at the time of the preceding decarburization and primary recrystallization annealing. On the surface of the steel sheet, a so-called forsterite base film is formed, which originates mainly from the reaction between Si oxide and MgO during decarburization and primary recrystallization annealing. When aiming to improve iron loss through the above-mentioned mirror finish, it is clear that removal by pickling is quite troublesome and results in roughening of the steel plate surface, making mirror finishing operations difficult. It became.

(問題点を解決するための手段) 上記検討の結果フォルステライト質被膜の簡便な除去に
ついて検討を進める間に、むしろ、その生成を抑制する
方途がより有利に適合することに着目し実験を重ね、鏡
面仕上を前提とする、熱安定性、超低鉄損一方向性珪素
鋼板の有利な製造方法を、以下の手順にて確立したもの
である。
(Means for solving the problem) As a result of the above study, while we were considering the simple removal of the forsterite film, we focused on the method of suppressing its formation, which was more advantageous, and conducted repeated experiments. We have established an advantageous manufacturing method for thermally stable, ultra-low core loss unidirectional silicon steel sheets based on mirror finish using the following procedure.

含珪素鋼スラブを熱間圧延して得られた熱延板に1回又
は中間焼鈍を挟む2回の冷間圧延を施して最終板厚にし
てから、脱炭・1次再結晶焼鈍を施したのち、引続く2
次再結晶および純化焼鈍を含む最終仕上げ焼鈍の際に主
としてSi酸化物よりなる鋼板表層との間におけるフォ
ルステライト生成反応を抑制する成分組成になる焼鈍分
離剤を適用すること、 仕上焼鈍済みの一方向性けい素鋼板表面上の非金属物質
層を除去した後、研磨処理により中心線平均粗さ0.4
μm以下の鏡面状態に仕上げること、この鏡面仕上表面
上に、CVD法、イオンプレーティング法またはイオン
インプランテーション法により、Ti、Nb、Si、V
、Cr、Al、B、Ni、Co、Mo、 W、 Zr。
A hot rolled sheet obtained by hot rolling a silicon-containing steel slab is cold rolled once or twice with intermediate annealing to achieve the final thickness, and then subjected to decarburization and primary recrystallization annealing. After that, the following 2
Applying an annealing separator having a composition that suppresses the forsterite formation reaction between the surface layer of the steel sheet and the surface layer mainly composed of Si oxide during the final annealing including the next recrystallization and purification annealing; After removing the non-metallic material layer on the surface of grain-oriented silicon steel sheet, polishing treatment reduces the centerline average roughness to 0.4.
Ti, Nb, Si, V
, Cr, Al, B, Ni, Co, Mo, W, Zr.

Hf、Mn、及びTaの窒化物及び/又は炭化物並びに
AI。
Nitride and/or carbide of Hf, Mn, and Ta and AI.

Si、Zn、Ti、 Zr、 Sn、 Fe、 Ni、
 Cu、 W及びMgの酸化物のうちから選ばれる少な
くとも1種からなる、膜厚0.005〜5μmの極薄の
張力被膜を被着させること の結合になることを特徴とする、熱安定性、超低鉄損一
方向性珪素鋼板の製造方法(第1発明)。
Si, Zn, Ti, Zr, Sn, Fe, Ni,
Thermal stability, characterized by the combination of depositing an ultra-thin tension film with a film thickness of 0.005 to 5 μm, consisting of at least one selected from oxides of Cu, W and Mg. , a method for producing an ultra-low core loss unidirectional silicon steel sheet (first invention).

含珪素鋼スラブを熱間圧延して得られた熱延板に1回又
は中間焼鈍を挟む2回の冷間圧延を施して最終板厚にし
てから、脱炭・1次再結晶焼鈍を施したのち、引続く2
次再結晶および純化焼鈍を含む最終仕上げ焼鈍の際に主
としてS1酸化物よりなる鋼板表層との間における、フ
ォルステライト生成反応を抑制する成分組成になる焼鈍
分離剤を適用すること、 仕上焼鈍済みの方向性けい素鋼板表面上の非金属物質層
を除去した後、研磨処理により中心線平均粗さ0.4μ
m以下の鏡面状態に仕上げること、この鏡面仕上表面上
に、CVD法、イオンプレーティング法またはイオンイ
ンプランテーション法により、Ti、 Nb、 Si、
 V、 Cr、 Al、 B、 Ni、 Co、 Mo
、 W、 Zr、 Hf。
A hot rolled sheet obtained by hot rolling a silicon-containing steel slab is cold rolled once or twice with intermediate annealing to achieve the final thickness, and then subjected to decarburization and primary recrystallization annealing. After that, the following 2
Applying an annealing separator with a composition that suppresses the forsterite production reaction between the surface layer of the steel sheet mainly consisting of S1 oxide during final finish annealing including secondary recrystallization and purification annealing; After removing the non-metallic material layer on the surface of grain-oriented silicon steel sheet, polishing process reduces the centerline average roughness to 0.4μ.
Ti, Nb, Si,
V, Cr, Al, B, Ni, Co, Mo
, W, Zr, Hf.

Mn及びTaの窒化物及び/又は炭化物並びにAl、S
i。
Nitride and/or carbide of Mn and Ta and Al, S
i.

Zn、 Ti、 Zr、 Sn、 Fe、 及びMgの
酸化物のうちから選ばれる少なくとも1種からなる、膜
厚0.005〜5μmの極薄の張力被膜を被着させるこ
と、およびこの張力被膜上に、絶縁性塗布焼付層を重ね
て被着すること、 の結合になることを特徴とする、高絶縁性、熱安定性超
低鉄損一方向性珪素鋼板の製造方法。(第2発明)。
Depositing an ultra-thin tension film with a thickness of 0.005 to 5 μm consisting of at least one selected from oxides of Zn, Ti, Zr, Sn, Fe, and Mg, and on this tension film. A method for producing a highly insulating, thermally stable, ultra-low core loss unidirectional silicon steel sheet, which is characterized by: applying an insulating coated baked layer to the unidirectional silicon steel sheet, and combining the following steps. (Second invention).

ここにフォルステライト生成反応を抑制すべき焼鈍分離
剤の成分組成については、Al2O3、2rO7゜Ti
O□等のうちから選んだ少なくとも1種を、少なくとも
50%、MgOに配合することがのぞましく、この場合
純化焼鈍の際にふけるインヒビターの焼鈍分離剤への移
行吸収の機能が保持される限りにおいて、MgOなども
また適合する。
Here, regarding the component composition of the annealing separator that should suppress the forsterite production reaction, Al2O3, 2rO7゜Ti
It is preferable to mix at least 50% of at least one selected from O□, etc. with MgO, and in this case, the function of absorbing the inhibitor transferred to the annealing separator during purification annealing is maintained. MgO and the like are also suitable insofar as they are suitable.

上記各発明の成功が導かれた具体的な実験に従って説明
を進める。
The explanation will proceed according to specific experiments that led to the success of each of the above inventions.

C0,048%重量%(以下単に%で示す)、Si3.
44%、MnQ、060%、Se o、 022%、S
b O,025%及びM。
C0,048% by weight (hereinafter simply expressed as %), Si3.
44%, MnQ, 060%, Seo, 022%, S
b O, 025% and M.

O,035%を含有する珪素鋼連鋳スラブを、1330
℃で4時間加熱後熱間圧延して2.Omm厚の熱延板と
した。
Continuously cast silicon steel slab containing 35% O.
After heating at ℃ for 4 hours, hot rolling was carried out.2. It was made into a hot-rolled sheet with a thickness of 0 mm.

その後900℃で3分間の均−化焼鈍後、950℃で3
分間の中間焼鈍をはさむ2回の冷間圧延を施して0.2
3+nm厚の最終冷延板とした。
After that, after equalization annealing at 900℃ for 3 minutes, at 950℃ for 3 minutes.
Cold rolled twice with intermediate annealing for 0.2 min.
The final cold rolled sheet was 3+nm thick.

その後820℃の湿水素雰囲気中で脱炭・−次回結晶焼
鈍を施した後、鋼板表面に ■MgOを主成分とする焼鈍分離剤を塗布、■A120
3(70%)とMgO(30%)とから成る焼鈍分離剤
を塗布した後、ついで850℃で50時間の2次再結晶
焼鈍と、1200℃で飽水素中5時間の純化焼鈍とを施
した。
After that, after decarburization and next crystal annealing in a wet hydrogen atmosphere at 820℃, apply an annealing separator mainly composed of MgO to the steel plate surface, ■A120
After applying an annealing separator consisting of No. 3 (70%) and MgO (30%), secondary recrystallization annealing was performed at 850°C for 50 hours and purification annealing at 1200°C in saturated hydrogen for 5 hours. did.

その後■の焼鈍分離剤ではフォルステライト被膜が形成
されているため50〜100%H2SO4液中酸洗処理
によりフォルステライ被膜を除去した後、化学研磨及び
電解研磨を行って鏡面に仕上げた。
Thereafter, since a forsterite film was formed in the annealing separator (2), the forsterite film was removed by pickling in a 50-100% H2SO4 solution, and then chemical polishing and electrolytic polishing were performed to give a mirror finish.

一方■の焼鈍分離剤ではフォルステライト被膜が形成さ
れていないため10%H2SO,液中で軽酸洗処理後化
学研磨及び電解研磨に供することができた。
On the other hand, with the annealing separator (2), since no forsterite film was formed, it could be subjected to chemical polishing and electrolytic polishing after being lightly pickled in 10% H2SO.

その後イオンプレーティング装置を使用して膜厚0゜5
μmでTiNのイオンプレーティングを行った。
Then, using an ion plating device, the film thickness was 0°5.
TiN ion plating was performed at μm.

上記のイオンプレーティングについで、りん酸塩とコロ
イダルシリカとを主成分とするコーテイング液でコーテ
ィング処理(絶縁性塗布焼付層の形成)を行った。
Following the above ion plating, a coating treatment (formation of an insulating coated baked layer) was performed using a coating liquid containing phosphate and colloidal silica as main components.

このときの製品の磁気特性及び密着性の実験結果をまと
めて表1に示す。
The experimental results of the magnetic properties and adhesion of the products at this time are summarized in Table 1.

表1から明らかなように、■の通常のM g O塗布に
より最終仕上焼鈍を行ってフォルステライト被膜をいっ
たん形成し、さらに強酸洗処理によりフォルステライト
被膜を除去をした後化学研磨及び電解研磨したときの製
品板の磁気特性は、■の焼鈍分離剤を用いて同様の処理
したものにくらべて鉄損が約0.04W/kgも劣って
いる。
As is clear from Table 1, a forsterite film was once formed by final finish annealing using the usual M g O coating in (■), and then the forsterite film was removed by strong pickling treatment, followed by chemical polishing and electrolytic polishing. The magnetic properties of the resulting product sheet were approximately 0.04 W/kg inferior in iron loss to those treated similarly using the annealing separator (2).

フォルステライト被膜を形成させない■の場合、鋼板の
素子面が軽酸洗のため肌荒れが少なく、同一の研磨条件
の下で、■の場合よりも鉄損の低下が顕著であると考え
られる。
In the case of (2) in which no forsterite film is formed, the element surface of the steel plate is lightly pickled, so there is less roughness, and it is thought that the decrease in iron loss is more remarkable than in the case (2) under the same polishing conditions.

すなわち最終仕上焼鈍中におけるフォルステライトの生
成を抑制することによって、それ以後の超鉄損化の処理
行程が著しく容易になると同時に磁気特性の大幅な向上
が期待できるわけである。
In other words, by suppressing the formation of forsterite during final finish annealing, the subsequent process of reducing super iron loss will become significantly easier, and at the same time, a significant improvement in magnetic properties can be expected.

(作 用) 上記した磁気特性の向上は仕上焼鈍後に鋼板表面の鏡面
化がなされた状況下で密着性を高めた極薄の張力被膜を
生成させることによって従来比類のない超低鉄損が実現
される。
(Function) The improvement in magnetic properties described above is achieved by creating an ultra-thin tension film with improved adhesion under conditions where the surface of the steel sheet is mirror-finished after final annealing, resulting in an unparalleled ultra-low core loss. be done.

ここに塑性的な微少ひずみの働きを利用するわけではな
いので、熱安定性に何らの問題なく、ひずみ取り焼鈍の
如き高温の熱雁歴の下に電気・磁気的特性に影響される
ところがない。
Since the action of plastic microstrain is not used here, there is no problem with thermal stability, and the electrical and magnetic properties are not affected by high-temperature thermal processes such as strain relief annealing. .

仕上表面の中心線平均粗さは、Ra≦0.4 μmの鏡
面状態とすることが必要で、Ra>0.4μmのとき、
表面が粗いため、充分な鉄損低減が期待できない。
The centerline average roughness of the finished surface must be mirror-like with Ra≦0.4 μm, and when Ra>0.4 μm,
Because the surface is rough, sufficient iron loss reduction cannot be expected.

次に張力絶縁被膜の膜厚は、0.005〜5μmの範囲
で適合し、0.005μmに満たないときは、必要な張
力付与に寄与し得ない一方、5μmをこえると、コスト
アップになると共に占積率および密着性において不利が
生じる。
Next, the thickness of the tension insulating film is suitable in the range of 0.005 to 5 μm; if it is less than 0.005 μm, it will not be able to contribute to providing the necessary tension, while if it exceeds 5 μm, the cost will increase. At the same time, disadvantages arise in terms of space factor and adhesion.

この張力被膜の混合相を介した、鏡面状態の仕上表面上
における強固な被着は、cvD、イオンプレーティング
、イオンインプランテーションの何れによっても有利に
もたらされる。
This strong adhesion through the mixed phase of the tension coating on the mirror-finished surface is advantageously achieved by either CVD, ion plating or ion implantation.

次に一方向性珪素鋼板の一般的な製造工程も含めてより
詳しく説明する。
Next, a more detailed explanation will be given including the general manufacturing process of the unidirectional silicon steel sheet.

出発素材は従来公知の一方向性珪素鋼素材成分、例えば ■C:0.旧〜0.060%、Si:2.50〜4.5
%、Mn:0.04〜0.2%、Mo+0.003〜0
.1%、sb:o、 005〜0.2%、SあるいはS
eの1種あるいは2種合計で、0.005〜0.05%
を含有する組成 ■C:0.01〜0.08%、Si :2.0〜4.0
%、Sol Al:0.005〜0.06%、 S:0
.005〜0.05%、N:0.001〜0.01%、
Sn:0.01〜0.5%、Cu:0.01〜0.3%
、Mn:0.01〜0.2%を含有する組成■C:0.
01〜0.06%、Si:2.0〜4.0%、S:0.
005〜0、05% 、Boo、 0003〜0.00
40%、N:0.001〜0.01%、Mn:0.01
〜0.2%を含有する組成の如きにおいて適用可能であ
る。
The starting material is a conventionally known unidirectional silicon steel material composition, for example, ■C: 0. Old ~ 0.060%, Si: 2.50 ~ 4.5
%, Mn: 0.04-0.2%, Mo+0.003-0
.. 1%, sb:o, 005~0.2%, S or S
0.005 to 0.05% in total of one or two types of e.
Composition containing ■C: 0.01-0.08%, Si: 2.0-4.0
%, Sol Al: 0.005-0.06%, S: 0
.. 005-0.05%, N: 0.001-0.01%,
Sn: 0.01-0.5%, Cu: 0.01-0.3%
, Mn: 0.01-0.2% composition ■C: 0.
01-0.06%, Si:2.0-4.0%, S:0.
005~0, 05%, Boo, 0003~0.00
40%, N: 0.001-0.01%, Mn: 0.01
It is applicable in compositions containing up to 0.2%.

次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050tの中間焼鈍をはさんでさらに冷
延する2回冷延法にて、後者の場合最初の圧下率は50
%から80%程度、最終の圧下率は50%から85%程
度で0.15mmから0.35mm厚の最終冷延板厚と
する。
Next, the hot-rolled sheet undergoes uniform annealing at 800 to 1100°C.
One-time cold rolling method, in which the final plate thickness is reached by two cold rolling steps, or two-step cold rolling method, in which intermediate annealing from 850°C to 1050 t is interposed, and further cold rolling is performed.In the latter case, the initial rolling reduction is is 50
% to about 80%, the final rolling reduction is about 50% to 85%, and the final cold rolled plate thickness is 0.15 mm to 0.35 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は・表面脱脂
後750℃から850℃の湿水素中で脱炭・1次再結晶
焼鈍処理を施す。
After the final cold rolling, the steel plate finished to the product thickness is subjected to decarburization and primary recrystallization annealing in wet hydrogen at 750°C to 850°C after surface degreasing.

その後鋼板表面に、すでに述べたところに従い焼鈍分離
剤を塗布する。
Thereafter, an annealing separator is applied to the surface of the steel plate according to the method already described.

その後2次再結晶焼鈍を行うが、この工程は(100)
<001>方位の2次再結晶粒を充分発達させるために
施されるもので、通常箱焼鈍によって直ちに1000℃
以上に昇温し、その温度に保持することによって行われ
る。
After that, secondary recrystallization annealing is performed, but this step is (100)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed immediately at 1000°C.
This is done by raising the temperature to a higher temperature and maintaining it at that temperature.

この場合(100)<001>方位に、高度に揃った2
次再結晶粒組織を発達させるためには820℃から90
0℃の低温で保定焼鈍する方が有利であり、そのほか例
えば0.5〜b 熱焼鈍でもよい。
In this case, in the (100) <001> direction, two highly aligned
In order to develop the next recrystallized grain structure,
It is more advantageous to carry out retention annealing at a low temperature of 0°C, and in addition, for example, 0.5 to b heat annealing may be used.

2次再結晶焼鈍後の純化焼鈍は、水氷素中で1100℃
以上で1〜20時間焼鈍を行って鋼板の純化を達成する
ことかた必要である。
Purification annealing after secondary recrystallization annealing is carried out at 1100°C in hydrogen hydrogen.
It is necessary to perform annealing for 1 to 20 hours to achieve purification of the steel sheet.

次にこの純化焼鈍後表面上の非金属物質を公知の酸洗な
どの化学除去法や切削、研削などの機械的除去法または
それらの組み合せにより除去する。
Next, the nonmetallic substances on the surface after this purification annealing are removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof.

この除去処理の後、化学研磨、電解研磨などの化学研磨
や、バフ研摩等の機械的研磨あるいはそれらの組合せな
ど従来の手法により鋼板表面を鏡面状態つまり中心線平
均粗さ0.4μm以下に容易に仕上げることができる。
After this removal treatment, the steel plate surface can be easily made into a mirror-like state, that is, with a center line average roughness of 0.4 μm or less, by chemical polishing such as chemical polishing or electrolytic polishing, mechanical polishing such as buffing, or a combination thereof. can be finished.

その後に、CVD、イオンプレーティング若しくはイオ
ンインプランテーションにより、鏡面状態の鋼板表面に
0.005〜5μmの極薄の張力被膜を形成することが
必要である。。
Thereafter, it is necessary to form an extremely thin tension coating of 0.005 to 5 μm on the surface of the mirror-like steel plate by CVD, ion plating, or ion implantation. .

コノトキの、使用するCVD、イオンプレーティングあ
るいはイオンインプランテーションに使用する装置は従
来公知の方法を用いて良い。
Konotoki's CVD, ion plating, or ion implantation equipment may be any conventionally known method.

これらの方法による極薄の張力被膜としては、例えばT
iN、 TiC,VN、 VC,NbN、 NbC,S
i、N、、 SiC。
As ultra-thin tension coatings made by these methods, for example, T
iN, TiC, VN, VC, NbN, NbC, S
i, N,, SiC.

(:r2N、 Cr3C,、AIN、 A14C,BN
、 NiC,CoC,CoN。
(:r2N, Cr3C,,AIN, A14C,BN
, NiC, CoC, CoN.

Mo2C,WC,iす2N、 ZrN、 ZrC,Hf
N、 HfC,Mn2C,TaC。
Mo2C, WC, iS2N, ZrN, ZrC, Hf
N, HfC, Mn2C, TaC.

TaN、 Al2O3,Sin。、 ZnO,Tin。TaN, Al2O3, Sin. , ZnO, Tin.

、ZrO2,5n02゜Fe2O3,Nip、 Cub
、 MgOなどが適当である。
, ZrO2,5n02゜Fe2O3, Nip, Cub
, MgO, etc. are suitable.

さらに、CVD、イオンプレーティングあるいはイオン
インプランテーションにより極薄の張力被膜を形成した
あと、これに重ねて、りん酸塩とコロイダルシリカとを
主成分とする絶縁被膜の塗布焼付を行うことが、100
万KVAにも上る大容量トランスの使途において当然に
必要であり、この絶縁性塗布焼付層の形成の如きは、従
来公知の手法を用いて良い。
Furthermore, after forming an ultra-thin tension film by CVD, ion plating or ion implantation, it is possible to apply and bake an insulating film whose main components are phosphate and colloidal silica over this.
This is naturally necessary in the use of large-capacity transformers of up to 10,000 KVA, and conventionally known methods may be used to form this insulating coated and baked layer.

上記のように処理された珪素鋼板は平たん化熱処理を行
うことができる。
The silicon steel plate treated as described above can be subjected to flattening heat treatment.

(実施例) 実施例1 (::Q、 046%、Si:3.42%、Mn:0.
064%、Mo:0.025%、Se:0.021%、
Sb:0.025%を含有する熱延板を、900℃で3
分間の均一化焼鈍後、950℃の中間焼鈍をはさんで2
回の冷間圧延を行って0.23+nm厚の最終冷延板と
した。
(Example) Example 1 (::Q, 046%, Si: 3.42%, Mn: 0.
064%, Mo: 0.025%, Se: 0.021%,
A hot-rolled sheet containing 0.025% Sb was heated at 900°C for 3
After homogenization annealing for 2 minutes, intermediate annealing at 950℃ is performed for 2 minutes.
Cold rolling was performed twice to obtain a final cold rolled sheet with a thickness of 0.23+nm.

その後820℃の湿水素中で脱炭焼鈍後鋼板表面にA1
203(75%)、 MgO(25%)から成る焼鈍分
離剤を塗布した後850℃で50時間の2次再結晶焼鈍
し、1200℃で8時間乾水素中で純化焼鈍を行なった
Then, after decarburization annealing in wet hydrogen at 820℃, A1
After applying an annealing separator consisting of 203 (75%) and MgO (25%), secondary recrystallization annealing was performed at 850°C for 50 hours, and purification annealing was performed at 1200°C for 8 hours in dry hydrogen.

その後軽酸洗し、ついで3%HFと820□液中で化学
研磨してRag、 05μmの中心線平均粗さに鏡面仕
上げした。
After that, it was lightly pickled, and then chemically polished in 3% HF and 820□ solution to give it a mirror finish to a center line average roughness of Rag, 05 μm.

その後10KVのイオン化電圧で3分間イオンプレーテ
ィングし膜厚0.5μmのTiN張力被膜を形成させた
Thereafter, ion plating was performed for 3 minutes at an ionization voltage of 10 KV to form a TiN tension film with a thickness of 0.5 μm.

次にりん酸塩とコロイダルシリカとを主成分とする絶縁
性塗布焼付層を形成し、その後80゛0℃で2時間のひ
ずみ取り焼鈍を行った。
Next, an insulating coated and baked layer containing phosphate and colloidal silica as main components was formed, and then strain relief annealing was performed at 80°C for 2 hours.

そのときの製品の磁気特性及び密着性は次のとおりであ
った。
The magnetic properties and adhesion of the product at that time were as follows.

磁気特性 ILo=1.90T、Wuzso=0.68
W/ kg密着性  曲げ直径30+n+nで180°
曲げてもはく離せず密着性は良好であった。
Magnetic properties ILo=1.90T, Wuzso=0.68
W/kg Adhesion 180° with bending diameter 30+n+n
It did not peel off even when bent, and the adhesion was good.

実施例2 coo、 061%、Si:3.38%、Mn:0.0
80%、A1:0.025%、S:0.029%、N:
0.0068%を含有する熱延板を、1150℃で3分
間の均−化焼鈍後急冷処理を行い、その後300℃の温
間圧延を施して0.23mm厚の最終冷延板とした。
Example 2 coo, 061%, Si: 3.38%, Mn: 0.0
80%, A1: 0.025%, S: 0.029%, N:
A hot-rolled sheet containing 0.0068% was uniformly annealed at 1150°C for 3 minutes and then rapidly cooled, and then warm-rolled at 300°C to obtain a final cold-rolled sheet with a thickness of 0.23mm.

その後850℃の湿水素中で脱炭焼鈍後、表面にAl2
O3(40%)とZrO2(30%)、Mg0(30%
)から成る焼鈍分離剤を塗布した後850℃から115
0℃まで8℃/hrで昇温しで2次再結晶させた後、1
200℃で8時間乾水素中で純化焼鈍を行った。
After decarburization annealing in wet hydrogen at 850°C, the surface is coated with Al2.
O3 (40%), ZrO2 (30%), Mg0 (30%
) from 850℃ to 115℃ after applying an annealing separator consisting of
After secondary recrystallization by raising the temperature to 0°C at a rate of 8°C/hr, 1
Purification annealing was performed in dry hydrogen at 200° C. for 8 hours.

その後軽酸洗し、ついで3%HFと820□液中で化学
研磨してRag、 3μmの中心線平均粗さに鏡面仕上
げした。
After that, it was lightly pickled, and then chemically polished in 3% HF and 820□ solution to give it a mirror finish with a center line average roughness of 3 μm.

その後イオンインプランテーション法によりイオン加速
電圧60KVで250分間窒素イオンを注入して膜厚1
.2μmにてSi3N、よりなる極薄の張力被膜を形成
させ、次にりん酸塩とコロイダルシリカとを主成分とす
る絶縁性塗布焼付層を形成させた後、800℃で2時間
のひずみ取り焼鈍を行った。
After that, nitrogen ions were implanted using the ion implantation method at an ion acceleration voltage of 60 KV for 250 minutes to form a film with a thickness of 1
.. An ultra-thin tension film made of Si3N with a thickness of 2 μm was formed, and then an insulating coating and baking layer containing phosphate and colloidal silica as main components was formed, followed by strain relief annealing at 800°C for 2 hours. I did it.

そのときの製品の磁気特性及び密着性は次のとおりであ
った。
The magnetic properties and adhesion of the product at that time were as follows.

磁気特性 B、o=1,947.W+7.=so=0.
65111/ kg密着性  曲げ直径30mmで18
0°曲げてもはく離せず密着性は良好であった。
Magnetic properties B, o=1,947. W+7. =so=0.
65111/kg Adhesion 18 at bending diameter 30mm
Even when bent by 0°, it could not be peeled off, and the adhesion was good.

実施例3 C:0.043%、Si:3.46%、Mn:0.06
0%、Mo:0.026%、Se:0.023%、Sb
:0.025%を含有する熱延板を、900℃で3分間
の均一化焼鈍後、950℃の中間焼鈍をはさんで2回の
冷間圧延を行って0.20mj厚の最終冷延板とした。
Example 3 C: 0.043%, Si: 3.46%, Mn: 0.06
0%, Mo: 0.026%, Se: 0.023%, Sb
: A hot-rolled sheet containing 0.025% was uniformly annealed at 900°C for 3 minutes, then cold-rolled twice with intermediate annealing at 950°C, and finally cold-rolled to a thickness of 0.20mj. It was made into a board.

その後800℃の湿水素中で脱炭焼鈍後、鋼板表面にA
l2O3(70%)とMgO(30%)から成る焼鈍分
離剤を塗布した後850℃で50時間の2次再結晶焼鈍
し、1180℃で100時間乾水素中純化焼鈍を行った
After that, after decarburization annealing in wet hydrogen at 800℃, A
After applying an annealing separator consisting of 12O3 (70%) and MgO (30%), secondary recrystallization annealing was performed at 850°C for 50 hours, and purification annealing in dry hydrogen was performed at 1180°C for 100 hours.

その後軽酸洗し、ついで3%HF、、!:H20□液中
で化学研磨してRag、 05μmの中心線平均粗さの
鏡面に仕上げた。
After that, it was lightly pickled, then 3% HF...! : Chemically polished in H20□ solution to a mirror surface with a center line average roughness of Rag, 05 μm.

その後CVD法により膜厚0.4μmにてTiCの極薄
の張力被膜を形成させた。
Thereafter, an extremely thin tension film of TiC was formed with a film thickness of 0.4 μm using the CVD method.

そのときの製品の磁気特性及び密着性は次のとおりであ
った。
The magnetic properties and adhesion of the product at that time were as follows.

磁気特性 B+o=1.9LT、Wu7so=0.69
W/ kg密着性  曲げ直径30mmで1&0°曲げ
てもはく離せず密着性は良好であった。
Magnetic properties B+o=1.9LT, Wu7so=0.69
W/kg Adhesion The adhesion was good as it could not be peeled off even when bent by 1&0° with a bending diameter of 30 mm.

実施例4 c:o、 044%、Si:3.36%、Mn:0.0
66%、Mo:0.027%、Se:0.021%、s
b:(1,025%を含有する熱延板(2,2mff1
厚)を900℃で3分間の均一化焼鈍後、950℃の中
間焼鈍をはさんで2回の冷間圧延を行って0.23mm
厚の最終冷延板とした。
Example 4 c:o, 044%, Si: 3.36%, Mn: 0.0
66%, Mo: 0.027%, Se: 0.021%, s
b: (Hot rolled sheet containing 1,025% (2,2mff1
After uniform annealing at 900°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C to reduce the thickness to 0.23mm.
A thick final cold-rolled sheet was obtained.

その後820℃の湿水素中で脱炭焼鈍後、鋼板表面にA
120z (75%)とMgO(20%)、 Zr0z
 (5%)を主成分とする焼鈍分離剤を塗布した後85
0℃で50時間の2次再結晶焼鈍及び1200℃で8時
間乾水素中で純化焼鈍を行った。
After that, after decarburization annealing in wet hydrogen at 820℃, A
120z (75%) and MgO (20%), Zr0z
After applying an annealing separator mainly composed of (5%) 85
Secondary recrystallization annealing was performed at 0° C. for 50 hours and purification annealing was performed at 1200° C. for 8 hours in dry hydrogen.

その後軽酸洗により鋼板表面上の酸化被膜を除去し、次
いで電解研磨により鏡面に仕上げた。その後CVD (
表4中無印)、イオンプレーティング(表4中の○印)
及びイオンインプランテーション(表4中のΔ印)によ
り種々の窒化物、炭化物及び酸化物の薄膜を形成した(
1.0〜1.5μm厚)。
Thereafter, the oxide film on the surface of the steel plate was removed by light pickling, and then electrolytically polished to a mirror finish. After that, CVD (
(no mark in Table 4), ion plating (○ mark in Table 4)
and ion implantation (marked with Δ in Table 4) to form thin films of various nitrides, carbides, and oxides (
1.0-1.5 μm thick).

その後これらの処理をした試料は表面にりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜処理した後、80
0℃で3時間の歪み取り焼鈍を行った。そのときの製品
の磁気特性を表2にまとめて示す。
After that, the surface of the sample treated with these treatments was treated with an insulating coating mainly composed of phosphate and colloidal silica.
Strain relief annealing was performed at 0°C for 3 hours. The magnetic properties of the products at that time are summarized in Table 2.

実施例5 coo、 039%、Si:3.26%、Mn:0.0
62%、B:0.029%、S :0.032%、Cu
:0.12%を含有するけい素鋼スラブを1320℃で
6時間加熱後熱延して2.2mm厚の熱延板とした。そ
の後950℃で2分間の均一化焼鈍を施した後、950
℃の中間焼鈍をはさんで2回の冷間圧延を行って0.2
3+n+n厚の最終冷延板とした。
Example 5 coo, 039%, Si: 3.26%, Mn: 0.0
62%, B: 0.029%, S: 0.032%, Cu
: A silicon steel slab containing 0.12% was heated at 1320° C. for 6 hours and then hot rolled to obtain a 2.2 mm thick hot rolled plate. After that, homogenization annealing was performed at 950°C for 2 minutes, and then 950°C
Cold rolling was performed twice with intermediate annealing at 0.2 °C.
The final cold-rolled sheet had a thickness of 3+n+n.

その後840℃の湿水素中で脱炭を兼ねた1次再結晶焼
鈍後、鋼板表面にAl2O,(60%)とZrO□(3
%)。
After that, after primary recrystallization annealing that also served as decarburization in wet hydrogen at 840°C, Al2O, (60%) and ZrO□ (3
%).

Mg0(37%)を主成分とする焼鈍分離剤を塗布した
後、850℃から1050℃まで5℃/hrで昇温しで
2次再結晶させた後、1200℃で10時間乾水素中で
純化焼鈍を行った。
After applying an annealing separator mainly composed of Mg0 (37%), the temperature was raised from 850°C to 1050°C at a rate of 5°C/hr for secondary recrystallization, and then it was heated at 1200°C for 10 hours in dry hydrogen. Purification annealing was performed.

その後酸洗により鋼板表面上の酸化被膜を除去し、つい
で電解研磨により鏡面状態に仕上げた。
Thereafter, the oxide film on the surface of the steel plate was removed by pickling, and then electrolytically polished to a mirror-like finish.

その後イオンプレーティングによりTiN(3,5μm
厚)の張力被膜を形成させた後、りん酸塩とコロイダル
シリカとを主成分とする絶縁性塗布焼付層を形成させた
後、800℃で3時間のひずみ取り焼鈍を行った。
After that, TiN (3.5 μm
After forming a tensile film with a thickness of 1.5 mm, an insulating coated and baked layer containing phosphate and colloidal silica as main components was formed, and strain relief annealing was performed at 800° C. for 3 hours.

そのときの製品の磁気特性及び密着性は次のとおりであ
った。
The magnetic properties and adhesion of the product at that time were as follows.

磁気特性 B 1o=1.93T、 II + t7s
 o=0゜691’i/ kg密着性  曲げ直径30
+nmで180°曲げてもはく離せず密着性は良好であ
った。
Magnetic properties B 1o=1.93T, II + t7s
o=0゜691'i/kg Adhesion Bending diameter 30
+nm, the adhesiveness was good and could not be peeled off even when bent by 180°.

(発明の効果) 第1発明により、歪み取り焼鈍が施される使途でも有利
に適合する超極低鉄損の一方向性けい素鋼板の適切な製
造方法が確立され、また第2発明により、絶縁性の増強
がさらに加わる。
(Effects of the Invention) According to the first invention, an appropriate manufacturing method for ultra-low iron loss unidirectional silicon steel sheet that is advantageously suitable for use where strain relief annealing is applied is established, and according to the second invention, Further insulation enhancement is added.

Claims (1)

【特許請求の範囲】 1、含珪素鋼スラブを熱間圧延して得られた熱延板に1
回又は中間焼鈍を挟む2回の冷間圧延を施して最終板厚
にしてから、脱炭・1次再結晶焼鈍を施したのち引続く
2次再結晶および純化焼鈍を含む最終仕上げ焼鈍の際に
主としてSiおよびFe酸化物よりなる鋼板表層との間
における、フォルステライト生成反応を抑制する成分組
成になる焼鈍分離剤を適用すすこと、 仕上焼鈍済みの方向性けい素鋼板にその鋼板表面上の非
金属層を除去した後研磨処理により中心線平均粗さ0.
4μm以下の鏡面状態に仕上げること、 この鏡面仕上表面上に、CVD法、イオンプレーティン
グ法またはイオンインプランテーション法により、Ti
、Nb、Si、V、Cr、Al、B、Ni、Co、Mo
、W、Zr、Hf、Mn及びTaの窒化物及び/又は炭
化物並びにAl、Si、Zn、Ti、Zr、Sn、Fe
、Ni、Cu、W及びMgの酸化物のうちから選ばれる
少なくとも1種からなる、膜厚0.005〜5μmの極
薄の張力被膜を被着させること の結合になることを特徴とする、熱安定性、超低鉄損一
方向性珪素鋼板の製造方法。 2、含珪素鋼スラブを熱間圧延して得られた熱延板に1
回又は中間焼鈍を挟む2回の冷間圧延を施して最終板厚
にしてから、脱炭・1次再結晶焼鈍を施したのち、引続
く2次再結晶および純化焼鈍を含む最終仕上げ焼鈍の際
に主としてSiおよびFe酸化物よりなる鋼板表層との
間における、フォルステライト生成反応を抑制する成分
組成になる焼鈍分離剤を適用すること、 仕上焼鈍済みの方向性珪素鋼板にその鋼板表面上の非金
属物質層を除去した後研磨処理により中心線平均粗さ0
.4μm以下の鏡面状態に仕上げること、 この鏡面仕上表面上に、CVD法、イオンプレーティン
グ法またはイオンインプランテーション法により、Ti
、Nb、Si、V、Cr、Al、B、Ni、Co、Mo
、W、Zr、Hf、Mn及びTaの窒化物及び/又は炭
化物並びにAl、Si、Zn、Ti、Zr、Sn、Fe
、Ni、Cu、W及びMgの酸化物のうちから選ばれる
少なくとも1種からなる、膜厚0.005〜5μmの極
薄の張力被膜を被着させること、および この張力被膜上に、絶縁性塗布焼付層を重ねて被着する
こと、 の結合になることを特徴とする、高絶縁性、熱安定性超
低鉄損一方向性珪素鋼板の製造方法。
[Claims] 1. A hot rolled sheet obtained by hot rolling a silicon-containing steel slab.
After performing cold rolling twice or intermediate annealing to reach the final thickness, decarburization and primary recrystallization annealing are performed, followed by final finish annealing including secondary recrystallization and purification annealing. Applying an annealing separator with a composition that suppresses the forsterite formation reaction between the surface layer of the steel sheet mainly consisting of Si and Fe oxides to the finish annealed grain-oriented silicon steel sheet. After removing the non-metallic layer, the center line average roughness was reduced to 0.0 by polishing.
Finish to a mirror-like state of 4 μm or less. Ti
, Nb, Si, V, Cr, Al, B, Ni, Co, Mo
, W, Zr, Hf, Mn and Ta nitrides and/or carbides, and Al, Si, Zn, Ti, Zr, Sn, Fe
, consisting of at least one kind selected from oxides of Ni, Cu, W and Mg, characterized in that it is a combination of depositing an ultra-thin tension film with a film thickness of 0.005 to 5 μm, A method for producing thermally stable, ultra-low core loss unidirectional silicon steel sheets. 2. 1 to a hot rolled plate obtained by hot rolling a silicon-containing steel slab
After performing cold rolling twice or intermediate annealing to reach the final thickness, decarburization and primary recrystallization annealing are performed, followed by final finish annealing including secondary recrystallization and purification annealing. Applying an annealing separator with a composition that suppresses the forsterite production reaction between the surface layer of the steel sheet and the steel sheet surface layer, which is mainly composed of Si and Fe oxides, to the grain-oriented silicon steel sheet that has been finish annealed. After removing the non-metallic material layer, the centerline average roughness is reduced to 0 by polishing.
.. Finish to a mirror-like state of 4 μm or less. Ti
, Nb, Si, V, Cr, Al, B, Ni, Co, Mo
, W, Zr, Hf, Mn and Ta nitrides and/or carbides, and Al, Si, Zn, Ti, Zr, Sn, Fe
, depositing an ultra-thin tension film with a thickness of 0.005 to 5 μm, which is made of at least one kind selected from oxides of Ni, Cu, W, and Mg, and having an insulating property on this tension film. A method for producing a highly insulating, thermally stable, ultra-low core loss unidirectional silicon steel sheet, which is characterized by depositing coated and baked layers in a stacked manner, and forming a bond of the following.
JP4539686A 1985-03-05 1986-03-04 Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss Granted JPS621822A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4298585 1985-03-05
JP60-42985 1985-03-05

Publications (2)

Publication Number Publication Date
JPS621822A true JPS621822A (en) 1987-01-07
JPS6332850B2 JPS6332850B2 (en) 1988-07-01

Family

ID=12651326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4539686A Granted JPS621822A (en) 1985-03-05 1986-03-04 Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss

Country Status (1)

Country Link
JP (1) JPS621822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162095A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Grain oriented electromagnetic steel sheet with ferrite film
EP3913085A4 (en) * 2019-01-16 2022-09-21 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595280B2 (en) * 2002-12-18 2010-12-08 Jfeスチール株式会社 Method for producing unidirectional silicon steel sheet and ceramic coating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162095A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Grain oriented electromagnetic steel sheet with ferrite film
EP3913085A4 (en) * 2019-01-16 2022-09-21 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS6332850B2 (en) 1988-07-01

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS62103374A (en) Grain-oriented silicon steel sheet having superior magnetic characteristic
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPS6269501A (en) Manufacture of low iron loss grain oriented silicon steel plate
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS63293112A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPS63227719A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS63227720A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPH0327633B2 (en)
JPS61246321A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPS63278209A (en) Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties
JPS62182222A (en) Production of grain oriented silicon steel sheet
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS62192581A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPH0374488B2 (en)
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPS6324018A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPS6222407A (en) Manufacture of ultra-low iron loss unidirectional silicon steel plate
JPS6269502A (en) Manufacture of very low iron loss grain oriented silicon steel plate