JPS6324018A - Production of extra-low iron loss grain oriented silicon steel sheet - Google Patents

Production of extra-low iron loss grain oriented silicon steel sheet

Info

Publication number
JPS6324018A
JPS6324018A JP16672186A JP16672186A JPS6324018A JP S6324018 A JPS6324018 A JP S6324018A JP 16672186 A JP16672186 A JP 16672186A JP 16672186 A JP16672186 A JP 16672186A JP S6324018 A JPS6324018 A JP S6324018A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
iron loss
annealing
grain oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16672186A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suzuki
一弘 鈴木
Masao Iguchi
征夫 井口
Ujihiro Nishiike
西池 氏裕
Yasuhiro Kobayashi
康宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16672186A priority Critical patent/JPS6324018A/en
Publication of JPS6324018A publication Critical patent/JPS6324018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce an extra-low iron loss silicon steel sheet having excellent adhesiveness of a film by removing the oxide on the surface of a grain oriented silicon steel sheet subjected to finish annealing, then polishing the surface to a specular surface and depositing and implanting the ions of the surface film forming components, thereby making dry plating. CONSTITUTION:The oxide on the surface of the grain oriented silicon steel sheet subjected to finish annealing is removed by pickling and the surface is finished to the specular surface of <=0.4mum center line average height Ra. The surface is then coated by dry plating with >=1 kinds among the nitride or carbide of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Co, Ni, Mn, Al, B, and Si or the oxide of Cr, Al, Ni, Cu, W, Si Ti, Sn, Fe, Zr, Ta, Ce, and Zn. The deposition of the film to the steel sheet is executed by evaporating or ionizing the metal or metalloid to deposit the vapor or ions thereof onto the steel sheet and subjecting the nonmetal element to ion implantation. The extra-low iron loss grain oriented silicon steel sheet which is decreased in the iron loss and is improved in the film adhesiveness is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性けい素鋼板の電気・磁気的特性の改善、なかで
も鉄損の低減に係わる極限的な要請を満たそうとする近
年来の目覚ましい開発努力は、逐次その実を挙げつつあ
るが、その実施に伴う重大な弊害として、一方向性けい
素鋼板の使用に当たっての加工、組立てを経たのちいわ
ゆるひずみ取り焼鈍がほどこされた場合に、特性劣化の
随伴を不可避に生じて、使途についての制限を受ける不
利が指摘される。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, there has been a remarkable effort to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. Our development efforts are gradually bearing fruit, but one serious problem associated with their implementation is that when unidirectional silicon steel sheets are processed and assembled and then subjected to so-called strain relief annealing, their properties deteriorate. It has been pointed out that there are disadvantages in that this inevitably involves the use of treasury materials and restrictions on how they can be used.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を招(ことについての開発研究の成果に関連
して以下に述べる。
This specification introduces a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. I will explain.

さて一方向性けい素@板は、よく知られているとおり製
品の2次再結晶粒を(110) <001> 、すなわ
ちゴス方位に、高度に集積させたもので、主として変圧
器その他の電気機器の鉄心として使用され、電気・磁気
的特性として製品の磁束密度(B、。
As is well known, unidirectional silicon@plate is a product in which secondary recrystallized grains are highly integrated in the (110) <001>, or Goss, orientation, and is mainly used in transformers and other electrical appliances. It is used as the iron core of equipment, and the product's magnetic flux density (B,.

で代表される)が高く、鉄損(W17/S。値で代表さ
れる)の低いことが要求される。
It is required that the iron loss (represented by W17/S) be high and the iron loss (represented by W17/S) be low.

この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明・改善が加え
られ、今日では板厚0.30u+の製品の磁気特性が8
101.90T以上、1,7.。1.05匈/kg以下
、また板厚0.23mmの製品の磁気特性がBIGl 
、 89T以上、WM7/S。0.90W/kg以下の
超低鉄損一方向性けい素鋼板が製造されるようになって
来ている。
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today a product with a thickness of 0.30u+ has magnetic properties of 8.
101.90T or more, 1,7. . The magnetic properties of products with a weight of 1.05 匈/kg or less and a plate thickness of 0.23 mm are BIGl.
, 89T or higher, WM7/S. Unidirectional silicon steel sheets with ultra-low core loss of 0.90 W/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及している。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性けい素鋼板の
仕上げ焼鈍後の鋼板表面に圧延方向にほぼ直角方向での
レーザ照射により局部微小ひずみを導入して磁区を細分
化し、もって鉄損を低下させることが提案された(特公
昭57−2252号、特公昭57−53419号、特公
昭58−26405号及び特公昭58−26406号各
公報参照)。
(Prior Art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after final annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce iron loss (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として巻鉄心トランス材料にあっては、
レーザー照射によって折角に導入された局部微小ひずみ
が焼鈍処理により解放されて磁区幅が広くなるため、レ
ーザー照射効果がなくなるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for laminated core transformers that are not subjected to strain relief annealing, but for material for wound core transformers that are subjected to strain relief annealing,
There is a drawback that the local minute strain introduced by laser irradiation is released by annealing and the magnetic domain width becomes wider, so that the laser irradiation effect disappears.

一方これより先に特公昭52−24499号公報におい
ては、一方向性けい素鋼板の仕上げ焼鈍後の鋼板表面を
鏡面仕上げするか又はその鏡面仕上げ面上に金属めっき
やさらにその上に絶縁被膜を塗布焼付けすることによる
、超低鉄損一方向性けい素鋼板の製造方法が提案されて
いる。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel plate after finish annealing was mirror-finished, or the mirror-finished surface was coated with metal plating or an insulating coating was applied thereon. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by coating and baking has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアンプになる割りに
鉄損低減への寄与が充分でない上、と(に鏡面仕上げ後
に不可欠な絶縁被膜を塗布焼付した後の密着性に問題が
あるため、現在の製造二程において採用されるに至って
はいない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective, as it does not make a sufficient contribution to reducing iron loss despite the significant cost increase. Due to problems with adhesion after applying the adhesive, it has not been adopted in the current second manufacturing process.

(発明が解決しようとする問題点) そこで、鏡面に仕上げた一方向性けい素鋼板の表面にド
ライプレーティングによって表面被膜を被成して低鉄損
化をはかる一方向性けい素鋼板の製造方法について、さ
らに表面被膜の密着性の向上および鉄損の低減を実現す
ることが、この発明の目的である。
(Problems to be Solved by the Invention) Therefore, a method for manufacturing a unidirectional silicon steel sheet in which a surface coating is formed by dry plating on the surface of a unidirectional silicon steel sheet with a mirror finish to reduce iron loss. It is an object of the present invention to further improve the adhesion of the surface coating and reduce iron loss.

(問題点を解決するための手段) 発明者らは、 仕上げ焼鈍を経た一方向性けい素鋼板に被成した被膜内
の内部応力の増大は、母材に作用する張力を増大して鉄
損の低減に寄与すること、ドライプレーティングにおけ
る反応ガスのイオン化率を高めると、被膜結晶内への反
応ガス原子のイオン打込みが促進されて格子歪が増大し
、被膜内の内部応力が増加すること、 をそれぞれ見い出し、この発明に至った。
(Means for Solving the Problem) The inventors believe that an increase in internal stress within the coating formed on a unidirectional silicon steel sheet that has undergone finish annealing increases the tension acting on the base material, leading to iron loss. Increasing the ionization rate of the reactive gas during dry plating promotes ion implantation of reactive gas atoms into the coating crystal, increasing lattice strain and increasing internal stress within the coating. These findings led to this invention.

すなわちこの発明は、仕上げ焼鈍を経た一方向性けい素
鋼板につき、その表面の酸化物を除去し、ついで研磨に
より鋼板表面を中心線平均粗さRaで0.4μm以下の
鏡面に仕上げたのち、ドライプレーティングによってT
i 、 Zr + Hf + V 、 Nb 、 Ta
That is, this invention involves removing oxides from the surface of a unidirectional silicon steel plate that has undergone finish annealing, and then polishing the steel plate surface to a mirror surface with a centerline average roughness Ra of 0.4 μm or less. T by dry plating
i, Zr + Hf + V, Nb, Ta
.

Cr + Mo + Co lNi+ Mn t AI
 + 8及びSiの窒化物及び/又は炭化物もしくはC
r 、 AI 、 Ni 、 Cu 。
Cr + Mo + Col Ni + Mnt AI
+8 and Si nitride and/or carbide or C
r, AI, Ni, Cu.

W + Si + Ti+ Sn + Fe + Zr
 +  Ta + Ce及びZnの酸化物のうちから選
ばれる少なくとも1種から主としてなる表面被膜を被成
してなる一方向性けい素鋼板の製造方法において、上記
ドライプレーティングに際し、上記表面被膜の成分のう
ち、金属又は半金属元素を蒸発ついでイオン化させて被
着し、表面被膜成分のうち非金属元素を鋼板表面にイオ
ン注入することを特徴とする超低鉄)員一方向性けい素
鋼板の製造方法である。
W + Si + Ti + Sn + Fe + Zr
+ Ta + In a method for producing a grain-oriented silicon steel sheet which is coated with a surface coating mainly consisting of at least one selected from Ce and Zn oxides, during the dry plating, the components of the surface coating are Production of ultra-low iron (unidirectional) silicon steel sheet characterized by evaporating and ionizing metal or metalloid elements and ion-implanting non-metallic elements among the surface coating components onto the surface of the steel sheet. It's a method.

イオンブレーティングにおける反応ガス(非金属元素)
のイオン化率は最大でも30%と概算されていたが、イ
オン注入を行うとほぼ100%となる。
Reactive gas (non-metallic elements) in ion blating
The ionization rate was estimated to be 30% at most, but it becomes almost 100% when ions are implanted.

このイオン化率の増大に伴って被膜内の内部応力が増加
し、鋼板への張力が増加して鉄損が低減する。同時に非
金属元素のイオン化率の増大に従ってイオンによる母材
表面の活性化が促進されて被膜の密着性はさらに強固と
なる(例えば特開昭61−15967号公報参照)。
As the ionization rate increases, internal stress within the coating increases, tension on the steel plate increases, and iron loss decreases. At the same time, as the ionization rate of the nonmetallic element increases, activation of the surface of the base material by ions is promoted, and the adhesion of the coating becomes even stronger (see, for example, Japanese Patent Laid-Open No. 15967/1983).

ここで表面被膜の被成前の一方向性けい素鋼板の表面の
中心線平均粗さRaを0.4μm以下に限定したのは、
Raが0.4μmを超えると表面が粗いために充分な鉄
損の低減が期待できないからである。
Here, the center line average roughness Ra of the surface of the unidirectional silicon steel sheet before the surface coating was formed was limited to 0.4 μm or less because
This is because if Ra exceeds 0.4 μm, the surface will be rough and a sufficient reduction in iron loss cannot be expected.

次にこの発明による、一方向性けい素鋼板の製造工程に
ついて説明する。
Next, the manufacturing process of a unidirectional silicon steel sheet according to the present invention will be explained.

出発素材は従来公知の一方向性けい素鋼素材成分、例え
ば ■C: 0.01〜0.05%、 Si : 2.0〜
4.0%、Mn : 0.01〜0.2%、 Mo :
 0.003〜0.1%、Sb : 0.005〜0.
2%、 S又はSeの1種あるいは2種合計で、0.0
05〜0.05%を含有する組成■C:0.01〜0.
08%、 Si : 2.0〜4,0%、S  : 0
.005 〜0.05%、N  : 0.001 〜0
.01%、Sol  Al:  0.01〜0.06χ
 、Sn : 0.01〜0.5  %、  Cu :
 0.01〜0.3  %、Mn : 0.01〜0.
2%を含有する組成■C: 0.01〜0.06%、 
 Si : 2.0 〜4.0 %、S  : 0.0
05 〜0.05%、B  : 0.0003〜0.0
004%、N : 0.001〜0.01%、Mn :
 0.01〜0.2%を含有する組成 ■C: 0.01〜0.06χ、 Si: 2.0〜4
.0%、Mn : 0.01〜0.2% S又はSeの1種あるいは2種合計でo、 oos〜o
、osxを含有する組成 の如きにおいて適用可能である 次に熱延板は800〜1100°Cの均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又は、通
常850°Cから1050°Cの中間焼鈍をはさんでさ
らに冷延する2回冷延法にて、後者の場合最初の圧下率
は50%から80%程度、最終の圧下率は50%から8
5%程度で0.15−mから0.35tm厚の最終冷延
板厚とする。
The starting material has conventionally known unidirectional silicon steel material components, such as ■C: 0.01-0.05%, Si: 2.0-0.
4.0%, Mn: 0.01-0.2%, Mo:
0.003-0.1%, Sb: 0.005-0.
2%, one or two types of S or Se, 0.0
Composition containing 05-0.05% ■C: 0.01-0.
08%, Si: 2.0-4.0%, S: 0
.. 005 ~ 0.05%, N: 0.001 ~ 0
.. 01%, Sol Al: 0.01~0.06χ
, Sn: 0.01-0.5%, Cu:
0.01-0.3%, Mn: 0.01-0.
Composition ■C containing 2%: 0.01-0.06%,
Si: 2.0 to 4.0%, S: 0.0
05-0.05%, B: 0.0003-0.0
004%, N: 0.001-0.01%, Mn:
Composition containing 0.01-0.2% ■C: 0.01-0.06χ, Si: 2.0-4
.. 0%, Mn: 0.01 to 0.2% S or Se, or both o, oos to o
, OSX-containing compositions, etc. Next, the hot-rolled sheet is subjected to uniform annealing at 800 to 1100°C and then cold-rolled once to achieve the final thickness, or, Usually, a two-step cold rolling method is used in which intermediate annealing at 850°C to 1050°C is followed by further cold rolling. 8
At about 5%, the final cold-rolled plate thickness is from 0.15-m to 0.35 tm.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750℃から850℃の湿水素中で脱炭・1次再結晶
焼鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is subjected to decarburization and primary recrystallization annealing treatment in wet hydrogen at 750°C to 850°C after surface degreasing.

その後鋼板表面ニAjl!zO++ZrOあるいはTt
Oz+1’1gO等を主成分とする焼鈍分離剤を塗布す
る。この発明の場合は、フォルステライトが形成される
場合であっても形成されない場合であっても適用可能で
ある。仕上げ焼鈍後のフォルステライト被膜を形成させ
ないためにはA 6203等の不活性焼鈍分離剤の含有
率を高めることが必要である。
After that, the steel plate surface Ni Ajl! zO++ZrO or Tt
Apply an annealing separation agent whose main component is Oz+1'1gO or the like. The present invention is applicable regardless of whether forsterite is formed or not. In order to prevent the formation of a forsterite film after final annealing, it is necessary to increase the content of an inert annealing separator such as A 6203.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
℃以上に昇温し、その温度に保持することによって行わ
れる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
This is done by raising the temperature above ℃ and maintaining it at that temperature.

この場合(1101<001>方位に、高度に揃った2
次再結晶粒組織を発達させるためには820°Cがら9
00°Cの低温で保定焼鈍する方が有利であり、そのほ
か例えば0.5〜15°C/hの昇温速度の除熱焼鈍で
もよい。
In this case (2 highly aligned in the 1101<001> direction)
To develop the next recrystallized grain structure, heat at 820°C.
It is more advantageous to carry out holding annealing at a low temperature of 0.000C, and alternatively heat removal annealing at a temperature increase rate of 0.5 to 15C/h may also be used.

2次再結晶焼鈍後の純化焼鈍は、飽水素中で1000℃
以上で1〜20時間焼鈍を行って、鋼板の純化を達成す
ることが必要である。
Purification annealing after secondary recrystallization annealing is performed at 1000°C in saturated hydrogen.
It is necessary to perform annealing for 1 to 20 hours to achieve purification of the steel plate.

次にこの発明では、純化焼鈍後に鋼板表面の酸化物被膜
を硫酸、硝酸又は弗酸などの強酸により除去する。また
この酸化物除去は機械研削により行ってもよい。
Next, in the present invention, after purification annealing, the oxide film on the surface of the steel sheet is removed using a strong acid such as sulfuric acid, nitric acid, or hydrofluoric acid. Further, this oxide removal may be performed by mechanical grinding.

この酸化物除去処理の後、化学研磨あるいは電解研磨、
あるいはパフ研磨による機械的研磨等従来の手法により
鋼板表面を鏡面状態つまり中心線平均粗さRaで0.4
 μm以下に仕上げる。
After this oxide removal treatment, chemical polishing or electrolytic polishing
Alternatively, the surface of the steel plate can be polished to a mirror finish using a conventional method such as mechanical polishing using puff polishing, that is, the center line average roughness Ra is 0.4.
Finished to below μm.

(作 用) 次にこの発明の成功が導かれた具体的実験について述べ
る。
(Function) Next, we will discuss specific experiments that led to the success of this invention.

ホローカソード放電を利用したイオンブレーティング法
によって中心線平均粗さRa= 0.2μmに鏡面仕上
げした一方向性けい素鋼板に、Ti + Cr +A1
およびSiの炭化物、窒化物および酸化物をそれぞれ1
.0μm厚に被成した。なおイオン注入のほか、比較と
して反応ガス導入も行なった。
Ti + Cr + A1 was applied to a unidirectional silicon steel plate mirror-finished to a center line average roughness Ra = 0.2 μm by the ion blating method using hollow cathode discharge.
and Si carbides, nitrides, and oxides of 1 each
.. It was coated to a thickness of 0 μm. In addition to ion implantation, a reactive gas was also introduced for comparison.

この実験に使用した装置を第1図に示す。図中1はホロ
ーカソードガン、2は蒸発用電源、3は焦束コイル、4
は水冷銅ルツボのような蒸発源、5は鋼板、6はヒータ
ー、7はバイアス電源そして8はイオン源である。
The apparatus used in this experiment is shown in Figure 1. In the figure, 1 is a hollow cathode gun, 2 is an evaporation power source, 3 is a focusing coil, and 4
is an evaporation source such as a water-cooled copper crucible, 5 is a steel plate, 6 is a heater, 7 is a bias power source, and 8 is an ion source.

また実験条件は、電子ビーム出カニ 40V 、500
A、鋼板への印加電圧: 100Vおよび雰囲気温度=
300℃である。
The experimental conditions were: electron beam output 40V, 500V
A. Applied voltage to steel plate: 100V and ambient temperature =
The temperature is 300°C.

表1ないし表3に、各被膜の被成による鉄損低41を示
す。なお生成物はX線回折によって同定した。
Tables 1 to 3 show the iron loss reduction 41 due to the formation of each coating. The product was identified by X-ray diffraction.

表から、通常の反応ガス導入と比較して、イオン注入の
方が鉄損低減量が大きいことがわかる。
From the table, it can be seen that ion implantation provides a greater reduction in core loss than normal reaction gas introduction.

またイオン注入によって生成した被膜は、液体N2への
浸漬による密着性試験での表面の走査型電子顕微鏡(S
EM)観察においても、はく離の発生はみとめられなか
った。しかしながら通常の反応ガス4入によって生成し
た被膜では、はく離が目視によって観察された。したが
ってイオン注入を用いれば通常の反応ガス導入を用いた
場合と比較して密着性のより強固な被膜を得られること
が明らかとなった。
Furthermore, the surface of the film produced by ion implantation was examined using a scanning electron microscope (S) in an adhesion test by immersion in liquid N2.
No peeling was observed in the EM) observation. However, peeling was visually observed in the film produced with 4 injections of the usual reaction gas. Therefore, it has become clear that by using ion implantation, it is possible to obtain a film with stronger adhesion than when using normal reactive gas introduction.

以上の実験結果は、Ti 、 Cr 、 AI 、 S
iの炭化物、窒化物、酸化物よりなる張力被膜について
専ら述べたが、張力被膜はこのほかにもZr 、 Hf
 。
The above experimental results are based on Ti, Cr, AI, S
Although the tension coating made of i carbide, nitride, and oxide has been exclusively described, the tension coating can also be made of Zr, Hf, etc.
.

V + Nb + Ta + Mo + Co + N
t + MnおよびBの窒化物及び/又は炭化物並びに
Ni 、 Cu 、 W 、 Sn 。
V + Nb + Ta + Mo + Co + N
t + nitrides and/or carbides of Mn and B and Ni, Cu, W, Sn.

Fe 、 Zr + Ta 、 CeおよびZnの酸化
物のうちから挙げられる少なくとも1種より主としてな
る場合にあっても、Ti 、 Cr 、 Al 、 S
iの炭化物、窒化物、酸化物について述べたところとほ
ぼ同様な作用効果をあられし、何れもこの発明の目的に
適合する。
Even when the oxide is mainly composed of at least one kind selected from oxides of Fe, Zr + Ta, Ce and Zn, Ti, Cr, Al, S
The carbides, nitrides, and oxides of i have substantially the same effects as those described above, and all of them are suitable for the purpose of the present invention.

(実施例) 実施炎上 C: 0.046%、Si : 3.44%、Mn :
 0.069%、Mo : 0.020%、Se : 
0.020%およびSb : 0.025%を含有する
組成になる熱延板を、900℃で3分間の均一化焼鈍後
、950℃の中間焼鈍をはさんで2回の冷間圧延を行っ
て0.23mm厚の最終冷延板とした。
(Example) Practical flaming C: 0.046%, Si: 3.44%, Mn:
0.069%, Mo: 0.020%, Se:
A hot rolled sheet having a composition containing 0.020% and Sb: 0.025% was uniformly annealed at 900°C for 3 minutes and then cold rolled twice with intermediate annealing at 950°C. A final cold-rolled sheet with a thickness of 0.23 mm was obtained.

その後820℃の湿水素中で脱炭焼鈍を兼ねた1次再結
晶焼鈍後、鋼板表面に八1203 (70%) 、 M
g0(30%)を主成分とする焼鈍分離剤を塗布した後
850℃で50時間の2次再結晶焼鈍し、ついで飽水素
中で1200℃、8時間の純化焼鈍を行った。
After that, after primary recrystallization annealing that also served as decarburization annealing in wet hydrogen at 820°C, the surface of the steel plate had 81203 (70%), M
After applying an annealing separator containing g0 (30%) as a main component, secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification annealing at 1200°C for 8 hours in saturated hydrogen.

その後酸洗により酸化被膜を除去後、電解研磨して鏡面
に仕上げた。
After that, the oxide film was removed by pickling, and then electrolytically polished to a mirror finish.

その後イオン源を設けた高周波励起イオンブレーティン
グ装置によって、0.5μm厚のTiNを被成した。な
お電子ビームの出力はl0KV、200mA、高周波励
起出力800皆、バイアス電圧は500V、雰囲気温度
は300℃である。そしてイオン源から発生したN9イ
オンは6 Xl014ions/cm2−sであった。
Thereafter, a 0.5 μm thick TiN layer was formed using a high frequency excited ion blating device equipped with an ion source. The electron beam output was 10 KV and 200 mA, the high frequency excitation output was 800, the bias voltage was 500 V, and the ambient temperature was 300°C. The amount of N9 ions generated from the ion source was 6 Xl014 ions/cm2-s.

得られたけい素鋼板の磁気特性はW+7/S。=0.6
4W/ kg、 B+ o=1.937であった。また
10 xmφ曲げによる密着性試験においてもはく離は
みとめられなかつた・ 次新11λ C: 0.059%、Si : 3.39%、Mn :
 0.071 %、八12 70.024  %、S 
: 0.026  %、N : 0.0069%、Cu
 : 0.1%およびSn : 0.05%を含有する
組成になる熱延板を、1150℃で3分間の均−化焼鈍
後急冷処理を行い、その後300℃の温間圧延を施して
0.2(bm厚の最終冷延板とした。
The magnetic properties of the obtained silicon steel plate were W+7/S. =0.6
4W/kg, B+o=1.937. Also, no peeling was observed in the adhesion test using 10 x mφ bending.
0.071%, 812 70.024%, S
: 0.026%, N: 0.0069%, Cu
A hot rolled sheet having a composition containing Sn: 0.1% and Sn: 0.05% was uniformly annealed at 1150°C for 3 minutes and then rapidly cooled, and then warm rolled at 300°C to The final cold-rolled sheet had a thickness of .2 (bm).

その後850℃の湿水素中で脱炭焼鈍後、表面にA’ 
zo3(80%) 、 MgO(20%)を主成分とす
る焼鈍分離剤を塗布した後、850℃から1150℃ま
で8°C/hで昇温して2次再結晶させた後、軟水素中
で1200℃、8時間の純化焼鈍を行った。
After decarburization annealing in wet hydrogen at 850°C, the surface has A'
After applying an annealing separator mainly composed of zo3 (80%) and MgO (20%), the temperature was raised from 850°C to 1150°C at a rate of 8°C/h for secondary recrystallization, and then soft hydrogen Purification annealing was performed at 1200° C. for 8 hours.

その後機械研磨により酸化物被膜を除去し、ついで3%
HFとI+ 202液中で化学研磨して鏡面に仕上げた
After that, the oxide film was removed by mechanical polishing, and then 3%
It was chemically polished in HF and I+ 202 liquid to give it a mirror finish.

その後イオン源をそなえるホローカソード放電イオンブ
レーティング装置によって1.0μm厚のSin、を表
面に被成した。
Thereafter, a 1.0 μm thick layer of Sin was deposited on the surface using a hollow cathode discharge ion blating device equipped with an ion source.

なお電子ビームの出力は500A、 40Vであり、雰
囲気温度は300°C1鋼板印加電圧は100■であっ
た。
The output of the electron beam was 500 A and 40 V, the ambient temperature was 300° C., and the voltage applied to the steel plate was 100 μm.

またイオン源から発生したO゛イオン5.OXl0I5
ions/Cm2嗜sであった。
Also, O゛ ions generated from the ion source 5. OXl0I5
ions/Cm2.

得られたけい素鋼板の磁気特性は1,7.。・0.6鵠
ハg、B1゜・l 、 94Tであり、層間抵抗は10
0Ω・cm/枚と良好であった。またIonφ曲げによ
る密着性試験においてもはく離は認められなかった。
The magnetic properties of the obtained silicon steel sheet were 1.7. .・0.6g, B1゜・l, 94T, interlayer resistance is 10
The resistance was good at 0Ω·cm/piece. Further, no peeling was observed in the adhesion test using Ionφ bending.

裏血拠主 C: 0.044%、Si : 3.38%、Mn :
 0.062%、Mo : 0.025%、Se : 
0.024 %およびSb : 0.025%を含有す
る組成になる熱延板を、900°Cで3分間の均一化焼
鈍後、950°Cの中間焼鈍をはさんで2回の冷間圧延
を行って0.20−m厚の最終冷延板とした。
Secret blood source C: 0.044%, Si: 3.38%, Mn:
0.062%, Mo: 0.025%, Se:
A hot rolled sheet having a composition containing 0.024% and Sb: 0.025% was uniformly annealed at 900°C for 3 minutes and then cold rolled twice with intermediate annealing at 950°C. A final cold-rolled sheet with a thickness of 0.20-m was obtained.

その後820℃の湿水素中で脱炭焼鈍後、鋼板表面にA
 ’ z(h(70%) 、 MgO(25%)、Zn
O(4%)ITIOZ(1%)を主成分とする焼鈍分離
剤を塗布した後850℃で50時間の2次再結晶焼鈍し
、1180℃、10時間乾水素中で純化焼鈍を行った。
After that, after decarburization annealing in wet hydrogen at 820℃, A
'z(h(70%), MgO(25%), Zn
After applying an annealing separator mainly composed of O (4%) ITIOZ (1%), secondary recrystallization annealing was performed at 850°C for 50 hours, and purification annealing was performed at 1180°C for 10 hours in dry hydrogen.

その後酸洗により鋼板表面の酸化物被膜を除去後、3%
HF(!:H2O□液中で化学研磨を施して鏡面に仕上
げた。
After that, after removing the oxide film on the steel plate surface by pickling, 3%
Chemically polished in HF(!:H2O□ solution) to give a mirror finish.

その後イオン源を備える熱電子フィラメントを使用した
活性化イオンブレーティング装置によって、AINおよ
びZrCを雰囲気温度200℃で、HfN 。
Thereafter, AIN and ZrC were mixed with HfN at an ambient temperature of 200 °C by an activated ion blating device using a thermionic filament equipped with an ion source.

NbN 、 SiC、HfCおよびZnOを雰囲気温度
300℃で、ZrN + MnzN 、 MoJ + 
VN + Cr7C,、NiC、NbC。
NbN, SiC, HfC and ZnO at an ambient temperature of 300°C, ZrN + MnzN, MoJ +
VN + Cr7C, NiC, NbC.

ZrO、Fe30aおよびZrOを雰囲気温度400℃
で、Bn 、 5iJ4+ TiCl5iOzおよびA
1z03を雰囲気温度500℃でそれぞれ鋼板表面に被
成した。
ZrO, Fe30a and ZrO at an ambient temperature of 400℃
, Bn, 5iJ4+ TiCl5iOz and A
1z03 was deposited on the surface of each steel plate at an ambient temperature of 500°C.

なお電子ビーム蒸発源の出力は20KVAであり、熱電
子フィラメント電流は2Aであり、鋼板印加電圧は1.
OKVであった。またイオン源からは最大2X 10I
6ions/cm2・sのイオンを発生サセタ。
The output of the electron beam evaporation source was 20 KVA, the thermionic filament current was 2 A, and the voltage applied to the steel plate was 1.
It was OKV. Also, maximum 2X 10I from the ion source
Sasseta generates ions of 6 ions/cm2・s.

その後リン酸塩とコロイダルシリカを主成分とするコー
ティング処理を行った。得られた鋼板の磁気特性を表4
に示す。
After that, a coating treatment containing phosphate and colloidal silica as the main components was performed. Table 4 shows the magnetic properties of the obtained steel plate.
Shown below.

表 4 処  理  条  件     磁 気 特 性被膜 
節用(”C) B、。(T) W+tzs。(誓/kg
)(1)  BN  (0,8μm厚)     50
0     1.92   0.63(2)  5iz
N+(0,8I’m厚)     500     1
.94   0.64(3)  ZrN  (0,9μ
m厚)     400     1.91   0.
62(4)  AIN  (0,8μm厚)     
200      1.92   0.64(5)  
HfN  (1,0/1m厚)300      1.
92   0.62(6)  NbN  (1,01!
m厚)     300      1.92   0
.65(7) MnzN (1,0μm厚’)  40
0 1.91 0.64(8)  MozN (1,0
μm厚)400     1.92   0.63(9
)  Vn  (1,0μm厚”)     400 
    1.93   0.62(10) Tic (
0,88a厚)  500 1.920.62(11)
  SiC(0,6μm厚)     300    
 1.92   0.63(12)  ZrC(0,7
pm厚)     200     1.91   0
.63(13)  CrtC+(1,0/Jm厚)  
   400     1.92   0.63(14
) HfC(1,0μm厚)300 1.920.61
(15)  NiC(1,01Jm厚)     40
0     1.91   0.64(16) NbC
(1,0μm厚)  400 1.920.62(発明
の効果) この発明によれば、ドライプレーティングを用いた超低
鉄損一方向性けい素鋼板の製造方法において、さらに鉄
損の低減と被膜密着性の向上を達成することが、できる
Table 4 Processing conditions Magnetic property coating
Savory (”C) B,. (T) W+tzs. (Vow/kg
)(1) BN (0.8μm thickness) 50
0 1.92 0.63(2) 5iz
N+ (0.8I'm thickness) 500 1
.. 94 0.64(3) ZrN (0.9μ
m thickness) 400 1.91 0.
62(4) AIN (0.8μm thickness)
200 1.92 0.64 (5)
HfN (1.0/1m thickness) 300 1.
92 0.62(6) NbN (1,01!
m thickness) 300 1.92 0
.. 65(7) MnzN (1.0μm thickness') 40
0 1.91 0.64 (8) MozN (1,0
μm thickness) 400 1.92 0.63 (9
) Vn (1.0 μm thickness) 400
1.93 0.62 (10) Tic (
0.88a thickness) 500 1.920.62 (11)
SiC (0.6μm thickness) 300
1.92 0.63(12) ZrC(0,7
pm thickness) 200 1.91 0
.. 63 (13) CrtC+ (1,0/Jm thickness)
400 1.92 0.63 (14
) HfC (1.0μm thickness) 300 1.920.61
(15) NiC (1.01Jm thick) 40
0 1.91 0.64(16) NbC
(1.0 μm thickness) 400 1.920.62 (Effects of the invention) According to the present invention, in a method for manufacturing an ultra-low core loss unidirectional silicon steel sheet using dry plating, further reduction of core loss and coating film can be achieved. It is possible to achieve improved adhesion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実験に用いた装置の説明図である。 1・・・ホローカソードガン 2・・・蒸発用電源    3・・・焦束コイル4・・
・蒸発源      5・・・鋼板6・・・ヒーター 
    7・・・バイアス電源8・・・イオン源
FIG. 1 is an explanatory diagram of the apparatus used in the experiment. 1... Hollow cathode gun 2... Evaporation power source 3... Focusing coil 4...
・Evaporation source 5... Steel plate 6... Heater
7...Bias power supply 8...Ion source

Claims (1)

【特許請求の範囲】 1、仕上げ焼鈍を経た一方向性けい素鋼板につき、その
表面の酸化物を除去し、ついで研磨により鋼板表面を中
心線平均粗さRaで0.4μm以下の鏡面に仕上げたの
ち、ドライプレーティングによってTi、Zr、Hf、
V、Nb、Ta、Cr、Mo、Co、Ni、Mn、Al
、B及びSiの窒化物及び/又は炭化物もしくはCr、
Al、Ni、Cu、W、Si、Ti、Sn、Fe、Zr
、Ta、Ce及びZnの酸化物のうちから選ばれる少な
くとも1種から主としてなる表面被膜を被成してなる一
方向性けい素鋼板の製造方法において、 上記ドライプレーティングに際し、上記表 面被膜の成分のうち、金属又は半金属元素を蒸発ついで
イオン化させて被着し、表面被膜成分のうち非金属元素
を鋼板表面にイオン注入することを特徴とする超低鉄損
一方向性けい素鋼板の製造方法。
[Scope of Claims] 1. Oxides on the surface of a unidirectional silicon steel plate that has undergone finish annealing are removed, and then polished to a mirror finish with a center line average roughness Ra of 0.4 μm or less. After that, Ti, Zr, Hf,
V, Nb, Ta, Cr, Mo, Co, Ni, Mn, Al
, B and Si nitride and/or carbide or Cr,
Al, Ni, Cu, W, Si, Ti, Sn, Fe, Zr
, Ta, Ce, and Zn. A method for producing an ultra-low core loss unidirectional silicon steel sheet, which comprises depositing a metal or metalloid element by evaporation and ionization, and ion-implanting a non-metallic element among the surface coating components onto the surface of the steel sheet. .
JP16672186A 1986-07-17 1986-07-17 Production of extra-low iron loss grain oriented silicon steel sheet Pending JPS6324018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16672186A JPS6324018A (en) 1986-07-17 1986-07-17 Production of extra-low iron loss grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16672186A JPS6324018A (en) 1986-07-17 1986-07-17 Production of extra-low iron loss grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS6324018A true JPS6324018A (en) 1988-02-01

Family

ID=15836522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16672186A Pending JPS6324018A (en) 1986-07-17 1986-07-17 Production of extra-low iron loss grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS6324018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144109U (en) * 1988-03-14 1989-10-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144109U (en) * 1988-03-14 1989-10-03

Similar Documents

Publication Publication Date Title
KR910006011B1 (en) Extra-low iron loss grain oriented silicon steel sheets
KR100479353B1 (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
WO1986004929A1 (en) Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
EP0910101A1 (en) Ultra-low iron loss unidirectional silicon steel sheet
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JPS6324018A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPH0347974A (en) Heat-stable extremely low-iron loss grain-oriented silicon steel sheet and its production
JP3067164B2 (en) Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH0619113B2 (en) Method for producing grain-oriented electrical steel sheet with extremely low iron loss
JPS62290844A (en) Grain-oriented silicon steel sheet having very small iron loss
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPS63278209A (en) Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties
JP3176646B2 (en) Manufacturing method of non-oriented electrical steel sheet for high frequency
JPS63293112A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JPS63227719A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss