JPH06100939A - Production of low core loss grain-oriented silicon steel sheet - Google Patents

Production of low core loss grain-oriented silicon steel sheet

Info

Publication number
JPH06100939A
JPH06100939A JP5193643A JP19364393A JPH06100939A JP H06100939 A JPH06100939 A JP H06100939A JP 5193643 A JP5193643 A JP 5193643A JP 19364393 A JP19364393 A JP 19364393A JP H06100939 A JPH06100939 A JP H06100939A
Authority
JP
Japan
Prior art keywords
steel sheet
groove
annealing
grain
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5193643A
Other languages
Japanese (ja)
Inventor
Hisashi Nakano
恒 中野
Atsuto Honda
厚人 本田
Keiji Sato
圭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5193643A priority Critical patent/JPH06100939A/en
Publication of JPH06100939A publication Critical patent/JPH06100939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet having low core loss at a low cost by subjecting a silicon steel slab to hot rolling and cold rolling to regulate its sheet thickness into a final one, thereafter forming grooves in the specified direction on the surface of the cold rolled sheet, filling the oxides, sulfates or the like of specified elements therein and executing decarburizing annealing and finish annealing. CONSTITUTION:A silicon steel slab contg. 2.0 to 4.5% Si is subjected to hot rolling and is successively subjected to cold rolling for one time or >=two times including process annealing to roll into a steel sheet having a final sheet thickness, e.g. of 0.23mm. On the surface of this cold rolled steel sheet, linear grooves having 30 to 300mum width and 5 to 100mum depth are formed at 60 to 90 degrees at intervals of >=1mm, and one kind among the oxides, sulfates or the like of Sn, B and Sb is filled in the grooves. Next, this steel sheet is subjected to decarburizing annealing and finish annealing, by which the grain-oriented silicon steel sheet improved in core loss value and excellent in magnetic properties can be produced at a relatively low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、特に変圧器やその他
の電気機器用鉄心素材に有利に適合する、磁気特性の優
れた方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is particularly suited to a core material for transformers and other electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板は変圧器やその他の電気
機器鉄心として利用され、磁気特性に優れること、中で
も鉄損の低いことが要求される。この鉄損は概ねヒステ
リシス損と渦電流損の和で表わすことができ、ヒステリ
シス損は強い抑制力をもつインヒビターを用いることに
より、結晶方位をゴス方位、すなわち(110)<001>方位に
高度に集積させること、磁化したとき磁壁移動の際のピ
ンニング因子の生成原因となる不純物元素を低減するこ
と、等により大幅に低減されてきた。一方渦電流損につ
いては、Si含有量を増加して電気抵抗を増大させるこ
と、鋼板板厚を薄くすること、鋼板地鉄表面に地鉄と熱
膨張係数の異なる被膜を形成して地鉄に張力を付与する
こと、結晶粒の微細化により磁区幅を低減すること、等
によって低減が図られてきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as iron cores for transformers and other electric equipment, and are required to have excellent magnetic properties, and particularly low iron loss. This iron loss can be roughly expressed as the sum of hysteresis loss and eddy current loss.By using an inhibitor with a strong inhibitory force, the hysteresis loss can be increased to the Goss orientation, that is, the (110) <001> orientation. It has been significantly reduced by the integration, the reduction of the impurity element that causes the generation of the pinning factor when the domain wall moves when magnetized, and the like. Regarding eddy current loss, on the other hand, increasing the Si content to increase electrical resistance, reducing the steel plate thickness, and forming a coating on the surface of the steel plate with a coefficient of thermal expansion different from that of the base steel The reduction has been attempted by applying tension, reducing the magnetic domain width by miniaturizing the crystal grains, and the like.

【0003】さらに、渦電流損の低減を目的として、鋼
板に溝を形成する手法が種々提案されている。これらの
手法は、最終仕上げ焼鈍後、すなわち二次再結晶後の鋼
板に局所的に溝を形成し、その反磁界効果によって磁区
を細分化する方法と、最終仕上焼鈍前の鋼板に同様に溝
を形成する方法とに大別される。
Further, various techniques for forming grooves in a steel sheet have been proposed for the purpose of reducing eddy current loss. These methods are a method of locally forming grooves in the steel sheet after final finish annealing, that is, secondary recrystallization, and a method of subdividing the magnetic domains by the demagnetizing effect, and the same manner as in the steel sheet before final finishing annealing. It is roughly divided into the method of forming.

【0004】前者の溝形成手段として、特公昭50-35679
号公報には機械的な加工が、特開昭63-76819号公報には
レーザー光照射により絶縁被膜及び下地被膜を局所的に
除去した後電解エッチングすることが、そして特公昭62
-53579号公報には歯車型ロールで圧刻後に歪取焼鈍する
ことが、それぞれ開示されている。しかしながら、機械
加工や歯車型ロールによる手法は、形成した溝近傍に大
きなかえりを生じることから、製品トランスの占積率が
低下する不利がある。また、特開昭63-76819号公報に開
示の手法は、一旦形成した下地被膜又は絶縁被膜を部分
的に除去してエッチングによって溝を形成した後、再度
これらの被膜を形成する工程を必要とするため、製品に
おける被膜厚みが増加して占積率が低下する上、コスト
上昇を招いて生産性が低下する不利がある。
As the former groove forming means, Japanese Patent Publication No. 50-35679
Japanese Patent Laid-Open No. 63-76819 discloses that the insulating coating and the underlying coating are locally removed by laser irradiation and then electrolytic etching is performed.
JP-A-53579 discloses that strain relief annealing is performed after pressing with a gear type roll. However, the method of machining or gear-type roll has a disadvantage that the space factor of the product transformer is lowered because a large burr is generated in the vicinity of the formed groove. In addition, the method disclosed in Japanese Patent Laid-Open No. 63-76819 requires a step of partially removing the underlying film or insulating film that has been formed, forming grooves by etching, and then forming these films again. Therefore, there is a disadvantage that the film thickness of the product is increased and the space factor is decreased, and that the cost is increased and the productivity is decreased.

【0005】後者の溝形成手段として、特開昭59-19752
0 号公報には最終仕上げ焼鈍前の鋼板に溝を形成する方
法が、開示されている。この手法によれば、上記の不利
は解消されるが、鉄損低減効果が小さく、需要家の要求
を十分に満足させることが難しい。
As the latter groove forming means, JP-A-59-19752
No. 0 discloses a method of forming grooves in a steel sheet before final finish annealing. According to this method, the above disadvantages are eliminated, but the effect of reducing iron loss is small, and it is difficult to sufficiently satisfy the demands of customers.

【0006】さらに特開昭60-255926 号及び同61-11728
4 号各公報には、仕上げ焼鈍後の鋼板にレーザー光照射
により局所的に被膜を除去した後エッチングを行って溝
を形成し、この溝に鋼板地鉄と異なる物質を充填するこ
とで、溝を形成しただけの場合に比べてより大きな鉄損
低減効果を得る手法が提案されている。ところが、この
方法を実際に行う場合、一旦形成した被膜を部分的に除
去してエッチングした後、再度これらの被膜を形成する
工程を必要とするため、製品の占積率が低下する上、コ
スト上昇を招いて生産性が低下する不利がある。
Further, JP-A-60-255926 and 61-11728
No. 4 gazette discloses that a groove is formed by locally removing the coating on the steel sheet after finish annealing by irradiating a laser beam and then etching to form a groove, and filling the groove with a substance different from that of the steel plate base metal. A method has been proposed in which a greater iron loss reduction effect is obtained as compared with the case where only the steel is formed. However, in the case where this method is actually performed, it is necessary to partially remove the coating film that has been formed once and then etch it, and then to form these coating films again, which reduces the space factor of the product and reduces the cost. This has the disadvantage of increasing productivity and decreasing productivity.

【0007】また、特公昭54−23647 号公報には、冷間
圧延後または脱炭焼鈍後の鋼板に、ショットピーニング
等の機械的加工、電子ビーム等の熱的処理またはS,Al
, Se , Sb等の拡散による化学的方法によって、2次再
結晶粒成長阻止処理領域と未処理領域を形成する方法が
開示されている。これは2次再結晶を直接制御すること
で磁束密度の向上、鉄損の低減を計るものであるが、実
際の操業を考えれば、ショットピーニング等の機械的方
法では均一な歪を導入することが困難であり、また電子
ビーム等の熱的処理の場合、装置が大がかりになりコス
ト高を招く問題があった。これに対して、S,Al , Se
, Sb等化合物の塗布は高速印刷等により安価に行える
利点を有しているが、高速で搬送されるラインでは塗布
した物質が飛散し塗布量が変化し、また処理後のコイル
の巻取りの際、塗布物質が剥がれる等の不都合があっ
た。さらに、これらの方法では、得られた磁気特性のば
らつきが大きいといった問題点もあった。
Further, in Japanese Patent Publication No. 54-23647, a steel sheet after cold rolling or after decarburization annealing is subjected to mechanical processing such as shot peening, thermal treatment such as electron beam or S, Al.
There is disclosed a method of forming a secondary recrystallized grain growth prevention treated region and an untreated region by a chemical method using diffusion of Se, Sb, Sb and the like. This aims to improve the magnetic flux density and reduce the iron loss by directly controlling the secondary recrystallization, but considering the actual operation, it is necessary to introduce a uniform strain by a mechanical method such as shot peening. However, in the case of thermal treatment with an electron beam or the like, there is a problem that the device becomes large in size and the cost is increased. On the other hand, S, Al, Se
However, the application of compounds such as Sb has the advantage that they can be inexpensively performed by high-speed printing, etc., but in a line that is transported at a high speed, the applied substance scatters and the applied amount changes, and it is also necessary to wind the coil after processing. At this time, there was a problem that the coating substance was peeled off. Further, these methods also have a problem that the obtained magnetic characteristics vary greatly.

【0008】これに対して、特公昭63-1372 号公報で
は、最終仕上焼鈍前の鋼板表面に局部的に加工を施すと
ともに、二次再結晶の速度制御に役立つ希薄水溶液を区
分的に塗布する方法が開示されている。この方法の局部
加工は、突起ロールによる塑性加工または電子ビームや
レーザビーム照射によるものであり、いずれも導入され
た歪みによって塗布物質の拡散を助長することを目的と
している。しかし、実際には、導入された歪みは均一で
はなく、かえって塗布物質の不均一な拡散をまねいて磁
気特性がばらつくという問題があった。
On the other hand, in Japanese Examined Patent Publication No. 63-1372, the surface of the steel sheet before the final finish annealing is locally processed, and a dilute aqueous solution useful for controlling the rate of secondary recrystallization is applied piecewise. A method is disclosed. The local processing of this method is plastic processing with a projection roll or irradiation with an electron beam or a laser beam, and any of them is intended to promote diffusion of a coating substance by the introduced strain. However, in reality, the introduced strain is not uniform, and on the contrary, there is a problem that the magnetic properties vary due to uneven diffusion of the coating material.

【0009】[0009]

【発明が解決しようとする課題】この発明は、上記問題
を有利に解決するもので、低い鉄損を有する方向性電磁
鋼板を、安定してしかも低コストで得られる製造方法に
ついて提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above problems and proposes a method for stably producing a grain-oriented electrical steel sheet having a low iron loss at a low cost. To aim.

【0010】[0010]

【課題を解決するための手段】発明者らは、低鉄損方向
性電磁鋼板を品質のばらつきなしに安定供給できる製造
方法の開発を目的として、鋭意実験及び検討を重ねた結
果、最終冷延板に仕上焼鈍に先立って局所的に溝を形成
した後、その溝に所定の物質を充填することにより、従
来に比べてさらに低い鉄損が得られることを新たな知見
し、この発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted earnest experiments and studies for the purpose of developing a manufacturing method capable of stably supplying a low iron loss grain-oriented electrical steel sheet without variations in quality, and as a result, finally cold rolled. Completed this invention by newly discovering that even if a groove is locally formed prior to finish annealing and then the groove is filled with a predetermined substance, a lower iron loss can be obtained compared with the conventional method. did.

【0011】すなわちこの発明は、方向性電磁鋼素材を
熱間圧延した後、1回又は中間焼鈍を挟む2回以上の冷
間圧延を施して最終製品板厚とし、しかる後脱炭焼鈍、
次いで仕上げ焼鈍を施す一連の工程からなる方向性電磁
鋼板の製造方法において、最終冷間圧延後かつ仕上焼鈍
前の鋼板に、その圧延方向とほぼ直交する向きに延びる
線状溝を形成した後、該線状溝内に Sn,BおよびSb並び
にこれら各元素の酸化物および硫酸塩のうちから選ばれ
たいずれか1種を充填することを特徴とする、低鉄損方
向性電磁鋼板の製造方法である。
That is, according to the present invention, the grain-oriented electrical steel material is hot-rolled, and then cold-rolled once or twice or more with an intermediate anneal to obtain a final product sheet thickness, and then decarburization-annealed.
Then, in the method for producing a grain-oriented electrical steel sheet consisting of a series of steps of performing finish annealing, the steel sheet after final cold rolling and before finish annealing is formed with linear grooves extending in a direction substantially orthogonal to the rolling direction, A method for producing a low iron loss grain-oriented electrical steel sheet, characterized in that the linear groove is filled with any one selected from Sn, B and Sb and oxides and sulfates of these elements. Is.

【0012】また、線状溝は、幅:30〜300 μm および
深さ:5〜100 μm で、圧延方向に対して60〜90°の角
度で延び、この線状溝を圧延方向に1mm以上の間隔で配
列することが、鉄損の低減にはとりわけ有利である。
The linear groove has a width of 30 to 300 μm and a depth of 5 to 100 μm and extends at an angle of 60 to 90 ° with respect to the rolling direction, and the linear groove is 1 mm or more in the rolling direction. It is particularly advantageous to reduce the iron loss by arranging them at intervals of.

【0013】ここで、この発明の素材である含珪素鋼と
しては、従来公知の成分組成のものいずれもが適合する
が、代表組成を掲げると次のとおりである。 C:0.01〜0.10wt%(以下単に%と示す) Cは、熱間圧延、冷間圧延中の組織の均一微細化のみら
なず、ゴス方位の発達に有用な成分であり、少なくとも
0.01%以上の添加が好ましい。しかしながら0.10%を超
えて含有されるとかえってゴス方位に乱れが生じるので
上限は0.10%程度が好ましい。
Here, as the silicon-containing steel which is the material of the present invention, any of the conventionally known component compositions is suitable, and the representative compositions are as follows. C: 0.01 to 0.10 wt% (hereinafter simply referred to as%) C is a component useful not only for the refinement of the structure during hot rolling and cold rolling but also for the development of Goss orientation, and at least
Addition of 0.01% or more is preferable. However, if the content exceeds 0.10%, the Goss orientation is rather disordered, so the upper limit is preferably about 0.10%.

【0014】Si:2.0 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5 %を上回ると冷延性が損なわれ、一方2.0 %に
満たないと比抵抗が低下するだけでなく、2次再結晶・
純化のために行われる最終高温焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Si量は2.0 〜4.5 %程度とするのが
好ましい。
Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5%, the cold rolling property is impaired, while if it is less than 2.0%, the specific resistance is reduced. Not only decreases but also secondary recrystallization
Since the crystal orientation is randomized by α-γ transformation during the final high-temperature annealing performed for purification, and a sufficient iron loss improving effect cannot be obtained, the Si content is preferably set to about 2.0 to 4.5%.

【0015】Mn:0.02〜0.12% Mnは、熱間脆化を防止するため少なくとも0.02%程度を
必要とするが、あまりに多すぎると磁気特性を劣化させ
るので上限は0.12%程度に定めるのが好ましい。
Mn: 0.02 to 0.12% Mn needs to be at least about 0.02% in order to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably set to about 0.12%. .

【0016】インヒビターとしては、いわゆるMnS,MnSe
系とAlN 系とがある。 MnS, MnSe系の場合は、 Se, Sのうちから選ばれる少なくとも1種:0.005 〜0.
06% Se, Sはいずれも、方向性けい素鋼板の2次再結晶を制
御するインヒビターとして有力な元素である。抑制力確
保の観点からは、少なくとも0.005 %程度を必要とする
が、0.06%を超えるとその効果が損なわれるので、その
下限、上限はそれぞれ0.01%, 0.06%程度とするのが好
ましい。
As the inhibitor, so-called MnS, MnSe
There are systems and AlN systems. In the case of MnS and MnSe, at least one selected from Se and S: 0.005 to 0.
06% Se and S are both effective elements as inhibitors that control the secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing the suppression power, at least about 0.005% is required, but if it exceeds 0.06%, the effect is impaired, so it is preferable to set the lower and upper limits to about 0.01% and 0.06%, respectively.

【0017】AlN 系の場合は、 Al:0.005 〜0.10%,N:0.004 〜0.015 % AlおよびNの範囲についても、上述したMnS, MnSe系の
場合と同様な理由により、上記の範囲に定めた。ここに
上記した MnS, MnSe系および AlN系はそれぞれ併用が可
能である。
In the case of AlN system, Al: 0.005 to 0.10%, N: 0.004 to 0.015% Al and N ranges are set to the above ranges for the same reason as in the case of MnS and MnSe systems described above. . The above MnS, MnSe and AlN types can be used together.

【0018】インヒビター成分としては上記したS, S
e, Alの他、Cu, Sn, Cr、Ge, Sb, Mo, Te, BiおよびP
なども有利に適合するので、それぞれ少量併せて含有さ
せることもできる。ここに上記成分の好適添加範囲はそ
れぞれ、Cu, Sn, Cr:0.01〜0.15%、Ge, Sb, Mo, Te,
Bi:0.005 〜0.1 %、P:0.01〜0.2 %であり、これら
の各インヒビター成分についても、単独使用および複合
使用いずれもが可能である。
As the inhibitor component, the above-mentioned S, S
e, Al, Cu, Sn, Cr, Ge, Sb, Mo, Te, Bi and P
Etc. are advantageously suited, so that a small amount can be included in each case. Here, the preferred addition ranges of the above components are Cu, Sn, Cr: 0.01 to 0.15%, Ge, Sb, Mo, Te,
Bi: 0.005 to 0.1%, P: 0.01 to 0.2%, and each of these inhibitor components can be used alone or in combination.

【0019】以下、この発明を詳細に説明する。まず、
この発明を完成するに至った実験結果について述べる。
Siを3.40%含む方向性電磁鋼スラブを加熱後に熱間圧延
を施し、次いで冷間圧延を施して板厚を0.23mmとしたの
ち、この鋼板表面に、突起ロールによる圧刻または電子
ビームの照射を、圧延方向とほぼ直交する向きに圧延方
向の間隔3mmで線状に行って線状溝を形成した。その
後、線状溝に、水を加えてスラリー状にしたSnO2を塗布
してから、通常の脱炭焼鈍、仕上げ焼鈍を施した。
The present invention will be described in detail below. First,
The experimental results that have led to the completion of the present invention will be described.
After heating a grain-oriented electrical steel slab containing 3.40% Si, hot-rolling it, then cold-rolling it to a thickness of 0.23 mm, and then stamping it with a projection roll or irradiating it with an electron beam. Was linearly formed at a distance of 3 mm in the rolling direction in a direction substantially orthogonal to the rolling direction to form linear grooves. After that, SnO 2 made into a slurry by adding water was applied to the linear grooves, and then ordinary decarburization annealing and finish annealing were performed.

【0020】かくして得られた鋼板からそれぞれサンプ
ルを採取し、磁気特性を測定した。また、同一冷間圧延
コイルの周辺から鋼板を採取し、溝を形成しただけの試
料および溝形成処理を施さない試料も作製し、比較材と
した。
A sample was taken from each of the steel sheets thus obtained, and the magnetic properties were measured. Further, a steel plate was sampled from the periphery of the same cold-rolled coil, and a sample with only groove formation and a sample without groove formation treatment were also prepared as comparative materials.

【0021】図1に、磁気特性の測定結果を示すよう
に、上記の手法に従って形成した線状溝にSnO2を充填す
ることにより、磁気特性が向上することがわかる。
As shown in FIG. 1 showing the measurement results of the magnetic characteristics, it is understood that the magnetic characteristics are improved by filling the linear grooves formed according to the above method with SnO 2 .

【0022】次に、Siを3.40%含む方向性電磁鋼スラブ
を加熱後に熱間圧延を施し、次いで冷間圧延を施して板
厚を0.23mmとしたのち、エッチングレジストインキを、
その非塗布部が圧延方向とほぼ直交する向きに幅0.2mm
及び圧延方向の間隔3mmで線状に残存するように塗布し
た。その後電解エッチングを施して深さ20μm の線状溝
を鋼板表面に導入した。なおレジストインキの塗布はグ
ラビアオフセット印刷によって行い、アルキド系樹脂を
主成分とするグラビアインキを用いた。また電解エッチ
ングはNaCl水溶液中で電流密度10A/dm2 、電解時間20s
の条件で行った。
Next, after heating the grain-oriented electrical steel slab containing 3.40% of Si, it is hot-rolled and then cold-rolled to a plate thickness of 0.23 mm.
Width 0.2 mm in the direction where the non-coated part is almost orthogonal to the rolling direction
And, the coating was applied so as to remain linearly at an interval of 3 mm in the rolling direction. Then, electrolytic etching was performed to introduce linear grooves with a depth of 20 μm on the surface of the steel sheet. The resist ink was applied by gravure offset printing, and a gravure ink containing an alkyd resin as a main component was used. Electrolytic etching is carried out in a NaCl aqueous solution with a current density of 10 A / dm 2 and electrolysis time of 20 s.
It went on condition of.

【0023】そして、形成した溝に対して電気Snめっき
を施した。めっき浴としては、イオン交換水1l 当たり
に、硫酸第一スズ60g、硫酸80g、クレゾールスルフォ
ン酸100 g、βナフトール1.0 gおよびゼラチン2gを
それぞれ溶解させたものを用い、浴温度は30℃とした。
電気めっき条件は、電流密度5A/dm2 、槽電圧10Vお
よび極間距離30mmにて、5〜20sで行った。しかるのち
レジスト剤を除去し通常の脱炭焼鈍、仕上げ焼鈍を施し
た。
Then, electric Sn plating was applied to the formed groove. As the plating bath, 60 g of stannous sulfate, 80 g of sulfuric acid, 100 g of cresol sulfonic acid, 1.0 g of β-naphthol and 2 g of gelatin were dissolved in 1 liter of ion-exchanged water, and the bath temperature was 30 ° C. .
The electroplating conditions were a current density of 5 A / dm 2 , a tank voltage of 10 V, and a distance between the electrodes of 30 mm, and 5 to 20 s. After that, the resist agent was removed, and ordinary decarburization annealing and finish annealing were performed.

【0024】かくして得られた鋼板からそれぞれサンプ
ルを採取した後、磁気特性を測定した。また、同一冷間
圧延コイルの周辺から鋼板を採取し、溝を形成しただけ
の試料および溝形成処理を施さない試料も作製し、比較
材とした。
Magnetic properties were measured after taking samples from the steel sheets thus obtained. Further, a steel plate was sampled from the periphery of the same cold-rolled coil, and a sample with only groove formation and a sample without groove formation treatment were also prepared as comparative materials.

【0025】図2に、エプスタイン測定結果を示すよう
に、溝にSnめっきを施すことにより、溝のみの場合に比
べて低い鉄損が得られることがわかる。なお、Snめっき
部には微細な結晶粒が生成している様子が観察された。
As shown in the Epstein measurement results in FIG. 2, it can be seen that by applying Sn plating to the groove, a lower iron loss can be obtained as compared with the case of only the groove. It was observed that fine crystal grains were generated in the Sn plated portion.

【0026】ここで、図2の測定結果と上記の図1の測
定結果とを比較すると、図2に示した測定結果で、鉄損
値がより安定していることがわかる。すなわち、鉄損
は、突起ロールや電子ビームによって溝を形成するより
も、エッチングによって溝を形成する場合により安定化
するのである。この理由は明らかではないが、突起ロー
ルや電子ビームによる溝加工は、鋼板に不均一な歪みが
発生して溝内物質の拡散も不均一になる場合があるのに
対して、エッチングによる溝加工は鋼板に歪みを全く発
生させないためと考えられる。
Here, comparing the measurement result of FIG. 2 with the measurement result of FIG. 1 described above, it can be seen that the iron loss value is more stable in the measurement result shown in FIG. That is, the iron loss is more stabilized when the groove is formed by etching than when the groove is formed by the projection roll or the electron beam. Although the reason for this is not clear, in the case of groove processing using a projection roll or an electron beam, uneven strain may occur in the steel sheet and the diffusion of substances in the groove may also become uneven, while groove processing by etching is performed. Is considered to be because no distortion occurs in the steel sheet.

【0027】従って、溝の形成は、電解エッチング等の
電気化学的方法、酸洗等の化学的方法が工業生産上望ま
しいが、特にこれらの手法に限定する必要はない。な
お、電解エッチングの場合、極距離は陽極−陰極間で電
子の授受が行われる範囲であれば特に規定はないが、導
伝効率上50mm以下が望ましい。電解エッチング液は公知
のもの、例えばNaCl水溶液やKCl 水溶液等が用いられ、
電流密度は5〜40A/dm 2 が望ましい。一方、酸洗処理
等の化学エッチングは、エッチング液として FeCl3 , H
NO3 , HCl 等を用いることができる。
Therefore, the groove is formed by electrolytic etching or the like.
Chemical method such as electrochemical method and pickling is desirable for industrial production
However, it is not necessary to limit to these methods. Na
In the case of electrolytic etching, the pole distance should be between the anode and cathode.
There are no specific rules as long as the transfer of children is possible,
50 mm or less is desirable in terms of transmission efficiency. Electrolytic etching solution is publicly known
For example, NaCl aqueous solution or KCl aqueous solution is used,
Current density is 5-40A / dm 2Is desirable. On the other hand, pickling treatment
Chemical etching such as FeCl is used as an etching solution.3, H
NO3,HCl or the like can be used.

【0028】さらに、同様の条件での実験を、鋼板に形
成する溝の幅、深さ、圧延方向に対する角度および圧延
方向での間隔を種々に変化して行った。その結果をそれ
ぞれ図3〜6に示すように、溝は、その幅が30〜300 μ
m 、深さが5〜100 μm 、圧延方向に対する角度60〜90
°、圧延方向の間隔が1mm以上で形成することが、鉄損
低減をはかる上で望ましい。溝の形状は、連続した線状
であっても、または点線、破線および波線状であっても
かまわない。
Further, an experiment under the same conditions was carried out by changing the width and depth of the groove formed in the steel sheet, the angle with respect to the rolling direction, and the interval in the rolling direction. The results are shown in Figs. 3 to 6, respectively, and the width of the groove is 30 to 300 µ.
m, depth 5-100 μm, angle 60-90 to the rolling direction
In order to reduce iron loss, it is desirable to form them at intervals of 1 mm or more in the rolling direction. The groove may have a continuous linear shape, or a dotted line, a broken line, and a wavy line.

【0029】また、溝に充填する物質は、まずSnの他、
BおよびSbが挙げられる。これらの充填方法は、電気め
っき法、無電解めっき法の他、PVD , CVD 等の気相めっ
き法が有利に適合する。さらに、これらの物質を十分に
粉砕し、水を加えてスラリー状にしたものを溝に付着さ
せても、同様の効果が得られる。なお、Sn ,BおよびSb
の各元素からなる酸化物または硫酸塩を溝に付着させた
場合にも、磁気特性改善効果が認められる。酸化物とし
ては、SnO2,SnO,B2O3,Sb2O3 、硫酸塩としては、SnSO4,
Sb2(SO4)3 が適合する。また、溝形成による効果は、鋼
板の片面への処理で十分であるが、両面に処理しても構
わない。なお、この発明に従う鋼板は平坦化焼鈍後、歪
取焼鈍を施すことなく積鉄心用素材として用いることは
勿論のこと、巻鉄心用素材として歪取焼鈍を施しても、
その効果が減少することはない。
The material to be filled in the groove is first Sn,
B and Sb. For these filling methods, electroplating methods, electroless plating methods, and vapor phase plating methods such as PVD and CVD are advantageously applicable. Further, even if these substances are sufficiently crushed and water is added to make a slurry, the same effect can be obtained. Note that Sn, B and Sb
The effect of improving the magnetic properties is also observed when the oxide or sulfate of each element is attached to the groove. As the oxide, SnO 2 , SnO, B 2 O 3 , Sb 2 O 3 , and as the sulfate, SnSO 4 ,
Sb 2 (SO 4 ) 3 is applicable. As for the effect of the groove formation, the treatment on one side of the steel plate is sufficient, but the treatment on both sides may be performed. Incidentally, the steel sheet according to the present invention is, after flattening annealing, of course used as a material for laminated core without performing stress relief annealing, even if subjected to stress relief annealing as a material for wound core,
Its effect does not diminish.

【0030】[0030]

【作用】この発明に従って溝形成後にSn ,BおよびSb並
びにこれら各元素の酸化物および硫酸塩のうちから選ば
れたいずれか1種を充填すると、従来にも増して低い鉄
損が得られるのは、線状溝による反磁界効果以外に、Sn
,B ,Sb等の充填によって2次再結晶粒の方位を損なう
ことなく細粒化が進むためと推察される。なお、溝中に
物質を充填することにより、高速で搬送されるライン上
でも付着物質が飛散することがなく、コイル巻取時にお
いても接触によって溝中の物質がはがれることはない。
According to the present invention, if any one selected from Sn, B and Sb and oxides and sulfates of these elements is filled after forming the groove, a lower iron loss than ever can be obtained. In addition to the demagnetizing effect due to the linear groove,
It is presumed that the filling of B, S, Sb, etc. progresses the grain refinement without impairing the orientation of the secondary recrystallized grains. By filling the groove with the substance, the adhered substance does not scatter even on a line conveyed at a high speed, and the substance in the groove is not peeled off by contact even during coil winding.

【0031】[0031]

【実施例】実施例1 C:0.043 %, Si : 3.36 %, Mn : 0.070%, Mo : 0.0
13%, Se : 0.019%、及びSb : 0.023%を含有するけい
素鋼スラブを、1360℃で3時間加熱後、熱間圧延して
2.4mm厚の熱延板とした後、970 ℃で3分の中間焼鈍を
はさむ2回の冷間圧延を施して0.23mm厚の最終冷延板と
した。次いで、最終仕上げ焼鈍を施す前の鋼板にマスキ
ング剤としてレジストインキを、非塗布部が圧延方向と
垂直な方向に幅 0.2mm、圧延方向に間隔3mmで直線状に
残存するように塗布した。その後、NaCl水溶液中で、電
流密度10A/dm2 、電解時間20sおよび極間距離30mmの
条件下で電解エッチングすることによって、レジストイ
ンキの非塗布部、すなわち地鉄露出部に深さが20μm 程
度の溝を形成したのち、レジスト剤を除去した。引き続
き、形成した溝部に、十分に粉砕した後水を加えてスラ
リー状とした、Sn ,BおよびSbを、刷毛によってそれぞ
れ塗布した。
EXAMPLES Example 1 C: 0.043%, Si: 3.36%, Mn: 0.070%, Mo: 0.0
A silicon steel slab containing 13%, Se: 0.019%, and Sb: 0.023% was heated at 1360 ° C for 3 hours and then hot-rolled.
After forming a hot rolled sheet having a thickness of 2.4 mm, cold rolling was performed twice at 970 ° C. with intermediate annealing for 3 minutes to obtain a final cold rolled sheet having a thickness of 0.23 mm. Next, a resist ink as a masking agent was applied to the steel sheet before the final finish annealing so that the non-applied portion remained linearly with a width of 0.2 mm in the direction perpendicular to the rolling direction and an interval of 3 mm in the rolling direction. After that, electrolytic etching is performed in a NaCl aqueous solution under conditions of a current density of 10 A / dm 2 , an electrolysis time of 20 s, and a distance between the electrodes of 30 mm, so that the depth of the resist ink non-coated portion, that is, the exposed portion of the base metal is about 20 μm. After forming the groove, the resist agent was removed. Subsequently, Sn, B, and Sb, which were made into a slurry form by sufficiently pulverizing and then adding water, were applied to the formed groove portions with a brush.

【0032】上記処理を経たものを、脱炭焼鈍、最終仕
上げ焼鈍したのち平坦化焼鈍を施した。また比較とし
て、溝形成材と同一の最終冷間圧延コイルの溝形成材採
取部の近傍から鋼板を採取し、溝の形成を行わずに、溝
形成材と同様の一連の工程を施した。かくして得られた
鋼板について磁気特性を測定した結果を、表1に示す。
After the above treatment, decarburization annealing, final finish annealing, and flattening annealing were performed. For comparison, a steel plate was sampled from the vicinity of the groove forming material sampling portion of the same final cold rolling coil as the groove forming material, and the same series of steps as the groove forming material was performed without forming the groove. The results of measuring the magnetic properties of the steel sheet thus obtained are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例2 実施例1と同様の組成になるスラブを同様に処理して得
た、レジスト印刷済の鋼板を、30% HNO3 中に15〜30s
浸たして、20μm 程度の深さの溝を形成し、この溝部に
電気めっきによって、SnおよびSbをそれぞれ塗布した。
ここで、Snめっきは、イオン交換水1l 当たりに硫酸第
一Sn60g、硫酸80g、クレゾールスルフォン酸Sn100
g、βナフトール1.0 gおよびゼラチン2gをそれぞれ
溶解させたものを用い、浴温度を30℃とし、電気めっき
条件を、電流密度5A/dm2 、時間5〜20gおよび極間
距離:30mmとして行った。またSbめっきは、イオン交換
水1l 当たりに、三酸化アンチモン52g、クエン酸カリ
ウム150 gおよびクエン酸180 gをそれぞれ溶解させて
なる、温度:55℃の浴を用いて、めっき条件は、電流密
度: 3.5A/dm2 、時間:5〜20sおよび極間距離:30
mmとして行った。しかるのち、レジスト剤を除去し、通
常の脱炭焼鈍、仕上げ焼鈍を施した。
Example 2 A slab having the same composition as in Example 1 was treated in the same manner to obtain a resist-printed steel sheet in 30% HNO 3 for 15 to 30 seconds.
By immersing, a groove having a depth of about 20 μm was formed, and Sn and Sb were applied to the groove by electroplating.
Here, Sn plating is 60 g of first sulfuric acid Sn, 80 g of sulfuric acid, and Sn100 of cresol sulfonic acid per 1 liter of ion-exchanged water.
g, β-naphthol (1.0 g) and gelatin (2 g) were dissolved, the bath temperature was 30 ° C., and the electroplating conditions were a current density of 5 A / dm 2 , a time of 5 to 20 g, and a gap between electrodes: 30 mm. . The Sb plating is performed by dissolving 52 g of antimony trioxide, 150 g of potassium citrate and 180 g of citric acid in 1 liter of ion-exchanged water and using a bath at a temperature of 55 ° C. : 3.5 A / dm 2 , time: 5 to 20 s , distance between poles: 30
went as mm. After that, the resist agent was removed, and ordinary decarburization annealing and finish annealing were performed.

【0035】また比較として、溝形成材と同一の最終冷
間圧延コイルの溝形成材採取部の近傍から鋼板を採取
し、溝の形成を行わない試料および溝を形成しただけの
試料を用意し、上記と同様の一連の工程を施した。かく
して得られた鋼板について磁気特性を測定した結果を、
表2に示す。
For comparison, a steel plate was sampled from the vicinity of the groove forming material collecting portion of the same final cold rolling coil as the groove forming material, and a sample in which no groove was formed and a sample in which the groove was formed were prepared. A series of steps similar to those described above were performed. The results of measuring the magnetic properties of the steel sheet thus obtained,
It shows in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】実施例3 実施例1と同様の最終冷間圧延後、最終仕上げ焼鈍を施
す前の鋼板(板厚 0.23mm)にマスキング剤としてレジス
トインキを、その非塗布部が圧延方向と直交する向きに
幅 0.2mmの点線状(点間隔0.2mm )となるように塗布し
たのち、NaCl水溶液中で、電流密度:10A/dm2 、電解
時間:20sおよび極間距離:30mmの条件下で電解エッチ
ングすることによって、レジストインキの非塗布部、す
なわち地鉄露出部に深さが20μm 程度の点線状に延びる
溝を形成した。次いで、形成した溝部に、実施例2の条
件に準じてSnめっきおよびSbめっきをそれぞれ施し、し
かるのちレジスト剤を除去した。その後、通常の脱炭焼
鈍および仕上げ焼鈍を施した。
Example 3 A resist ink was used as a masking agent on a steel sheet (sheet thickness: 0.23 mm) after final cold rolling and before final finish annealing as in Example 1, and its non-coated portion is orthogonal to the rolling direction. After applying it so that it becomes a dotted line with a width of 0.2 mm (point spacing 0.2 mm), electrolysis under conditions of current density: 10 A / dm 2 , electrolysis time: 20 s and distance between electrodes: 30 mm in NaCl aqueous solution. By etching, a groove extending in a dotted line with a depth of about 20 μm was formed in the resist ink non-applied portion, that is, the exposed portion of the base metal. Then, the formed groove was subjected to Sn plating and Sb plating in accordance with the conditions of Example 2, and then the resist agent was removed. Then, usual decarburization annealing and finish annealing were performed.

【0038】また比較として、溝形成材と同一の最終冷
間圧延コイルの溝形成材採取部の近傍から鋼板を採取
し、溝の形成を行わない試料および溝を形成しただけの
試料を用意し、上記と同様の一連の工程を施した。かく
して得られた鋼板について磁気特性を測定した結果を、
表3に示す。
For comparison, a steel plate was sampled from the vicinity of the groove forming material collecting portion of the same final cold rolling coil as the groove forming material, and a sample without groove formation and a sample with groove formation were prepared. A series of steps similar to those described above were performed. The results of measuring the magnetic properties of the steel sheet thus obtained,
It shows in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】実施例4 C:0.03%, Si : 3.36 %, Mn : 0.070%, Se : 0.019
%、Al:0.025 %、N:0.0090%及びSb : 0.023%を含
有するけい素鋼スラブを、1360℃で3時間加熱後、熱間
圧延して 2.4mm厚の熱延板とした後、該熱延コイルに10
00℃で1分間の焼鈍を施し、冷間圧延にて1.3 mm厚とし
た。その後、1000℃で1分間の中間焼鈍をはさむ2回の
冷間圧延を施して0.23mm厚の最終冷延板とした。次い
で、最終仕上げ焼鈍を施す前の鋼板にマスキング剤とし
てレジストインキを、非塗布部が圧延方向と垂直な方向
に幅 0.2mm、圧延方向に間隔3mmで直線状に残存するよ
うに塗布した。その後、NaCl水溶液中で、電流密度10A
/dm2 、電解時間20sおよび極間距離30mmの条件下で電
解エッチングすることによって、レジストインキの非塗
布部、すなわち地鉄露出部に深さが20μm 程度の溝を形
成したのち、レジスト剤を除去した。引き続き、形成し
た溝部に、十分に粉砕した後水を加えてスラリー状とし
た、Sn ,BおよびSbを、刷毛によってそれぞれ塗布し
た。
Example 4 C: 0.03%, Si: 3.36%, Mn: 0.070%, Se: 0.019
%, Al: 0.025%, N: 0.0090% and Sb: 0.023%, a silicon steel slab is heated at 1360 ° C. for 3 hours and hot-rolled into a hot rolled sheet having a thickness of 2.4 mm. 10 for hot rolled coil
Annealing was performed at 00 ° C for 1 minute, and cold rolling was performed to a thickness of 1.3 mm. After that, cold rolling was performed twice at 1000 ° C. with intermediate annealing for 1 minute to obtain a final cold-rolled sheet having a thickness of 0.23 mm. Then, a resist ink as a masking agent was applied to the steel sheet before the final finish annealing so that the non-applied portion remained linearly with a width of 0.2 mm in the direction perpendicular to the rolling direction and an interval of 3 mm in the rolling direction. After that, the current density is 10A in NaCl aqueous solution.
/ Dm 2 , electrolysis time of 20 s, and distance between poles of 30 mm, electrolytic etching is performed to form a groove with a depth of about 20 μm in the resist ink non-coated area, that is, the exposed area of the base metal. Removed. Subsequently, Sn, B and Sb, which had been sufficiently pulverized and then added with water to form a slurry, were applied to the formed groove by a brush.

【0041】上記処理を経たものを、脱炭焼鈍、最終仕
上げ焼鈍したのち平坦化焼鈍を施し、その後800 ℃で3
時間の歪取焼鈍を行った。また比較として、溝形成材と
同一の最終冷間圧延コイルの溝形成材採取部の近傍から
鋼板を採取し、溝の形成を行わずに、溝形成材と同様の
一連の工程を施した。かくして得られた鋼板について磁
気特性を測定した結果を、表4に示す。
The material that has been subjected to the above treatment is subjected to decarburization annealing, final finish annealing, and then flattening annealing, and then at 800 ° C for 3
Time strain relief annealing was performed. For comparison, a steel plate was sampled from the vicinity of the groove forming material sampling portion of the same final cold rolling coil as the groove forming material, and the same series of steps as the groove forming material was performed without forming the groove. Table 4 shows the results of measuring the magnetic properties of the steel sheet thus obtained.

【0042】[0042]

【表4】 [Table 4]

【0043】実施例5 実施例4と同様の組成になるスラブを同様に処理して得
た、レジスト印刷済の鋼板を、30% HNO3 中に15〜30s
浸たして、20μm 程度の深さの溝を形成し、この溝部に
電気めっきによって、SnおよびSbをそれぞれ塗布した。
ここで、Snめっきは、イオン交換水1l 当たりに硫酸第
一Sn60g、硫酸80g、クレゾールスルフォン酸Sn100
g、βナフトール1.0 gおよびゼラチン2gをそれぞれ
溶解させたものを用い、浴温度を30℃とし、電気めっき
条件を、電流密度5A/dm2 、時間5〜20gおよび極間
距離:30mmとして行った。またSbめっきは、イオン交換
水1l 当たりに、三酸化アンチモン52g、クエン酸カリ
ウム150 gおよびクエン酸180 gをそれぞれ溶解させて
なる、温度:55℃の浴を用いて、めっき条件は、電流密
度: 3.5A/dm2 、時間:5〜20sおよび極間距離:30
mmとして行った。しかるのち、レジスト剤を除去し、通
常の脱炭焼鈍、仕上げ焼鈍を施した。
Example 5 A resist-printed steel sheet obtained by similarly treating a slab having the same composition as in Example 4 was used in 30% HNO 3 for 15 to 30 seconds.
By immersing, a groove having a depth of about 20 μm was formed, and Sn and Sb were applied to the groove by electroplating.
Here, Sn plating is 60 g of first sulfuric acid Sn, 80 g of sulfuric acid, and Sn100 of cresol sulfonic acid per 1 liter of ion-exchanged water.
g, β-naphthol (1.0 g) and gelatin (2 g) were dissolved, the bath temperature was 30 ° C., and the electroplating conditions were a current density of 5 A / dm 2 , a time of 5 to 20 g, and a gap between electrodes: 30 mm. . The Sb plating is performed by dissolving 52 g of antimony trioxide, 150 g of potassium citrate and 180 g of citric acid in 1 liter of ion-exchanged water and using a bath at a temperature of 55 ° C. : 3.5 A / dm 2 , time: 5 to 20 s , distance between poles: 30
went as mm. After that, the resist agent was removed, and ordinary decarburization annealing and finish annealing were performed.

【0044】また比較として、溝形成材と同一の最終冷
間圧延コイルの溝形成材採取部の近傍から鋼板を採取
し、溝の形成を行わない試料および溝を形成しただけの
試料を用意し、上記と同様の一連の工程を施した。かく
して得られた鋼板について磁気特性を測定した結果を、
表5に示す。
For comparison, a steel plate was sampled from the vicinity of the groove forming material collecting portion of the same final cold rolling coil as the groove forming material, and a sample without groove formation and a sample with groove formation were prepared. A series of steps similar to those described above were performed. The results of measuring the magnetic properties of the steel sheet thus obtained,
It shows in Table 5.

【0045】[0045]

【表5】 [Table 5]

【0046】実施例6 実施例4と同様の最終冷間圧延後、最終仕上げ焼鈍を施
す前の鋼板(板厚 0.23mm)にマスキング剤としてレジス
トインキを、その非塗布部が圧延方向と直交する向きに
幅 0.2mmの点線状(点間隔0.2mm )となるように塗布し
たのち、NaCl水溶液中で、電流密度:10A/dm2 、電解
時間:20sおよび極間距離:30mmの条件下で電解エッチ
ングすることによって、レジストインキの非塗布部、す
なわち地鉄露出部に深さが20μm 程度の点線状に延びる
溝を形成した。次いで、形成した溝部に、実施例2の条
件に準じてSnめっきおよびSbめっきをそれぞれ施し、し
かるのちレジスト剤を除去した。その後、通常の脱炭焼
鈍および仕上げ焼鈍を施した。
Example 6 After the same final cold rolling as in Example 4, the resist ink was used as a masking agent on the steel sheet (sheet thickness 0.23 mm) before final finishing annealing, and the non-coated portion was orthogonal to the rolling direction. After applying it so as to form a dotted line with a width of 0.2 mm (point spacing 0.2 mm), electrolysis under conditions of current density: 10 A / dm 2 , electrolysis time: 20 s, and distance between electrodes: 30 mm in NaCl aqueous solution. By etching, a groove extending in a dotted line with a depth of about 20 μm was formed in the resist ink non-applied portion, that is, the exposed portion of the base metal. Then, the formed groove was subjected to Sn plating and Sb plating in accordance with the conditions of Example 2, and then the resist agent was removed. Then, usual decarburization annealing and finish annealing were performed.

【0047】また比較として、溝形成材と同一の最終冷
間圧延コイルの溝形成材採取部の近傍から鋼板を採取
し、溝の形成を行わない試料および溝を形成しただけの
試料を用意し、上記と同様の一連の工程を施した。かく
して得られた鋼板について磁気特性を測定した結果を、
表6に示す。
As a comparison, a steel plate was sampled from the vicinity of the groove forming material collecting portion of the same final cold rolling coil as the groove forming material, and a sample without groove formation and a sample with groove formation were prepared. A series of steps similar to those described above were performed. The results of measuring the magnetic properties of the steel sheet thus obtained,
It shows in Table 6.

【0048】[0048]

【表6】 [Table 6]

【0049】実施例7 実施例4と同様の組成になるスラブを同様に処理して得
た、レジスト印刷済の鋼板を、30% HNO3 中に15〜30s
浸たして、20μm 程度の深さの溝を形成した後、レジス
ト剤を除去し、溝内に、水を加えてスラリー状としたSn
O2,B2O3,Sb2O3またはSnSO4 を充填した。次いで、これ
らの鋼板に、通常の脱炭焼鈍、仕上げ焼鈍を施した。
Example 7 A resist-printed steel sheet obtained by similarly treating a slab having the same composition as that of Example 4 was used in 30% HNO 3 for 15 to 30 seconds.
After immersing to form a groove with a depth of about 20 μm, the resist agent was removed, and water was added to the groove to form a slurry Sn.
It was filled with O 2 , B 2 O 3 , Sb 2 O 3 or SnSO 4 . Then, these steel sheets were subjected to usual decarburization annealing and finish annealing.

【0050】また比較として、溝形成材と同一の最終冷
間圧延コイルの溝形成材採取部の近傍から鋼板を採取
し、溝の形成を行わない試料および溝を形成しただけの
試料を用意し、上記と同様の一連の工程を施した。かく
して得られた鋼板について磁気特性を測定した結果を、
表7に示す。
For comparison, a steel plate was sampled from the vicinity of the groove forming material sampling portion of the same final cold rolling coil as the groove forming material, and a sample without groove formation and a sample with only groove formation were prepared. A series of steps similar to those described above were performed. The results of measuring the magnetic properties of the steel sheet thus obtained,
It shows in Table 7.

【0051】[0051]

【表7】 [Table 7]

【0052】[0052]

【発明の効果】この発明によれば、磁気特性が良好で安
定した、従来にない方向性電磁鋼板を安定して製造する
ことが可能である。
According to the present invention, it is possible to stably manufacture a grain-oriented electrical steel sheet which has a good magnetic property and is stable and which has never been obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】各種処理後の磁気特性を示す図である。FIG. 1 is a diagram showing magnetic characteristics after various treatments.

【図2】各種処理後の磁気特性を示す図である。FIG. 2 is a diagram showing magnetic characteristics after various treatments.

【図3】溝幅と低鉄損低下量ΔW1750との関係を示す
ための図である。
3 is a diagram for illustrating the relationship between the decrease amount [Delta] W 17/50 groove width and a low iron loss.

【図4】溝深さと低鉄損低下量ΔW1750との関係を示
すための図である。
4 is a diagram for illustrating the relationship between the groove depth and low iron loss reduction amount [Delta] W 17/50.

【図5】溝の圧延方向に対する角度と低鉄損低下量ΔW
1750との関係を示すための図である。
FIG. 5: Angle of groove with respect to rolling direction and low iron loss reduction amount ΔW
It is a diagram for illustrating the relationship between the 17/50.

【図6】溝の間隔と低鉄損低下量ΔW1750との関係を
示すための図である。
6 is a diagram showing the relation between the distance and the low iron loss reduction amount [Delta] W 17/50 of the groove.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 方向性電磁鋼素材を熱間圧延した後、1
回又は中間焼鈍を挟む2回以上の冷間圧延を施して最終
製品板厚とし、しかる後脱炭焼鈍、次いで仕上げ焼鈍を
施す一連の工程からなる方向性電磁鋼板の製造方法にお
いて、最終冷間圧延後かつ仕上焼鈍前の鋼板に、その圧
延方向とほぼ直交する向きに延びる線状溝を形成した
後、該線状溝内に Sn,BおよびSb並びにこれら各元素の
酸化物および硫酸塩のうちから選ばれたいずれか1種を
充填することを特徴とする、低鉄損方向性電磁鋼板の製
造方法。
1. After hot rolling of a grain-oriented electrical steel material, 1
In the method for producing a grain-oriented electrical steel sheet, which comprises a series of steps of performing cold rolling two or more times with intermediate or intermediate annealing to obtain a final product sheet thickness, and then performing decarburizing annealing and then finish annealing. After forming linear grooves extending in a direction substantially orthogonal to the rolling direction on the steel sheet after rolling and before finish annealing, Sn, B and Sb and oxides and sulfates of these elements are formed in the linear grooves. A method for producing a low iron loss grain-oriented electrical steel sheet, which comprises filling any one selected from the above.
【請求項2】 幅:30〜300 μm および深さ:5〜100
μm で、圧延方向に対して60〜90°の角度で延びる線状
溝を、圧延方向に1mm以上の間隔で配列する、請求項1
記載の低鉄損方向性電磁鋼板の製造方法。
2. Width: 30 to 300 μm and depth: 5 to 100
The linear grooves extending at an angle of 60 to 90 ° with respect to the rolling direction in μm are arranged at intervals of 1 mm or more in the rolling direction.
A method for producing the low iron loss grain-oriented electrical steel sheet described.
JP5193643A 1992-08-05 1993-08-04 Production of low core loss grain-oriented silicon steel sheet Pending JPH06100939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5193643A JPH06100939A (en) 1992-08-05 1993-08-04 Production of low core loss grain-oriented silicon steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-209037 1992-08-05
JP20903792 1992-08-05
JP5193643A JPH06100939A (en) 1992-08-05 1993-08-04 Production of low core loss grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH06100939A true JPH06100939A (en) 1994-04-12

Family

ID=26507993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5193643A Pending JPH06100939A (en) 1992-08-05 1993-08-04 Production of low core loss grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH06100939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095745A (en) * 2015-11-19 2017-06-01 新日鐵住金株式会社 Grain oriented silicon steel sheet and method for manufacturing the same
KR20180108838A (en) 2016-03-31 2018-10-04 신닛테츠스미킨 카부시키카이샤 Directional electromagnetic steel plate
JP2020516766A (en) * 2017-03-27 2020-06-11 バオシャン アイアン アンド スティール カンパニー リミテッド Low iron loss grain oriented silicon steel and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095745A (en) * 2015-11-19 2017-06-01 新日鐵住金株式会社 Grain oriented silicon steel sheet and method for manufacturing the same
KR20180108838A (en) 2016-03-31 2018-10-04 신닛테츠스미킨 카부시키카이샤 Directional electromagnetic steel plate
US10662491B2 (en) 2016-03-31 2020-05-26 Nippon Steel Corporation Grain-oriented electrical steel sheet
JP2020516766A (en) * 2017-03-27 2020-06-11 バオシャン アイアン アンド スティール カンパニー リミテッド Low iron loss grain oriented silicon steel and method for producing the same
US11638971B2 (en) 2017-03-27 2023-05-02 Baoshan Iron & Steel Co., Ltd. Grain-oriented silicon steel with low core loss and manufacturing method therefore

Similar Documents

Publication Publication Date Title
US4863531A (en) Method for producing a grain-oriented electrical steel sheet having a low watt loss
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
RU2767356C1 (en) Method for producing a sheet of electrotechnical steel with oriented grain structure
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
WO2011162086A1 (en) Method for producing unidirectional electromagnetic steel sheet
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
US6228182B1 (en) Method and low iron loss grain-oriented electromagnetic steel sheet
CN113272459B (en) Method for producing grain-oriented electrical steel sheet
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JP3399969B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0347975A (en) Low-iron loss grain-oriented silicon steel sheet
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
RU2771130C1 (en) Method for producing electrical steel sheet with oriented grain structure
JP2942074B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
RU2771315C1 (en) Method for producing electrical steel sheet with oriented grain structure
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
RU2771767C1 (en) Method for producing electrical steel sheet with oriented grain structure
JPH0335377B2 (en)
JPH0453084B2 (en)
JP3456869B2 (en) Manufacturing method of unidirectional electrical steel sheet