JPH07320921A - Directional electromagnetic steel sheet at low iron loss - Google Patents

Directional electromagnetic steel sheet at low iron loss

Info

Publication number
JPH07320921A
JPH07320921A JP6115189A JP11518994A JPH07320921A JP H07320921 A JPH07320921 A JP H07320921A JP 6115189 A JP6115189 A JP 6115189A JP 11518994 A JP11518994 A JP 11518994A JP H07320921 A JPH07320921 A JP H07320921A
Authority
JP
Japan
Prior art keywords
iron loss
groove
rolling direction
steel sheet
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6115189A
Other languages
Japanese (ja)
Other versions
JP3369724B2 (en
Inventor
Kunihiro Senda
邦浩 千田
Masayoshi Ishida
昌義 石田
Keiji Sato
圭司 佐藤
Kazuhiro Suzuki
一弘 鈴木
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11518994A priority Critical patent/JP3369724B2/en
Publication of JPH07320921A publication Critical patent/JPH07320921A/en
Application granted granted Critical
Publication of JP3369724B2 publication Critical patent/JP3369724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To further improve the magnetic characteristics especially the iron loss characteristics by a method wherein a band region comprising fine crystal particle group are provided between adjacent trenches in the almost orthogonal direction to the rolling direction. CONSTITUTION:As an inhibitor, hot rolled sheet comprising silicon steel is rolled by two time cold rolls and after coating with an etching resist, linear trenches are formed by electrolytic etching step. After the trench formation, the free particle producing step coating SnSO4 particles is performed in the orthogonal direction to the tolling direction in the intermediate regions between adjacent trenches.. In such a constitution, the linear trenches are in width between 30mum and 300mum, in depth 10mum to 70mum, the interval in the rolling direction between 1mm-30mm, the deflection angle not exceeding 30 deg., on the other hand, the band fine particle region is in width not exceeding 2mm, the interval in the rolling direction between 1mm-50mm, the deflection angle from the orthogonal direction to the rolling direction not exceeding 30 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は変圧器その他の電気機
器の鉄心に用いて好適な低鉄損方向性電磁鋼板に関する
ものである。方向性電磁鋼板は主として変圧器の鉄心材
料として用いられ、その磁気特性が良好であることが要
求される。特に鉄心として使用した場合のエネルギー損
失、すなわち鉄損が低いことが重要である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low iron loss grain oriented electrical steel sheet suitable for use as an iron core of a transformer or other electric equipment. The grain-oriented electrical steel sheet is mainly used as an iron core material of a transformer and is required to have good magnetic properties. In particular, it is important that the energy loss when used as an iron core, that is, the iron loss is low.

【0002】[0002]

【従来の技術】従来から鉄損を低減させるために、結晶
方位を(110)〔001〕方位により高度に揃えるこ
と、Si含有量を上げそれによって鋼板の電気抵抗を増加
させること、不純物を低減させること、そして板厚を薄
くすることなどが種々に行われてきた。その結果、板厚
が0.23mm以下の鋼板では、鉄損W17/50(磁束密度1.7
T,50Hzの場合の鉄損値) が0.9 W/kg以下のものが製造
されるようになった。しかし、冶金学的な方法ではこれ
以上の大幅な鉄損の改善は期待できない。
2. Description of the Related Art Conventionally, in order to reduce iron loss, the crystal orientation is highly aligned with the (110) [001] orientation, the Si content is increased to thereby increase the electrical resistance of the steel sheet, and the impurities are reduced. Various methods have been performed, such as allowing the plate to be thin and reducing the plate thickness. As a result, iron loss W 17/50 (magnetic flux density 1.7
Iron loss value at T, 50Hz) is 0.9 W / kg or less. However, metallurgical methods cannot be expected to further improve iron loss.

【0003】そこで、近年、鉄損の大幅な低減を達成す
る手段として人為的に磁区を細分化する方法が種々試み
られるようになった。その中で現在工業化されている方
法としては、特公昭57−2252号公報の方向性電磁鋼板の
鉄損特性改善方法に提案開示されているような、仕上げ
焼鈍済みの鋼板表面にレーザーを照射する方法がある。
しかし、この方法は、鉄損低減に効果があるとはいうも
のの、歪取り焼鈍によって鉄損の劣化を来すという欠点
があり、歪取り焼鈍を必須とする巻鉄心用としては用い
られない。
Therefore, in recent years, various methods for artificially subdividing magnetic domains have been tried as means for achieving a significant reduction in iron loss. Among them, the method currently industrialized is to irradiate a laser on the surface of a steel sheet that has been finish-annealed, as disclosed in the method proposed in JP-B-57-2252 for improving the iron loss characteristics of grain-oriented electrical steel sheets. There is a way.
However, although this method is effective in reducing iron loss, it has a drawback that the iron loss is deteriorated by stress relief annealing, and is not used for wound cores that require stress relief annealing.

【0004】かような磁区細分化方法を改良して歪取り
焼鈍を可能とした鉄損低減技術として特公昭62−54873
号公報の低鉄損一方向性電磁鋼板の製造方法には、仕上
げ焼鈍済みの鋼板にレーザーや機械的手段によって局所
的に絶縁膜を除去したのち、被膜除去部を酸洗する方法
やナイフなどにより機械的に直接地鉄までけがくなどの
方法により、線状の溝を局所的に形成したのち、溝を充
填するようにりん酸系の張力付与被膜処理を施す方法
が、また特公昭62−53579 号公報の低鉄損一方向性電磁
鋼板の製造方法には、仕上げ焼鈍済みの鋼板に90〜220
kgf/mm2 の荷重で地鉄部分に深さ5μm 超の溝を形成し
たのち、750 ℃以上の温度で加熱処理する方法が、さら
に、特公平3−69968 号公報には、最終冷間圧延後の鋼
板の圧延方向とほぼ直角な方向に線状刻み目を導入する
方法が、それぞれ提案開示されている。
Japanese Patent Publication No. 62-54873 as an iron loss reduction technique which enables strain relief annealing by improving such a magnetic domain subdivision method.
The low iron loss unidirectional electrical steel sheet manufacturing method disclosed in the publication is a method in which the insulating film is locally removed from the finished annealed steel sheet by a laser or mechanical means, and then the film removal portion is pickled, a knife, etc. A method of forming a linear groove locally by a method such as mechanically scribing directly on the base metal by means of a method of applying a phosphoric acid-based tension-imparting coating treatment so as to fill the groove is also available. -53579 discloses a method for manufacturing low iron loss unidirectional electrical steel sheets, which is based on 90-220 for finish annealed steel sheets.
A method of forming a groove with a depth of more than 5 μm in the base iron part with a load of kgf / mm 2 and then heat-treating at a temperature of 750 ° C. or higher is further described in Japanese Examined Patent Publication No. 3-69968. Proposed and disclosed are methods of introducing linear notches in a direction substantially perpendicular to the rolling direction of the subsequent steel sheet.

【0005】[0005]

【発明が解決しようとする課題】上掲特公昭62−54873
号公報、特公昭62−53579 号公報及び特公平3−69968
号公報に開示の方法により得られる鋼板は、線状の溝を
有する点において共通しており、溝周辺に発生する磁極
に由来した磁区細分化効果が鉄損改善原理の1つとなっ
ている。そして、現在これらの方法を用いた鋼板が歪取
焼鈍可能な電磁鋼板として工業的に生産されている。し
かしながら、これらの鋼板は、磁極の生成が溝近傍に限
られるために磁区細分化効果が十分とはいえず、鉄損低
減に関して改善の余地が残されていた。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 62-54873
JP-B, JP-B-62-53579 and JP-B-3-69968
The steel sheets obtained by the method disclosed in the publication are common in that they have linear grooves, and the magnetic domain refinement effect derived from the magnetic poles generated around the grooves is one of the iron loss improving principles. At present, steel sheets using these methods are industrially produced as magnetic steel sheets capable of stress relief annealing. However, these steel sheets cannot be said to have a sufficient magnetic domain subdivision effect because the generation of magnetic poles is limited to the vicinity of the groove, and there is room for improvement in reducing iron loss.

【0006】そこでこの発明の目的は、表面に溝を形成
した方向性けい素鋼板に関して、さらなる磁気特性の向
上、特に鉄損特性の向上を図った方向性電磁鋼板を提案
することにある。
Therefore, an object of the present invention is to provide a grain-oriented electrical steel sheet having further improved magnetic characteristics, particularly iron loss characteristics, with respect to the grain-oriented silicon steel sheet having grooves formed on its surface.

【0007】[0007]

【課題を解決するための手段】発明者らは上記課題を解
決すべく鋭意研究を重ねた結果、表面に圧延方向とほぼ
直角な方向に延びる線状の溝を有する鋼板であって、該
線状溝以外の部分に粒径の微細な結晶粒が圧延方向と直
角方向に連続もしくは不連続に存在し、しかもこの微細
結晶粒の存在領域の幅が2mm以下であるような電磁鋼板
が、従来にも増して低鉄損を示すことを知見として得、
この発明をなすに到った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the inventors have found that a steel sheet having a linear groove extending on the surface in a direction substantially perpendicular to the rolling direction, Conventionally, there is a magnetic steel sheet in which fine crystal grains with a fine grain size exist continuously or discontinuously in the direction perpendicular to the rolling direction in a portion other than the groove, and the width of the region where the fine crystal grains exist is 2 mm or less. It was obtained as a finding that it shows a lower iron loss than
The invention was made.

【0008】すなわちこの発明は、表面に圧延方向とほ
ぼ直交する方向に延びる線状の溝を複数本有する方向性
電磁鋼板であって、互いに隣り合う溝間に微細結晶粒群
からなる帯状領域を圧延方向とほぼ直交する方向にそな
えることを特徴とする鉄損の低い方向性電磁鋼板であ
る。
That is, the present invention is a grain-oriented electrical steel sheet having a plurality of linear grooves extending on the surface in a direction substantially orthogonal to the rolling direction, wherein a band-shaped region composed of a group of fine crystal grains is formed between adjacent grooves. It is a grain-oriented electrical steel sheet with low iron loss characterized by being provided in a direction substantially orthogonal to the rolling direction.

【0009】ここに、線状の溝は、幅が30μm 以上300
μm 以下、深さが10μm 以上70μm以下、圧延方向の間
隔が1mm以上30mm以下、圧延方向と直交する方向からの
偏倚角度が30°以内であり、かつ帯状微細粒領域は、幅
2mm以下、圧延方向の間隔が1mm以上50mm以下、圧延方
向と直交する方向からの偏倚角度が30°以内であること
が好適である。
The linear groove has a width of 30 μm or more and 300 or more.
μm or less, depth of 10 μm or more and 70 μm or less, spacing in the rolling direction of 1 mm or more and 30 mm or less, deviation angle from the direction orthogonal to the rolling direction is 30 ° or less, and the band-shaped fine grain region has a width of 2 mm or less, rolling It is preferable that the interval between the directions is 1 mm or more and 50 mm or less, and the deviation angle from the direction orthogonal to the rolling direction is within 30 °.

【0010】以下、この発明の基礎となった研究結果に
ついて説明する。インヒビターとしてMnSe, AlN を含む
Si:3.3 %の含けい素鋼熱間圧延板を中間焼鈍を挟む2
回の冷間圧延により0.23mm厚まで圧延し、その後は以下
に示す(A) 〜(E) の5種類の工程を施して、各種の電磁
鋼板を得た。
The results of the research on which the present invention is based will be described below. Contains MnSe and AlN as inhibitors
Intermediate annealing of Si: 3.3% silicon-containing steel hot-rolled sheet 2
It was cold-rolled once to a thickness of 0.23 mm and then subjected to the following five processes (A) to (E) to obtain various electromagnetic steel sheets.

【0011】(A)グラビアオフセット印刷によるエッチ
ングレジスト塗布後、電解エッチングを施すことにより
線状の溝を形成したのち、脱炭焼鈍、次いで最終仕上焼
鈍を施した。 (B) (A)と同一の溝形成処理をし、レジスト除去処理を
施した後、互いに隣り合う溝と溝との中間に、溝と平行
な方向にSnSO4 を1m2あたり3g を線状に塗布し、以降
は(A) と同一の脱炭焼鈍、最終仕上焼鈍の処理をした。
SnSO4 の線状塗布部は、溝と溝の中間に各1本とした。 (C) (A)と同一の溝形成処理後、SnSO4 を溝部に塗布
し、以降は(A) と同一の脱炭焼鈍、最終仕上焼鈍の処理
をした。 (D)溝形成処理をすることなしに(B) と同一条件でSnSO
4 を線状に塗布した。 (E)溝形成処理をすることなしに脱炭焼鈍、最終仕上げ
焼鈍をして、比較材とした。
(A) After applying an etching resist by gravure offset printing, electrolytic etching was performed to form linear grooves, followed by decarburizing annealing and then final finishing annealing. (B) After performing the same groove formation treatment as in (A) and resist removal treatment, 3 g per 1 m 2 of SnSO 4 is linearly formed in the direction parallel to the groove in the middle between the adjacent grooves. After that, the same decarburization annealing and final finishing annealing as in (A) were performed.
There was one SnSO 4 linear coating part in each groove. (C) After the same groove formation treatment as in (A), SnSO 4 was applied to the groove portions, and thereafter, the same decarburization annealing and final finishing annealing treatment as in (A) were performed. (D) SnSO under the same conditions as (B) without groove formation treatment.
4 was applied linearly. (E) Decarburization annealing and final finishing annealing were performed without using the groove forming treatment to obtain a comparative material.

【0012】なお上記(A) 〜(D) において導入した溝
は、いずれも幅150 μm 、深さ20μm、圧延方向の間隔
4mmであり、圧延方向と直交する方向に線状に導入し
た。また(B), (C)におけるSnSO4 の塗布領域の幅は100
μm とした。なお、試料(A) は鋼板に溝を導入したのみ
の材料である。
The grooves introduced in the above (A) to (D) had a width of 150 μm, a depth of 20 μm and an interval of 4 mm in the rolling direction, and were introduced linearly in the direction orthogonal to the rolling direction. The width of the SnSO 4 coating area in (B) and (C) is 100.
μm. The sample (A) is a material in which a groove is introduced into a steel plate.

【0013】これらの工程を経た各試料(A) 〜(E) につ
いて、断面構造の観察を行ったところ、図1に断面構造
を模式的に示すように試料(B), (D)ではSnSO4 の塗布部
から板厚方向にもう一方の鋼板表面まで連続する平均結
晶粒径0.5 mmの微細結晶粒が生じていることが確認され
た。また、試料(C) では溝底面から板厚方向にもう一方
の鋼板表面まで連続する微細結晶粒が観察された。ま
た、これらの試料からエプスタイン試片を採取し、歪取
焼鈍後の磁気特性を測定した。その測定結果を表1に示
す。ここでB8 は磁化力800A/mにおける磁束密度を示
す。
The cross-sectional structure of each of the samples (A) to (E) which have undergone these steps was observed. As a result, the cross-sectional structure is schematically shown in FIG. It was confirmed that fine crystal grains with an average crystal grain size of 0.5 mm were formed continuously from the coated part of 4 to the surface of the other steel plate in the plate thickness direction. In addition, in the sample (C), continuous fine crystal grains were observed from the groove bottom surface to the other steel plate surface in the plate thickness direction. Further, Epstein test pieces were sampled from these samples, and the magnetic characteristics after stress relief annealing were measured. The measurement results are shown in Table 1. Here, B 8 represents the magnetic flux density at a magnetizing force of 800 A / m.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示したように、鋼板表面における線
状溝と微細結晶粒の線状領域とを組みあわせて形成した
試料(B),(C) は、溝のみの試料(A) 、微細粒のみの試料
(D)よりも低い鉄損が得られた。また、この試料(B) と
試料(C) との比較から、線状溝下部に微細粒が生成して
いる試料(C) も鉄損低減効果があるものの、試料(B)の
ように溝部以外の部分に微細粒を線状に発生させた方
が、鉄損低減効果が高いことが分った。
As shown in Table 1, the samples (B) and (C) formed by combining the linear grooves on the surface of the steel sheet and the linear regions of fine crystal grains are the samples (A) having only the grooves, Samples with only fine particles
A lower iron loss than that of (D) was obtained. From the comparison between this sample (B) and sample (C), the sample (C) in which fine particles are generated in the lower part of the linear groove has the iron loss reducing effect, but It was found that the effect of reducing the iron loss was higher when the fine particles were linearly generated in the other portions.

【0016】[0016]

【作用】上述したような線状溝と微細結晶粒との組み合
わた鋼板における鉄損低減作用については未だ明確では
ないが、次のとおりと考えられる。すなわち、試料(C)
においては、それのみでも磁極生成作用がある溝の下に
さらに多くの磁極を発生させるべく微細粒を導入するも
のであり、その結果として鉄損低減の効果が見られた
が、試料(B) では、もともと磁極の生成していない領域
に溝とは別に微細粒による磁極を導入したため、(B) は
(C) よりさらに低い鉄損が得られたものと考えられる。
The iron loss reducing action in the steel sheet in which the linear grooves and the fine crystal grains are combined as described above is not clear yet, but it is considered as follows. That is, sample (C)
In this case, fine particles are introduced under the groove that has a magnetic pole generating effect even by itself, and as a result, the effect of iron loss reduction was observed. Then, since magnetic poles made of fine particles were introduced into the area where magnetic poles were not originally generated in addition to the grooves, (B)
It is considered that the iron loss was lower than that of (C).

【0017】以上のようにこの発明は、表面に圧延方向
とほぼ直角な方向に延びる線状の溝を有し、かつ該線状
溝以外の部分に板厚を貫通する微細結晶粒を圧延方向と
ほぼ直角な方向に延びる帯状領域を形成するように生成
させることにより従来以上の鉄損低減に成功したのであ
る。
As described above, according to the present invention, a linear groove extending in a direction substantially perpendicular to the rolling direction is formed on the surface, and fine crystal grains penetrating the plate thickness in the portion other than the linear groove are rolled in the rolling direction. The iron loss was successfully reduced more than in the past by forming a band-shaped region extending in a direction substantially perpendicular to the above.

【0018】次にこの発明における溝の適正範囲及び微
細結晶粒の形成領域の適正範囲を調べるために行った種
々の実験結果について述べる。まず鋼板表面に形成され
た線状溝の好適範囲について調べた。図2,図3は、そ
れぞれ板厚0.23mmの鋼板に形成された線状溝の幅、深さ
と鉄損W17/50との関係を示す。これらの図から、溝幅が
30μm 以上、溝深さが10μm以上70μm 以下において0.
80W/kg以下の低鉄損が安定して得られることがわかる。
この溝幅に関しては300 μm を超える場合にも低鉄損は
得られるが、磁束密度が顕著に低下するため、溝幅の適
正範囲は30μm 以上300 μm 以下である。
Next, the results of various experiments conducted to investigate the proper range of the groove and the proper range of the fine crystal grain forming region in the present invention will be described. First, the suitable range of the linear grooves formed on the surface of the steel sheet was examined. 2 and 3 show the relationship between the width and depth of the linear groove formed in a steel plate having a plate thickness of 0.23 mm and the iron loss W 17/50 . From these figures, the groove width is
0 when the groove depth is 30 μm or more and the groove depth is 10 μm or more and 70 μm or less.
It can be seen that a low iron loss of 80 W / kg or less can be stably obtained.
A low iron loss can be obtained when the groove width exceeds 300 μm, but the magnetic flux density remarkably decreases, so the proper range of the groove width is 30 μm or more and 300 μm or less.

【0019】図4、図5にはそれぞれ溝幅200 μm 、溝
深さ20μm とした場合の圧延方向と直交する方向からの
溝偏倚角度と鉄損との関係、圧延方向における溝間隔と
鉄損との関係を示す。これらの図より0.80w/kg以下の低
鉄損を得るためには、圧延方向の溝間隔は1mm以上30mm
以下、溝の偏倚角度は圧延方向と直角な方向から30°以
内にすることが好ましいことがわかる。
4 and 5 show the relationship between the groove deviation angle from the direction orthogonal to the rolling direction and the iron loss when the groove width is 200 μm and the groove depth is 20 μm, respectively, and the groove interval and the iron loss in the rolling direction are shown. Shows the relationship with. From these figures, in order to obtain a low iron loss of 0.80 w / kg or less, the groove spacing in the rolling direction is 1 mm or more and 30 mm.
It will be seen below that the deviation angle of the groove is preferably within 30 ° from the direction perpendicular to the rolling direction.

【0020】次に溝部以外の部分に形成されるべき微細
結晶粒形成領域について調べた。以下の実験において、
線状溝の幅は200 μm 、深さは25μm 、溝間隔は4mmと
し、圧延方向と直角に導入してある。また微細結晶粒は
SnSO4 を脱炭焼鈍前に塗布することによって発生させ
た。図6に、溝と溝の間に生じさせる微細結晶粒の線状
領域について、圧延方向の幅と磁気特性との関係を示
す。この実験では、線状溝間の間隔は4mmとし、溝と溝
の間に微細粒領域を1本のみ、溝から距離2mmの位置に
圧延方向と直交する方向に導入した。図6から明らかな
ごとく鋼板表面における微細粒領域の幅が2mm以下の場
合は、溝のみを形成した場合よりも低い鉄損値が得られ
ている。微細結晶粒領域の幅が2mmを超えると、磁束密
度が低下し、鉄損値が上昇する。
Next, the fine crystal grain forming region to be formed in the portion other than the groove portion was examined. In the following experiment,
The width of the linear grooves is 200 μm, the depth is 25 μm, the groove interval is 4 mm, and the linear grooves are introduced at right angles to the rolling direction. Also, fine crystal grains
It was generated by applying SnSO 4 before decarburization annealing. FIG. 6 shows the relationship between the width in the rolling direction and the magnetic characteristics for the linear region of fine crystal grains generated between the grooves. In this experiment, the distance between the linear grooves was 4 mm, and only one fine grain region was introduced between the grooves at a position 2 mm away from the grooves in a direction orthogonal to the rolling direction. As is clear from FIG. 6, when the width of the fine grain region on the surface of the steel sheet is 2 mm or less, the iron loss value lower than that when only the groove is formed is obtained. If the width of the fine crystal grain region exceeds 2 mm, the magnetic flux density decreases and the iron loss value increases.

【0021】次に微細結晶粒領域を導入する間隔の最適
条件について調べた結果を図7に微細粒領域の間隔と鉄
損との関係で示す。なおこの実験における微細粒領域の
幅は0.5 mmとし、線状溝下に微細粒領域が存在しないよ
うに導入した。図7より、微細粒領域の間隔が1mm以上
50mm以下の範囲において鉄損低減効果があるといえる。
さらに、微細粒領域を導入する角度については、図8に
示す実験結果より0°〜30°の範囲が適合するといえ
る。
Next, the optimum condition of the interval for introducing the fine crystal grain region is examined, and the result is shown in FIG. 7 by the relationship between the interval of the fine grain region and the iron loss. The width of the fine grain region in this experiment was 0.5 mm, and it was introduced so that the fine grain region did not exist below the linear groove. From Fig. 7, the interval of fine grain area is 1mm or more.
It can be said that there is an iron loss reduction effect in the range of 50 mm or less.
Furthermore, it can be said from the experimental results shown in FIG. 8 that the range of 0 ° to 30 ° is suitable for the angle of introducing the fine grain region.

【0022】次に微細結晶粒領域の形成状況と鉄損特性
との関係について調べた結果、以下のことが判明した。
すなわち、図9(a) 〜(d) に示す電磁鋼板の平面図にお
いて、良好な鉄損特性を得るには、図9(a) のように線
状の微細粒領域全幅とほぼ一致する粒径になる微細結晶
粒が一列に並ぶ場合、図9(b) のように微細粒領域の幅
内にての圧延方向に数列が連なる場合のいずれでも構わ
ない。また、図9(c)のように微細粒領域が圧延方向と
直交する方向から所定の偏倚角度で導入された場合は、
帯状の微細結晶粒領域が線状の線状溝と交錯しても構わ
ない。さらに、図9(d) のように、鋼板表面の溝と溝の
間に2本以上の微細粒領域を形成した場合にも同様に鉄
損低減効果が確認された。また微細結晶粒は、板厚にわ
たって存在する方が磁区細分化効果が大きい。なお、図
2〜8で示した実験において、導入した溝形状は幅200
μm 、深さ20μm であり、圧延方向の間隔4mmで圧延方
向と直角な方向に線状に導入したものである。
Next, as a result of investigating the relationship between the state of formation of the fine crystal grain region and the iron loss characteristics, the following was found.
That is, in order to obtain good iron loss characteristics in the plan view of the electromagnetic steel sheets shown in FIGS. In the case where the fine crystal grains having the diameter are arranged in a line, as shown in FIG. 9 (b), there may be a case where several lines are arranged in the rolling direction within the width of the fine grain region. In addition, as shown in FIG. 9 (c), when the fine grain region is introduced at a predetermined deviation angle from the direction orthogonal to the rolling direction,
The band-shaped fine crystal grain region may intersect with the linear groove. Further, as shown in FIG. 9 (d), the iron loss reducing effect was similarly confirmed when two or more fine grain regions were formed between the grooves on the surface of the steel sheet. Further, the fine crystal grains have a greater magnetic domain subdivision effect when they exist over the plate thickness. In addition, in the experiment shown in FIGS.
It was introduced in a linear shape in a direction perpendicular to the rolling direction with a gap of 4 mm in the rolling direction and a depth of 20 μm.

【0023】前述したように、この発明では、鋼板表面
に圧延方向とほぼ直角に線状の溝を導入することで、溝
に生成する磁極により磁区を細分化して鉄損低減を図
り、さらに鋼板の溝のない部分に、圧延方向とほぼ直角
な方向に延びる帯状の細分結晶領域を導入することによ
って、溝のみを形成した場合よりもさらなる鉄損低減を
行ったものである。その鉄損低減機構は、既に磁極の生
成している溝部分とは別に、微細粒による磁極が生成
し、磁区がさらに細分化するからであると考えられる。
As described above, in the present invention, by introducing a linear groove on the surface of the steel sheet at a substantially right angle to the rolling direction, the magnetic domain is subdivided by the magnetic poles generated in the groove to reduce the iron loss. By introducing a band-shaped subdivided crystal region extending in a direction substantially perpendicular to the rolling direction into the grooveless portion, the core loss is further reduced as compared with the case where only the groove is formed. It is considered that the iron loss reducing mechanism is because a magnetic pole is formed by fine particles and the magnetic domain is further subdivided, in addition to the groove portion where the magnetic pole is already generated.

【0024】この微細結晶粒の帯状領域は、圧延方向と
ほぼ直角方向に連続していることが望ましいが、図9の
ように不連続な部分があっても鉄損低減効果はあり、ま
た、磁極生成のためには微細結晶粒が板厚を貫通してい
ることが望ましいが、貫通していない場合であっても鉄
損低減効果はある。
It is desirable that the strip region of the fine crystal grains is continuous in a direction substantially perpendicular to the rolling direction. However, even if there is a discontinuous portion as shown in FIG. 9, there is an iron loss reducing effect, and It is desirable that the fine crystal grains penetrate the plate thickness in order to generate the magnetic pole, but even if the fine crystal grains do not penetrate, the iron loss reducing effect is obtained.

【0025】また、線状溝については、図2に示したよ
うに溝の幅があまりに狭い場合には鉄損低減効果は小さ
く、一方溝幅が過剰に広い場合、磁束密度の低下を招
く。したがって溝幅は30μm 以上300 μm 以下であるこ
とが望ましい。溝の深さは10μm より浅いと磁区細分化
効果が不足であり、70μm より深いとヒステリシス損が
増大するため、10μm から70μm が適正である。また溝
の圧延方向と直交する方向からの偏倚角度は、溝の方向
が圧延方向に近づくにつれてヒステリシス損が上昇する
ため、0°〜30°の範囲が望ましい。溝の間隔について
は、1mmより狭いとヒステリシス損を上昇させる傾向に
あり、30mmより広いと磁区細分化効果がない。よって溝
幅の適正範囲は1mm〜30mmとする。
Regarding the linear groove, as shown in FIG. 2, when the width of the groove is too narrow, the iron loss reducing effect is small, and when the groove width is excessively wide, the magnetic flux density is lowered. Therefore, it is desirable that the groove width is 30 μm or more and 300 μm or less. If the groove depth is shallower than 10 μm, the effect of domain refinement is insufficient, and if it is deeper than 70 μm, the hysteresis loss increases, so 10 μm to 70 μm is appropriate. The deviation angle of the groove from the direction orthogonal to the rolling direction is preferably in the range of 0 ° to 30 ° because the hysteresis loss increases as the direction of the groove approaches the rolling direction. If the groove spacing is narrower than 1 mm, the hysteresis loss tends to increase, and if it is wider than 30 mm, there is no magnetic domain subdivision effect. Therefore, the proper range of groove width is 1 mm to 30 mm.

【0026】次に、帯状に導入する微細結晶粒領域の好
適範囲に述べる。この微細結晶粒自体は結晶方位〔00
1〕の圧延方向からのずれが大きいため、微細粒領域の
拡大は磁束密度の低下、及び鉄損の増大につながる。し
たがって図6の結果より、溝のみの場合よりも鉄損を低
くするためには、微細粒領域の幅は2mm以下が望まし
い。また、微細粒領域の間隔について、あまりに縮小す
ると鋼板全体に占める微細粒部分の割合を増大させると
ともにヒステリシス損を上昇させる。一方、間隔が50mm
を超えると磁区細分化効果が期待できない。したがって
微細粒領域の間隔は図7より1mmから50mmが望ましい。
さらに、帯状の微細粒領域の圧延方向と直交する方向か
らの偏倚角度は、溝の場合と同様の理由により0°から
30°が望ましい。
Next, the preferable range of the fine crystal grain region to be introduced in a band will be described. This fine crystal grain itself has a crystal orientation [00
Since the deviation of 1] from the rolling direction is large, the expansion of the fine grain region leads to a decrease in magnetic flux density and an increase in iron loss. Therefore, from the result of FIG. 6, in order to reduce the iron loss as compared with the case of only the groove, the width of the fine grain region is preferably 2 mm or less. Further, if the spacing between the fine grain regions is reduced too much, the proportion of the fine grain portions in the entire steel sheet is increased and the hysteresis loss is increased. On the other hand, the spacing is 50 mm
If it exceeds, the magnetic domain subdivision effect cannot be expected. Therefore, the interval between the fine grain regions is preferably 1 mm to 50 mm as shown in FIG.
Further, the deviation angle from the direction orthogonal to the rolling direction of the band-shaped fine grain region is 0 ° for the same reason as in the case of the groove.
30 ° is desirable.

【0027】この発明の方向性電磁鋼板は、常法に従
い、方向性電磁鋼板板用スラブを熱間圧延し、その後必
要に応じて熱延板焼鈍を行ったのち、1回又は中間焼鈍
を挟む2回以上の冷間圧延により最終製品板厚とし、そ
の後脱炭焼鈍、次いで最終仕上げ焼鈍を施したのち、通
常の上塗コーティングを施して製品とする。
In the grain-oriented electrical steel sheet of the present invention, a slab for grain-oriented electrical steel sheet is hot-rolled according to a conventional method, and after that, hot-rolled sheet annealing is carried out if necessary, and then one or intermediate annealing is sandwiched. The final product sheet thickness is obtained by cold rolling two or more times, then decarburization annealing is performed, and then final finishing annealing is performed, and then a general top coat is applied to obtain a product.

【0028】溝を導入する時期に関しては最終仕上焼鈍
の前後のいずれでも構わない。溝を形成する方法につい
ては、局所的にエッチング処理をする方法、刃物等でけ
がく方法、突起付きロールで圧延する方法等が挙げられ
る。ただし、特公昭62−53579 号公報に開示された方法
のように仕上焼鈍後の鋼板を歯車型ロールで圧延し、そ
の後高温で焼鈍する方法は、溝形成と微細結晶粒の生成
を共にもたらすが、この場合に形成される微細粒は溝直
下であり、しかも微細粒が板厚を貫通していないために
鉄損減少効果は小さい。溝導入の最も望ましい方法は最
終冷間圧延後鋼板に印刷等によりエッチングレジストを
付着させたのち、電解エッチング処理により溝を形成す
る方法である。
The groove may be introduced either before or after the final finish annealing. Examples of the method of forming the groove include a method of locally performing an etching treatment, a method of scribing with a blade or the like, and a method of rolling with a roll having protrusions. However, as in the method disclosed in Japanese Patent Publication No. 62-53579, a method of rolling a steel sheet after finish annealing with a gear type roll and then annealing at a high temperature brings about both groove formation and generation of fine crystal grains. The fine particles formed in this case are directly below the groove, and since the fine particles do not penetrate the plate thickness, the iron loss reducing effect is small. The most desirable method of introducing the groove is a method in which after the final cold rolling, an etching resist is attached to the steel sheet by printing or the like, and then the groove is formed by electrolytic etching treatment.

【0029】次に微細粒を得る方法としては、地鉄部分
にSn, Sb, B, Bi, S, Pb, As, Se,Te等の金属又はその
酸化物、硫化物等を付着させたのち、通常の脱炭焼鈍、
仕上焼鈍を行う方法や、仕上焼鈍前に局所的に機械的歪
を加える方法や、局所的にレーザー、プラズマ炎を照射
し、高温熱処理する方法などがある。
Next, as a method for obtaining fine grains, after depositing a metal such as Sn, Sb, B, Bi, S, Pb, As, Se, or Te or its oxide, sulfide, etc. on the base iron portion, , Normal decarburization annealing,
There are a method of performing finish annealing, a method of locally applying mechanical strain before finish annealing, a method of locally irradiating a laser or plasma flame, and a high temperature heat treatment.

【0030】[0030]

【実施例】【Example】

実施例1 インヒビターとして、MnSe, Sb, AlN を含む3.2 %けい
素鋼板の熱間圧延板を中間焼鈍を挟む2回の冷間圧延に
より0.23mm厚まで圧延し、以下に述べる(A) 、及び(B)
の工程を施してそれぞれ試料(A) 及び試料(B) とした。 (A) グラビアオフセット印刷によるエッチングレジスト
塗布後、電解エッチングにより線状の溝を形成し、アル
カリ液中に浸漬してエッチングレジストを除去。 (B) (A) と同一処理により溝形成したのち、隣り合う溝
と溝との中間領域に圧延方向と直角に幅100 μm 、間隔
4mmでSnSO4 粉末を塗布する微細粒生成処理を行った。 (C) 比較例として、溝形成処理、微細粒生成処理共に行
わずに試料(C)とした。
Example 1 A hot-rolled 3.2% silicon steel sheet containing MnSe, Sb, and AlN as an inhibitor was rolled to 0.23 mm thickness by two cold rolling processes with intermediate annealing, and described below (A), and (B)
The above steps were performed to obtain a sample (A) and a sample (B), respectively. (A) After applying an etching resist by gravure offset printing, a linear groove is formed by electrolytic etching, and the etching resist is removed by immersion in an alkaline solution. (B) After forming grooves by the same process as in (A), a fine particle generation process was performed in which SnSO 4 powder was applied in the intermediate region between adjacent grooves at a width of 100 μm at a right angle to the rolling direction and an interval of 4 mm. . (C) As a comparative example, a sample (C) was prepared without performing the groove forming process and the fine grain forming process.

【0031】なお、上記(A) (B) で導入した溝は幅170
μm 、深さ20μm で、圧延方向と直角な方向に4mm間隔
で導入した。これらの鋼板は脱炭焼鈍、次いで最終焼鈍
を施し、更に上塗りコーティングを施した。このように
して得られた製品の断面は、(A) は溝が見られたのみで
あるのに対し、(B) では溝の他に、SnO2の塗布領域下部
に板厚を貫通する粒径約0.5mm の微細粒が見られた。こ
のようして得られた製品からエプスタイン試片を採取
し、歪取焼鈍ののち、磁気特性を測定した結果を表2に
示す。表2から明らかなように、溝のみを導入した従来
の鋼板よりも、溝と溝との間に線状の微細結晶粒領域を
導入した適合例の方が鉄損が低くなっている。
The groove introduced in the above (A) and (B) has a width of 170 mm.
It was introduced at a distance of 4 mm in a direction perpendicular to the rolling direction at a depth of 20 μm and a thickness of 20 μm. These steel sheets were decarburized annealed, then final annealed, and then topcoated. The cross section of the product obtained in this way shows only grooves in (A), but in (B), in addition to the grooves, the grains that penetrate the plate thickness below the SnO 2 application area Fine particles with a diameter of about 0.5 mm were seen. Table 2 shows the results of measuring the magnetic properties of the Epstein test pieces obtained from the thus obtained product after stress relief annealing. As is clear from Table 2, the iron loss is lower in the conforming example in which the linear fine crystal grain regions are introduced between the grooves than in the conventional steel sheet in which only the grooves are introduced.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例2 インヒビターとしてMnSe、AlN を含む3.2 %けい素鋼の
熱間圧延板を中間焼鈍を挟む2回の冷間圧延により0.18
mm厚まで圧延し、以下に述べる(D) 〜(F) の処理を施し
てそれぞれ試料(D) 〜(F) とした。 (D) グラビアオフセット印刷によるエッチングレジスト
塗布後、電解エッチングにより線状の溝を形成し、アル
カリ液中に浸漬してエッチングレジストを除去。 (E) 試料(D) と同一処理により溝形成をしたのち、溝と
溝の中間の溝のない領域に圧延方向と直角に幅100 μm
、間隔4mmでSnO2粉末を塗布した。 (F) 試料(D) と同一処理により溝を形成したのち、SnO2
粉末をこの溝部に充填した。 (G) 溝形成処理を施すことなしに比較例とした。
Example 2 A hot rolled sheet of 3.2% silicon steel containing MnSe and AlN as inhibitors was 0.18 by two cold rolling processes with intermediate annealing.
After rolling to a thickness of mm, the following treatments (D) to (F) were performed to obtain samples (D) to (F), respectively. (D) After applying the etching resist by gravure offset printing, a linear groove is formed by electrolytic etching, and the etching resist is removed by immersion in an alkaline solution. (E) After grooves were formed by the same treatment as in sample (D), a width of 100 μm was formed in the groove-free area in the middle of the grooves perpendicular to the rolling direction.
, SnO 2 powder was applied at intervals of 4 mm. (F) After forming a groove by the same treatment as for sample (D), SnO 2
Powder was filled in this groove. (G) A comparative example was obtained without performing the groove forming treatment.

【0034】なお、(D) 〜(F) で導入した溝は幅180 μ
m 、深さ18μm であり圧延方向と6mm間隔で導入した。
試料(E),(F),(G) はさらに脱炭仕上焼鈍、次いで最終仕
上焼鈍を施した後、上塗りコーティングを施した。こよ
うにして得られた製品の断面、観察の結果、試料(E) に
おいては溝と溝の間の領域のSn塗布部分に粒径0.3mmの
板厚貫通する微細粒が発生していた。これに対し(F) で
は、同様の材粒領域が溝下部に生じていた。このように
して得られた製品からエプスタイン試片を採取し、歪取
り焼鈍ののち磁気特性を測定した。結果を表3に示す。
The groove introduced in (D) to (F) has a width of 180 μm.
It was introduced at a distance of 6 mm from the rolling direction.
Samples (E), (F) and (G) were further decarburized finish annealed, then final finish annealed and then overcoated. As a result of observing the cross section of the product thus obtained and observing it, in the sample (E), fine particles penetrating a plate thickness of 0.3 mm were generated in the Sn coated portion in the region between the grooves. On the other hand, in (F), similar grain regions were formed in the lower part of the groove. Epstein test pieces were sampled from the products thus obtained, and after annealing for strain relief, magnetic properties were measured. The results are shown in Table 3.

【0035】[0035]

【表3】 [Table 3]

【0036】表3より明らかなように、溝以外の部分に
板厚を貫通する微細粒を有する適合例は溝下部に微細粒
を有する比較例に比べてさらに低い鉄損値を示してい
る。
As is clear from Table 3, the conforming example having fine grains penetrating the plate thickness in the portion other than the groove shows a lower iron loss value than the comparative example having fine grains in the lower part of the groove.

【0037】[0037]

【発明の効果】この発明の方向性電磁鋼板は、表面に圧
延方向とほぼ直角方向に延びる線状の溝を有し、かつ隣
接する溝と溝の間に板厚を貫通する幅2mm以下の微細結
晶粒領域を有する鉄損の低い方向性電磁鋼板であって、
この発明による鋼板は従来に優る低鉄損を示すだけでな
く、歪取り焼鈍による鉄損の劣化がないので、積鉄心、
巻鉄心共に使用でき、変圧器の効率向上に大きく寄与す
る。
The grain-oriented electrical steel sheet of the present invention has linear grooves extending on the surface in a direction substantially perpendicular to the rolling direction, and has a width of 2 mm or less which penetrates the sheet thickness between adjacent grooves. A grain-oriented electrical steel sheet having a low iron loss having a fine crystal grain region,
The steel sheet according to the present invention not only exhibits a low iron loss superior to conventional ones, but also has no deterioration in iron loss due to strain relief annealing, so that the laminated core,
It can be used with both wound iron cores and greatly contributes to the improvement of transformer efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼板の断面構造を示す図である。FIG. 1 is a diagram showing a cross-sectional structure of a steel plate.

【図2】溝幅と鉄損W17/50との関係を示す図である。FIG. 2 is a diagram showing the relationship between groove width and iron loss W 17/50 .

【図3】溝深さと鉄損W17/50との関係を示す図である。FIG. 3 is a diagram showing the relationship between groove depth and iron loss W 17/50 .

【図4】溝導入角度と鉄損W17/50との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a groove introduction angle and iron loss W 17/50 .

【図5】溝間隔と鉄損W17/50との関係を示す図である。FIG. 5 is a diagram showing the relationship between groove spacing and iron loss W 17/50 .

【図6】微細粒領域の幅と鉄損W17/50との関係を示す図
である。
FIG. 6 is a diagram showing the relationship between the width of the fine grain region and iron loss W 17/50 .

【図7】微細粒領域の間隔と鉄損W17/50との関係を示す
図である。
FIG. 7 is a diagram showing the relationship between the interval between fine grain regions and iron loss W 17/50 .

【図8】微細粒領域導入角度と鉄損W17/50との関係を示
す図である。
FIG. 8 is a diagram showing a relationship between a fine grain region introduction angle and iron loss W 17/50 .

【図9】微細粒領域導入時のマクロ組織の例を示す図で
ある。
FIG. 9 is a diagram showing an example of a macrostructure when a fine grain region is introduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 圭司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 鈴木 一弘 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 小松原 道郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiji Sato, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Kazuhiro Suzuki, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba (72) Inventor Michio Komatsubara, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Kawasaki Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に圧延方向とほぼ直交する方向に延
びる線状の溝を複数本有する方向性電磁鋼板であって、
互いに隣り合う溝間に微細結晶粒群からなる帯状領域を
圧延方向とほぼ直交する方向にそなえることを特徴とす
る鉄損の低い方向性電磁鋼板。
1. A grain-oriented electrical steel sheet having a plurality of linear grooves extending on a surface thereof in a direction substantially orthogonal to a rolling direction,
A grain-oriented electrical steel sheet with low iron loss, characterized in that a band-shaped region composed of a group of fine crystal grains is provided between adjacent grooves in a direction substantially orthogonal to the rolling direction.
【請求項2】 線状の溝は、幅が30μm 以上300 μm 以
下、深さが10μm 以上70μm 以下、圧延方向の間隔が1
mm以上30mm以下、圧延方向と直交する方向からの偏倚角
度が30°以内であり、かつ帯状微細粒領域は、幅2mm以
下、圧延方向の間隔が1mm以上50mm以下、圧延方向と直
交する方向からの偏倚角度が30°以内である請求項1記
載の鉄損の低い方向性電磁鋼板。
2. The linear groove has a width of 30 μm or more and 300 μm or less, a depth of 10 μm or more and 70 μm or less, and an interval of 1 in the rolling direction.
mm or more and 30 mm or less, the deviation angle from the direction orthogonal to the rolling direction is 30 ° or less, and the band-shaped fine grain region has a width of 2 mm or less, a spacing in the rolling direction of 1 mm or more and 50 mm or less, from a direction orthogonal to the rolling direction. 2. The grain-oriented electrical steel sheet with low iron loss according to claim 1, wherein the deviation angle is less than 30 °.
JP11518994A 1994-05-27 1994-05-27 Grain-oriented electrical steel sheet with low iron loss Expired - Fee Related JP3369724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11518994A JP3369724B2 (en) 1994-05-27 1994-05-27 Grain-oriented electrical steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11518994A JP3369724B2 (en) 1994-05-27 1994-05-27 Grain-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH07320921A true JPH07320921A (en) 1995-12-08
JP3369724B2 JP3369724B2 (en) 2003-01-20

Family

ID=14656561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11518994A Expired - Fee Related JP3369724B2 (en) 1994-05-27 1994-05-27 Grain-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP3369724B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034196B2 (en) 2008-02-19 2011-10-11 Nippon Steel Corporation Low core loss grain-oriented electrical steel plate and method of manufacturing the same
EP2554685A1 (en) * 2010-04-01 2013-02-06 Nippon Steel & Sumitomo Metal Corporation Directional electromagnetic steel plate and method for manufacturing same
EP2615184A1 (en) * 2010-09-09 2013-07-17 Nippon Steel & Sumitomo Metal Corporation Oriented electromagnetic steel sheet and process for production thereof
EP3901971A4 (en) * 2018-12-19 2022-03-09 Posco Grain-oriented electrical steel sheet and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102044320B1 (en) * 2017-12-26 2019-11-13 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034196B2 (en) 2008-02-19 2011-10-11 Nippon Steel Corporation Low core loss grain-oriented electrical steel plate and method of manufacturing the same
EP2554685A1 (en) * 2010-04-01 2013-02-06 Nippon Steel & Sumitomo Metal Corporation Directional electromagnetic steel plate and method for manufacturing same
EP2554685A4 (en) * 2010-04-01 2014-05-21 Nippon Steel & Sumitomo Metal Corp Directional electromagnetic steel plate and method for manufacturing same
US9139886B2 (en) 2010-04-01 2015-09-22 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and method for producing same
EP2615184A1 (en) * 2010-09-09 2013-07-17 Nippon Steel & Sumitomo Metal Corporation Oriented electromagnetic steel sheet and process for production thereof
EP2615184A4 (en) * 2010-09-09 2014-06-11 Nippon Steel & Sumitomo Metal Corp Oriented electromagnetic steel sheet and process for production thereof
EP3901971A4 (en) * 2018-12-19 2022-03-09 Posco Grain-oriented electrical steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP3369724B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
EP0202339B1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
WO2016056501A1 (en) Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
JPH0369968B2 (en)
JPH05121224A (en) Grain oriented electromagnetic steel sheet small in iron loss and its production
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JPWO2020203928A1 (en) Directional electrical steel sheet and its manufacturing method
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JP2942074B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
JP2019123936A (en) Method for manufacturing grain-oriented electromagnetic steel sheets
JP3541419B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3364305B2 (en) Unidirectional electrical steel sheet with low iron loss
JPS6330968B2 (en)
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JPH06299244A (en) Manufacture of silicon steel sheet having excellent magnetic characteristic
JPH0327629B2 (en)
JP5200363B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JPH0641640A (en) Manufacture of grain-oriented silicon steel with low core loss
JPH07316655A (en) Production of low-iron loss grain oriented electrical steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH04214819A (en) Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees