JP3369724B2 - Grain-oriented electrical steel sheet with low iron loss - Google Patents

Grain-oriented electrical steel sheet with low iron loss

Info

Publication number
JP3369724B2
JP3369724B2 JP11518994A JP11518994A JP3369724B2 JP 3369724 B2 JP3369724 B2 JP 3369724B2 JP 11518994 A JP11518994 A JP 11518994A JP 11518994 A JP11518994 A JP 11518994A JP 3369724 B2 JP3369724 B2 JP 3369724B2
Authority
JP
Japan
Prior art keywords
iron loss
groove
steel sheet
grain
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11518994A
Other languages
Japanese (ja)
Other versions
JPH07320921A (en
Inventor
邦浩 千田
昌義 石田
圭司 佐藤
一弘 鈴木
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP11518994A priority Critical patent/JP3369724B2/en
Publication of JPH07320921A publication Critical patent/JPH07320921A/en
Application granted granted Critical
Publication of JP3369724B2 publication Critical patent/JP3369724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は変圧器その他の電気機
器の鉄心に用いて好適な低鉄損方向性電磁鋼板に関する
ものである。方向性電磁鋼板は主として変圧器の鉄心材
料として用いられ、その磁気特性が良好であることが要
求される。特に鉄心として使用した場合のエネルギー損
失、すなわち鉄損が低いことが重要である。 【0002】 【従来の技術】従来から鉄損を低減させるために、結晶
方位を(110)〔001〕方位により高度に揃えるこ
と、Si含有量を上げそれによって鋼板の電気抵抗を増加
させること、不純物を低減させること、そして板厚を薄
くすることなどが種々に行われてきた。その結果、板厚
が0.23mm以下の鋼板では、鉄損W17/50(磁束密度1.7
T,50Hzの場合の鉄損値) が0.9 W/kg以下のものが製造
されるようになった。しかし、冶金学的な方法ではこれ
以上の大幅な鉄損の改善は期待できない。 【0003】そこで、近年、鉄損の大幅な低減を達成す
る手段として人為的に磁区を細分化する方法が種々試み
られるようになった。その中で現在工業化されている方
法としては、特公昭57−2252号公報の方向性電磁鋼板の
鉄損特性改善方法に提案開示されているような、仕上げ
焼鈍済みの鋼板表面にレーザーを照射する方法がある。
しかし、この方法は、鉄損低減に効果があるとはいうも
のの、歪取り焼鈍によって鉄損の劣化を来すという欠点
があり、歪取り焼鈍を必須とする巻鉄心用としては用い
られない。 【0004】かような磁区細分化方法を改良して歪取り
焼鈍を可能とした鉄損低減技術として特公昭62−54873
号公報の低鉄損一方向性電磁鋼板の製造方法には、仕上
げ焼鈍済みの鋼板にレーザーや機械的手段によって局所
的に絶縁膜を除去したのち、被膜除去部を酸洗する方法
やナイフなどにより機械的に直接地鉄までけがくなどの
方法により、線状の溝を局所的に形成したのち、溝を充
填するようにりん酸系の張力付与被膜処理を施す方法
が、また特公昭62−53579 号公報の低鉄損一方向性電磁
鋼板の製造方法には、仕上げ焼鈍済みの鋼板に90〜220
kgf/mm2 の荷重で地鉄部分に深さ5μm 超の溝を形成し
たのち、750 ℃以上の温度で加熱処理する方法が、さら
に、特公平3−69968 号公報には、最終冷間圧延後の鋼
板の圧延方向とほぼ直角な方向に線状刻み目を導入する
方法が、それぞれ提案開示されている。 【0005】 【発明が解決しようとする課題】上掲特公昭62−54873
号公報、特公昭62−53579 号公報及び特公平3−69968
号公報に開示の方法により得られる鋼板は、線状の溝を
有する点において共通しており、溝周辺に発生する磁極
に由来した磁区細分化効果が鉄損改善原理の1つとなっ
ている。そして、現在これらの方法を用いた鋼板が歪取
焼鈍可能な電磁鋼板として工業的に生産されている。し
かしながら、これらの鋼板は、磁極の生成が溝近傍に限
られるために磁区細分化効果が十分とはいえず、鉄損低
減に関して改善の余地が残されていた。 【0006】そこでこの発明の目的は、表面に溝を形成
した方向性けい素鋼板に関して、さらなる磁気特性の向
上、特に鉄損特性の向上を図った方向性電磁鋼板を提案
することにある。 【0007】 【課題を解決するための手段】発明者らは上記課題を解
決すべく鋭意研究を重ねた結果、表面に圧延方向とほぼ
直角な方向に延びる線状の溝を有する鋼板であって、該
線状溝以外の部分に粒径の微細な結晶粒が圧延方向と直
角方向に連続もしくは不連続に存在し、しかもこの微細
結晶粒の存在領域の幅が2mm以下であるような電磁鋼板
が、従来にも増して低鉄損を示すことを知見として得、
この発明をなすに到った。 【0008】すなわちこの発明は、表面に圧延方向とほ
ぼ直交する方向に延びる線状の溝を複数本有する方向性
電磁鋼板であって、線状の溝は、幅が30μm 以上300 μ
m 以下、深さが10μm 以上70μm 以下、圧延方向の間隔
が1mm以上30mm以下、圧延方向と直交する方向からの偏
倚角度が30°以内であり、互いに隣り合う溝間に微細結
晶粒群からなる帯状領域をそなえ、該帯状微細粒領域
は、幅2mm以下、圧延方向の間隔が1mm以上50mm以下、
圧延方向と直交する方向からの偏倚角度が30°以内であ
ことを特徴とする鉄損の低い方向性電磁鋼板である。 【0009】 【0010】以下、この発明の基礎となった研究結果に
ついて説明する。インヒビターとしてMnSe, AlN を含む
Si:3.3 %の含けい素鋼熱間圧延板を中間焼鈍を挟む2
回の冷間圧延により0.23mm厚まで圧延し、その後は以下
に示す(A) 〜(E) の5種類の工程を施して、各種の電磁
鋼板を得た。 【0011】(A)グラビアオフセット印刷によるエッチ
ングレジスト塗布後、電解エッチングを施すことにより
線状の溝を形成したのち、脱炭焼鈍、次いで最終仕上焼
鈍を施した。 (B) (A)と同一の溝形成処理をし、レジスト除去処理を
施した後、互いに隣り合う溝と溝との中間に、溝と平行
な方向にSnSO4 を1m2あたり3g を線状に塗布し、以降
は(A) と同一の脱炭焼鈍、最終仕上焼鈍の処理をした。
SnSO4 の線状塗布部は、溝と溝の中間に各1本とした。 (C) (A)と同一の溝形成処理後、SnSO4 を溝部に塗布
し、以降は(A) と同一の脱炭焼鈍、最終仕上焼鈍の処理
をした。 (D)溝形成処理をすることなしに(B) と同一条件でSnSO
4 を線状に塗布した。 (E)溝形成処理をすることなしに脱炭焼鈍、最終仕上げ
焼鈍をして、比較材とした。 【0012】なお上記(A) 〜(C) において導入した溝
は、いずれも幅150 μm 、深さ20μm、圧延方向の間隔
4mmであり、圧延方向と直交する方向に線状に導入し
た。また(B), (C)におけるSnSO4 の塗布領域の幅は100
μm とした。なお、試料(A) は鋼板に溝を導入したのみ
の材料である。 【0013】これらの工程を経た各試料(A) 〜(E) につ
いて、断面構造の観察を行ったところ、図1に断面構造
を模式的に示すように試料(B), (D)ではSnSO4 の塗布部
から板厚方向にもう一方の鋼板表面まで連続する平均結
晶粒径0.5 mmの微細結晶粒が生じていることが確認され
た。また、試料(C) では溝底面から板厚方向にもう一方
の鋼板表面まで連続する微細結晶粒が観察された。ま
た、これらの試料からエプスタイン試片を採取し、歪取
焼鈍後の磁気特性を測定した。その測定結果を表1に示
す。ここでB8 は磁化力800A/mにおける磁束密度を示
す。 【0014】 【表1】【0015】表1に示したように、鋼板表面における線
状溝と微細結晶粒の線状領域とを組みあわせて形成した
試料(B),(C) は、溝のみの試料(A) 、微細粒のみの試料
(D)よりも低い鉄損が得られた。また、この試料(B) と
試料(C) との比較から、線状溝下部に微細粒が生成して
いる試料(C) も鉄損低減効果があるものの、試料(B)の
ように溝部以外の部分に微細粒を線状に発生させた方
が、鉄損低減効果が高いことが分った。 【0016】 【作用】上述したような線状溝と微細結晶粒との組み合
わた鋼板における鉄損低減作用については未だ明確では
ないが、次のとおりと考えられる。すなわち、試料(C)
においては、それのみでも磁極生成作用がある溝の下に
さらに多くの磁極を発生させるべく微細粒を導入するも
のであり、その結果として鉄損低減の効果が見られた
が、試料(B) では、もともと磁極の生成していない領域
に溝とは別に微細粒による磁極を導入したため、(B) は
(C) よりさらに低い鉄損が得られたものと考えられる。 【0017】以上のようにこの発明は、表面に圧延方向
とほぼ直角な方向に延びる線状の溝を有し、かつ該線状
溝以外の部分に板厚を貫通する微細結晶粒を圧延方向と
ほぼ直角な方向に延びる帯状領域を形成するように生成
させることにより従来以上の鉄損低減に成功したのであ
る。 【0018】次にこの発明における溝の適正範囲及び微
細結晶粒の形成領域の適正範囲を調べるために行った種
々の実験結果について述べる。まず鋼板表面に形成され
た線状溝の好適範囲について調べた。図2,図3は、そ
れぞれ板厚0.23mmの鋼板に形成された線状溝の幅、深さ
と鉄損W17/50との関係を示す。これらの図から、溝幅が
30μm 以上、溝深さが10μm以上70μm 以下において0.
80W/kg以下の低鉄損が安定して得られることがわかる。
この溝幅に関しては300 μm を超える場合にも低鉄損は
得られるが、磁束密度が顕著に低下するため、溝幅の適
正範囲は30μm 以上300 μm 以下である。 【0019】図4、図5にはそれぞれ溝幅200 μm 、溝
深さ20μm とした場合の圧延方向と直交する方向からの
溝偏倚角度と鉄損との関係、圧延方向における溝間隔と
鉄損との関係を示す。これらの図より0.80w/kg以下の低
鉄損を得るためには、圧延方向の溝間隔は1mm以上30mm
以下、溝の偏倚角度は圧延方向と直角な方向から30°以
内にすればよいことがわかる。 【0020】次に溝部以外の部分に形成されるべき微細
結晶粒形成領域について調べた。以下の実験において、
線状溝の幅は200 μm 、深さは25μm 、溝間隔は4mmと
し、圧延方向と直角に導入してある。また微細結晶粒は
SnSO4 を脱炭焼鈍前に塗布することによって発生させ
た。図6に、溝と溝の間に生じさせる微細結晶粒の線状
領域について、圧延方向の幅と磁気特性との関係を示
す。この実験では、線状溝間の間隔は4mmとし、溝と溝
の間に微細粒領域を1本のみ、溝から距離2mmの位置に
圧延方向と直交する方向に導入した。図6から明らかな
ごとく鋼板表面における微細粒領域の幅が2mm以下の場
合は、溝のみを形成した場合よりも低い鉄損値が得られ
ている。微細結晶粒領域の幅が2mmを超えると、磁束密
度が低下し、鉄損値が上昇する。 【0021】次に微細結晶粒領域を導入する間隔の最適
条件について調べた結果を図7に微細粒領域の間隔と鉄
損との関係で示す。なおこの実験における微細粒領域の
幅は0.5 mmとし、線状溝下に微細粒領域が存在しないよ
うに導入した。図7より、微細粒領域の間隔が1mm以上
50mm以下の範囲において鉄損低減効果があるといえる。
さらに、微細粒領域を導入する角度については、図8に
示す実験結果より0°〜30°の範囲が適合するといえ
る。 【0022】次に微細結晶粒領域の形成状況と鉄損特性
との関係について調べた結果、以下のことが判明した。
すなわち、図9(a) 〜(d) に示す電磁鋼板の平面図にお
いて、良好な鉄損特性を得るには、図9(a) のように線
状の微細粒領域全幅とほぼ一致する粒径になる微細結晶
粒が一列に並ぶ場合、図9(b) のように微細粒領域の幅
内にての圧延方向に数列が連なる場合のいずれでも構わ
ない。また、図9(c)のように微細粒領域が圧延方向と
直交する方向から所定の偏倚角度で導入された場合は、
帯状の微細結晶粒領域が線状の線状溝と交錯しても構わ
ない。さらに、図9(d) のように、鋼板表面の溝と溝の
間に2本以上の微細粒領域を形成した場合にも同様に鉄
損低減効果が確認された。また微細結晶粒は、板厚にわ
たって存在する方が磁区細分化効果が大きい。なお、図
2〜8で示した実験において、導入した溝形状は幅200
μm 、深さ20μm であり、圧延方向の間隔4mmで圧延方
向と直角な方向に線状に導入したものである。 【0023】前述したように、この発明では、鋼板表面
に圧延方向とほぼ直角に線状の溝を導入することで、溝
に生成する磁極により磁区を細分化して鉄損低減を図
り、さらに鋼板の溝のない部分に、圧延方向とほぼ直角
な方向に延びる帯状の細分結晶領域を導入することによ
って、溝のみを形成した場合よりもさらなる鉄損低減を
行ったものである。その鉄損低減機構は、既に磁極の生
成している溝部分とは別に、微細粒による磁極が生成
し、磁区がさらに細分化するからであると考えられる。 【0024】この微細結晶粒の帯状領域は、圧延方向と
ほぼ直角方向に連続していることが望ましいが、図9の
ように不連続な部分があっても鉄損低減効果はあり、ま
た、磁極生成のためには微細結晶粒が板厚を貫通してい
ることが望ましいが、貫通していない場合であっても鉄
損低減効果はある。 【0025】また、線状溝については、図2に示したよ
うに溝の幅があまりに狭い場合には鉄損低減効果は小さ
く、一方溝幅が過剰に広い場合、磁束密度の低下を招
く。したがって溝幅は30μm 以上300 μm 以下とする。
溝の深さは10μm より浅いと磁区細分化効果が不足であ
り、70μm より深いとヒステリシス損が増大するため、
10μm から70μm が適正である。また溝の圧延方向と直
交する方向からの偏倚角度は、溝の方向が圧延方向に近
づくにつれてヒステリシス損が上昇するため、0°〜30
°の範囲とする。溝の間隔については、1mmより狭いと
ヒステリシス損を上昇させる傾向にあり、30mmより広い
と磁区細分化効果がない。よって溝幅の適正範囲は1mm
〜30mmとする。 【0026】次に、帯状に導入する微細結晶粒領域の好
適範囲について述べる。この微細結晶粒自体は結晶方位
〔001〕の圧延方向からのずれが大きいため、微細粒
領域の拡大は磁束密度の低下、及び鉄損の増大につなが
る。したがって図6の結果より、溝のみの場合よりも鉄
損を低くするためには、微細粒領域の幅は2mm以下とす
る。また、微細粒領域の間隔について、あまりに縮小す
ると鋼板全体に占める微細粒部分の割合を増大させると
ともにヒステリシス損を上昇させる。一方、間隔が50mm
を超えると磁区細分化効果が期待できない。したがって
微細粒領域の間隔は図7より1mmから50mmとする。さら
に、帯状の微細粒領域の圧延方向と直交する方向からの
偏倚角度は、溝の場合と同様の理由により0°から30°
とする。 【0027】この発明の方向性電磁鋼板は、常法に従
い、方向性電磁鋼板板用スラブを熱間圧延し、その後必
要に応じて熱延板焼鈍を行ったのち、1回又は中間焼鈍
を挟む2回以上の冷間圧延により最終製品板厚とし、そ
の後脱炭焼鈍、次いで最終仕上げ焼鈍を施したのち、通
常の上塗コーティングを施して製品とする。 【0028】溝を導入する時期に関しては最終仕上焼鈍
の前後のいずれでも構わない。溝を形成する方法につい
ては、局所的にエッチング処理をする方法、刃物等でけ
がく方法、突起付きロールで圧延する方法等が挙げられ
る。ただし、特公昭62−53579 号公報に開示された方法
のように仕上焼鈍後の鋼板を歯車型ロールで圧延し、そ
の後高温で焼鈍する方法は、溝形成と微細結晶粒の生成
を共にもたらすが、この場合に形成される微細粒は溝直
下であり、しかも微細粒が板厚を貫通していないために
鉄損減少効果は小さい。溝導入の最も望ましい方法は最
終冷間圧延後鋼板に印刷等によりエッチングレジストを
付着させたのち、電解エッチング処理により溝を形成す
る方法である。 【0029】次に微細粒を得る方法としては、地鉄部分
にSn, Sb, B, Bi, S, Pb, As, Se,Te等の金属又はその
酸化物、硫化物等を付着させたのち、通常の脱炭焼鈍、
仕上焼鈍を行う方法や、仕上焼鈍前に局所的に機械的歪
を加える方法や、局所的にレーザー、プラズマ炎を照射
し、高温熱処理する方法などがある。 【0030】 【実施例】 実施例1 インヒビターとして、MnSe, Sb, AlN を含む3.2 %けい
素鋼板の熱間圧延板を中間焼鈍を挟む2回の冷間圧延に
より0.23mm厚まで圧延し、以下に述べる(A) 、及び(B)
の工程を施してそれぞれ試料(A) 及び試料(B) とした。 (A) グラビアオフセット印刷によるエッチングレジスト
塗布後、電解エッチングにより線状の溝を形成し、アル
カリ液中に浸漬してエッチングレジストを除去。 (B) (A) と同一処理により溝形成したのち、隣り合う溝
と溝との中間領域に圧延方向と直角に幅100 μm 、間隔
4mmでSnSO4 粉末を塗布する微細粒生成処理を行った。 (C) 比較例として、溝形成処理、微細粒生成処理共に行
わずに試料(C)とした。 【0031】なお、上記(A) (B) で導入した溝は幅170
μm 、深さ20μm で、圧延方向と直角な方向に4mm間隔
で導入した。これらの鋼板は脱炭焼鈍、次いで最終焼鈍
を施し、更に上塗りコーティングを施した。このように
して得られた製品の断面は、(A) は溝が見られたのみで
あるのに対し、(B) では溝の他に、SnO2の塗布領域下部
に板厚を貫通する粒径約0.5mm の微細粒が見られた。こ
のようして得られた製品からエプスタイン試片を採取
し、歪取焼鈍ののち、磁気特性を測定した結果を表2に
示す。表2から明らかなように、溝のみを導入した従来
の鋼板よりも、溝と溝との間に線状の微細結晶粒領域を
導入した適合例の方が鉄損が低くなっている。 【0032】 【表2】【0033】実施例2 インヒビターとしてMnSe、AlN を含む3.2 %けい素鋼の
熱間圧延板を中間焼鈍を挟む2回の冷間圧延により0.18
mm厚まで圧延し、以下に述べる(D) 〜(F) の処理を施し
てそれぞれ試料(D) 〜(F) とした。 (D) グラビアオフセット印刷によるエッチングレジスト
塗布後、電解エッチングにより線状の溝を形成し、アル
カリ液中に浸漬してエッチングレジストを除去。 (E) 試料(D) と同一処理により溝形成をしたのち、溝と
溝の中間の溝のない領域に圧延方向と直角に幅100 μm
、間隔4mmでSnO2粉末を塗布した。 (F) 試料(D) と同一処理により溝を形成したのち、SnO2
粉末をこの溝部に充填した。 (G) 溝形成処理を施すことなしに比較例とした。 【0034】なお、(D) 〜(F) で導入した溝は幅180 μ
m 、深さ18μm であり圧延方向と6mm間隔で導入した。
試料(E),(F),(G) はさらに脱炭仕上焼鈍、次いで最終仕
上焼鈍を施した後、上塗りコーティングを施した。こよ
うにして得られた製品の断面、観察の結果、試料(E) に
おいては溝と溝の間の領域のSn塗布部分に粒径0.3mmの
板厚貫通する微細粒が発生していた。これに対し(F) で
は、同様の材粒領域が溝下部に生じていた。このように
して得られた製品からエプスタイン試片を採取し、歪取
り焼鈍ののち磁気特性を測定した。結果を表3に示す。 【0035】 【表3】 【0036】表3より明らかなように、溝以外の部分に
板厚を貫通する微細粒を有する適合例は溝下部に微細粒
を有する比較例に比べてさらに低い鉄損値を示してい
る。 【0037】 【発明の効果】この発明の方向性電磁鋼板は、表面に圧
延方向とほぼ直角方向に延びる線状の溝を有し、かつ隣
接する溝と溝の間に板厚を貫通する幅2mm以下の微細結
晶粒領域を有する鉄損の低い方向性電磁鋼板であって、
この発明による鋼板は従来に優る低鉄損を示すだけでな
く、歪取り焼鈍による鉄損の劣化がないので、積鉄心、
巻鉄心共に使用でき、変圧器の効率向上に大きく寄与す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low iron loss oriented magnetic steel sheet suitable for use in an iron core of a transformer or other electric equipment. Grain-oriented electrical steel sheets are mainly used as core materials for transformers, and are required to have good magnetic properties. In particular, it is important that the energy loss, that is, the iron loss when used as an iron core is low. [0002] Conventionally, in order to reduce iron loss, the crystal orientation should be more highly aligned with the (110) [001] orientation, the Si content should be increased, thereby increasing the electrical resistance of the steel sheet. Various attempts have been made to reduce impurities and to reduce the thickness of the sheet. As a result, for steel sheets with a thickness of 0.23 mm or less, iron loss W 17/50 (magnetic flux density 1.7
T, iron loss value at 50 Hz) is 0.9 W / kg or less. However, no further significant improvement in iron loss can be expected with metallurgical methods. [0003] In recent years, various attempts have been made to artificially subdivide magnetic domains as means for achieving a significant reduction in iron loss. Among them, the method currently being industrialized includes irradiating a laser to the surface of a steel sheet that has been finish-annealed, as disclosed in a method for improving iron loss characteristics of grain-oriented electrical steel sheets of Japanese Patent Publication No. 57-2252. There is a way.
However, although this method is effective in reducing iron loss, it has a disadvantage that iron loss is deteriorated by strain relief annealing, and is not used for wound iron cores that require strain relief annealing. [0004] As a technique for reducing iron loss, which is capable of performing strain relief annealing by improving such a magnetic domain refining method, Japanese Patent Publication No. 62-54873.
The method for producing a low iron loss unidirectional magnetic steel sheet disclosed in Japanese Patent Application Publication No. 2004-214873 includes a method in which an insulating film is locally removed from a finish-annealed steel sheet by laser or mechanical means, and then a film removing portion is pickled or a knife is used. A method in which a linear groove is locally formed by a method such as mechanically directly marking the ground iron, and then a phosphoric acid-based tension imparting coating treatment is applied to fill the groove. No. 53579 discloses a method for producing a low iron loss unidirectional electrical steel sheet.
A method of forming a groove with a depth of more than 5 μm in the base iron part with a load of kgf / mm 2 and then performing heat treatment at a temperature of 750 ° C. or more is described in Japanese Patent Publication No. 3-69968. Methods for introducing linear notches in a direction substantially perpendicular to the subsequent rolling direction of the steel sheet have been proposed and disclosed. [0005] The above-mentioned Japanese Patent Publication No. Sho 62-54873
JP, JP-B-62-53579 and JP-B-3-69968
The steel sheets obtained by the method disclosed in Japanese Patent Laid-Open Publication No. H10-150572 have in common that they have linear grooves, and the magnetic domain refinement effect derived from the magnetic poles generated around the grooves is one of the iron loss improvement principles. At present, steel sheets using these methods are industrially produced as magnetic steel sheets capable of performing strain relief annealing. However, these steel sheets cannot be said to have a sufficient magnetic domain segmentation effect because the generation of magnetic poles is limited to the vicinity of the groove, and there is room for improvement in reducing iron loss. [0006] Therefore, an object of the present invention is to propose a grain-oriented electrical steel sheet with further improved magnetic properties, particularly iron loss properties, with respect to a grain-oriented silicon steel sheet having grooves formed on its surface. The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have obtained a steel sheet having a linear groove extending in a direction substantially perpendicular to the rolling direction on the surface. An electromagnetic steel sheet in which crystal grains having a fine particle size exist continuously or discontinuously in a direction perpendicular to the rolling direction in a portion other than the linear grooves, and the width of the region where the fine crystal grains exist is 2 mm or less. However, it was found that they show lower iron loss than ever before,
The present invention has been made. That is, the present invention relates to a grain-oriented electrical steel sheet having a plurality of linear grooves extending on a surface thereof in a direction substantially perpendicular to the rolling direction, wherein the linear grooves have a width of 30 μm or more and 300 μm or more.
m or less, depth of 10 μm or more and 70 μm or less, spacing in the rolling direction
Is 1mm or more and 30mm or less, deviation from the direction perpendicular to the rolling direction.
The deflection angle is within 30 °, and a band-like region composed of a group of fine crystal grains is provided between adjacent grooves.
Has a width of 2 mm or less, a gap in the rolling direction of 1 mm or more and 50 mm or less,
The deviation angle from the direction perpendicular to the rolling direction is within 30 °
Is a low oriented electrical steel sheet iron loss, characterized in that that. Hereinafter, the results of the research on which the present invention is based will be described. Including MnSe and AlN as inhibitors
Si: Intermediate annealing of a hot rolled steel sheet containing 3.3% silicon steel 2
Rolling was performed to a thickness of 0.23 mm by cold rolling each time, and thereafter, the following five types of processes (A) to (E) were performed to obtain various types of magnetic steel sheets. (A) After applying an etching resist by gravure offset printing, a linear groove was formed by electrolytic etching, followed by decarburizing annealing and then final finishing annealing. (B) After performing the same groove forming process as in (A) and performing a resist removing process, 3 g of SnSO 4 per 1 m 2 in a direction parallel to the groove is applied linearly between the adjacent grooves. Then, the same decarburizing annealing and final finishing annealing as in (A) were performed.
The number of the linear coating portions of SnSO 4 was one each between the grooves. (C) After the same groove forming treatment as in (A), SnSO 4 was applied to the groove, and thereafter the same decarburizing annealing and final finish annealing as in (A) were performed. (D) SnSO under the same conditions as (B) without groove formation
4 was applied linearly. (E) Decarburizing annealing and final finishing annealing were performed without performing the groove forming treatment, and used as comparative materials. Each of the grooves introduced in (A) to (C) above had a width of 150 μm, a depth of 20 μm, and a spacing of 4 mm in the rolling direction, and was linearly introduced in a direction perpendicular to the rolling direction. The width of the SnSO 4 coating area in (B) and (C) is 100
μm. The sample (A) is a material in which a groove is only introduced into a steel plate. The cross-sectional structure of each of the samples (A) to (E) that passed through these steps was observed. As shown in FIG. 1, the samples (B) and (D) had SnSO It was confirmed that fine crystal grains having an average crystal grain size of 0.5 mm continued from the coated portion of No. 4 to the other steel sheet surface in the thickness direction. In sample (C), fine crystal grains continuous from the groove bottom to the other steel sheet surface in the thickness direction were observed. Further, Epstein coupons were collected from these samples, and the magnetic properties after strain relief annealing were measured. Table 1 shows the measurement results. Here B 8 shows the magnetic flux density at a magnetizing force 800A / m. [Table 1] As shown in Table 1, the samples (B) and (C) formed by combining the linear grooves on the surface of the steel sheet and the linear regions of the fine crystal grains were the samples (A), Fine grain only sample
Iron loss lower than (D) was obtained. From the comparison between Sample (B) and Sample (C), Sample (C) in which fine particles are formed under the linear groove also has an effect of reducing iron loss, but has a groove like Sample (B). It was found that the effect of reducing the iron loss was higher when the fine particles were linearly generated in the other portions. The effect of reducing iron loss in a steel sheet having a combination of linear grooves and fine crystal grains as described above is not yet clear, but is considered as follows. That is, sample (C)
In this method, fine particles were introduced to generate more magnetic poles under the groove having the magnetic pole generating action by itself, and as a result, the effect of reducing iron loss was observed. Then, since a magnetic pole of fine grains was introduced separately from the groove in the region where no magnetic pole was originally formed, (B) is
It is considered that a lower iron loss than (C) was obtained. As described above, the present invention relates to a method for producing fine crystal grains having a linear groove extending in a direction substantially perpendicular to the rolling direction on a surface thereof and penetrating a plate thickness in a portion other than the linear groove in the rolling direction. Thus, the iron loss can be reduced more than before by generating a band-shaped region extending in a direction substantially perpendicular to the above. Next, the results of various experiments performed to examine the proper range of the grooves and the proper range of the formation region of the fine crystal grains in the present invention will be described. First, the preferred range of the linear groove formed on the surface of the steel sheet was examined. 2 and 3 show the relationship between the width and the depth of the linear groove formed in the steel plate having a plate thickness of 0.23 mm and the iron loss W 17/50 , respectively. From these figures, the groove width is
0.3 when the groove depth is 10 μm or more and 70 μm or less.
It is understood that a low iron loss of 80 W / kg or less can be stably obtained.
Regarding this groove width, a low iron loss can be obtained even if it exceeds 300 μm, but the magnetic flux density is remarkably reduced. 4 and 5 show the relationship between the groove deviation angle and the iron loss from a direction perpendicular to the rolling direction when the groove width is 200 μm and the groove depth is 20 μm, respectively, the groove interval and the iron loss in the rolling direction. The relationship is shown below. From these figures, in order to obtain a low iron loss of 0.80w / kg or less, the groove interval in the rolling direction should be 1mm or more and 30mm or less.
Hereinafter, it is understood that the deviation angle of the groove may be set within 30 ° from the direction perpendicular to the rolling direction. Next, a region where fine crystal grains are to be formed in a portion other than the groove was examined. In the following experiment,
The width of the linear groove is 200 μm, the depth is 25 μm, the groove interval is 4 mm, and the linear groove is introduced at right angles to the rolling direction. Also, fine crystal grains
It was generated by applying SnSO 4 before decarburization annealing. FIG. 6 shows the relationship between the width in the rolling direction and the magnetic characteristics of a linear region of fine crystal grains generated between grooves. In this experiment, the interval between the linear grooves was set to 4 mm, and only one fine grain region was introduced between the grooves at a distance of 2 mm from the grooves in a direction perpendicular to the rolling direction. As is clear from FIG. 6, when the width of the fine grain region on the steel sheet surface is 2 mm or less, a lower iron loss value is obtained than when only the grooves are formed. If the width of the fine crystal grain region exceeds 2 mm, the magnetic flux density decreases and the iron loss value increases. FIG. 7 shows the relationship between the distance between the fine-grain regions and the core loss. In this experiment, the width of the fine-grain region was set to 0.5 mm, and the fine-grain region was introduced so as not to exist under the linear groove. According to FIG. 7, the interval between the fine grain regions is 1 mm or more.
It can be said that there is an iron loss reducing effect in the range of 50 mm or less.
Further, as for the angle for introducing the fine grain region, it can be said that the range of 0 ° to 30 ° is suitable from the experimental results shown in FIG. Next, as a result of examining the relationship between the state of formation of the fine crystal grain regions and the iron loss characteristics, the following was found.
That is, in the plan views of the magnetic steel sheets shown in FIGS. 9A to 9D, in order to obtain good iron loss characteristics, as shown in FIG. In the case where the fine crystal grains having a diameter are arranged in a line, any of several rows in the rolling direction within the width of the fine grain region as shown in FIG. 9B may be used. Also, as shown in FIG. 9C, when the fine grain region is introduced at a predetermined deviation angle from a direction perpendicular to the rolling direction,
The band-like fine crystal grain regions may intersect with the linear linear grooves. Further, as shown in FIG. 9D, the effect of reducing iron loss was similarly confirmed when two or more fine grain regions were formed between grooves on the surface of the steel sheet. In addition, the fine crystal grains having the magnetic domain refining effect are greater when they exist over the plate thickness. Note that, in the experiments shown in FIGS.
μm and a depth of 20 μm, and introduced linearly in a direction perpendicular to the rolling direction at an interval of 4 mm in the rolling direction. As described above, in the present invention, by introducing linear grooves on the surface of the steel sheet at a substantially right angle to the rolling direction, magnetic domains are formed by the magnetic poles formed in the grooves to reduce the iron loss and further reduce the iron loss. By introducing a strip-shaped subdivided crystal region extending in a direction substantially perpendicular to the rolling direction into a portion having no groove, the iron loss is further reduced as compared with the case where only the groove is formed. It is considered that the iron loss reduction mechanism is because the magnetic poles are formed by fine grains separately from the groove portions where the magnetic poles are already generated, and the magnetic domains are further subdivided. It is desirable that the band-like region of the fine crystal grains be continuous in a direction substantially perpendicular to the rolling direction. However, even if there is a discontinuous portion as shown in FIG. 9, the effect of reducing iron loss is obtained. It is desirable that the fine crystal grains penetrate the plate thickness in order to generate the magnetic pole, but even if they do not penetrate, the effect of reducing iron loss is obtained. As for the linear grooves, as shown in FIG. 2, when the width of the groove is too small, the effect of reducing iron loss is small, while when the width of the groove is excessively wide, the magnetic flux density is lowered. Therefore, the groove width should be 30 μm or more and 300 μm or less .
If the depth of the groove is less than 10 μm, the effect of magnetic domain refining is insufficient, and if it is deeper than 70 μm, the hysteresis loss increases.
10 µm to 70 µm is appropriate. The deviation angle of the groove from the direction perpendicular to the rolling direction is 0 ° to 30 ° because the hysteresis loss increases as the groove direction approaches the rolling direction.
° range . If the groove interval is smaller than 1 mm, the hysteresis loss tends to increase, and if it is larger than 30 mm, there is no magnetic domain refining effect. Therefore, the appropriate range of groove width is 1mm
30 mm. Next, we describe the preferred range of the fine crystal grain region for introducing the strip. Since the fine crystal grains themselves have a large deviation from the rolling direction of the crystal orientation [001], the expansion of the fine grain region leads to a decrease in magnetic flux density and an increase in iron loss. Therefore, from the results of FIG. 6, the width of the fine grain region is set to 2 mm or less in order to reduce the iron loss as compared with the case of only the groove .
You. Further, if the interval between the fine grain regions is excessively reduced, the ratio of the fine grain portion in the entire steel sheet is increased and the hysteresis loss is increased. On the other hand, the interval is 50mm
If it exceeds, the effect of domain refining cannot be expected. Therefore, the interval between the fine grain regions is 1 mm to 50 mm according to FIG. Further, the deviation angle from the direction orthogonal to the rolling direction of the band-like fine grain region is 0 ° to 30 ° for the same reason as in the case of the groove.
And In the grain-oriented electrical steel sheet of the present invention, a slab for a grain-oriented electrical steel sheet is hot-rolled according to a conventional method, and thereafter, if necessary, hot-rolled sheet annealing is performed. The final product thickness is obtained by cold rolling two or more times, followed by decarburizing annealing and then final finishing annealing, and then a normal top coat is applied to obtain a product. The groove may be introduced either before or after the final finish annealing. Examples of the method of forming the groove include a method of locally performing an etching treatment, a method of scribing with a blade or the like, a method of rolling with a roll having protrusions, and the like. However, the method of rolling the steel sheet after finish annealing with a gear-type roll and then annealing at a high temperature as in the method disclosed in Japanese Patent Publication No. Sho 62-53579 results in both groove formation and generation of fine crystal grains. The fine grains formed in this case are directly below the grooves, and the effect of reducing iron loss is small because the fine grains do not penetrate the plate thickness. The most desirable method for introducing grooves is to form an etching resist on a steel plate after the final cold rolling by printing or the like, and then to form grooves by electrolytic etching. Next, as a method for obtaining fine grains, a metal such as Sn, Sb, B, Bi, S, Pb, As, Se, Te, or an oxide or sulfide thereof is attached to the base iron portion. , Normal decarburization annealing,
There are a method of performing finish annealing, a method of locally applying mechanical strain before finish annealing, and a method of locally irradiating a laser or a plasma flame and performing high-temperature heat treatment. Example 1 As an inhibitor, a hot-rolled 3.2% silicon steel sheet containing MnSe, Sb, and AlN was rolled to a thickness of 0.23 mm by two cold-rollings sandwiching intermediate annealing. (A) and (B)
By performing the above steps, samples (A) and (B) were obtained, respectively. (A) After applying an etching resist by gravure offset printing, a linear groove is formed by electrolytic etching, and the etching resist is removed by dipping in an alkaline solution. (B) After forming grooves by the same process as in (A), a fine grain generation process of applying SnSO 4 powder at a width of 100 μm and an interval of 4 mm perpendicular to the rolling direction was performed on an intermediate region between adjacent grooves. . (C) As a comparative example, a sample (C) was used without performing both the groove formation processing and the fine grain generation processing. The grooves introduced in (A) and (B) have a width of 170
μm, a depth of 20 μm, and introduced at intervals of 4 mm in a direction perpendicular to the rolling direction. These steel sheets were subjected to decarburization annealing, followed by final annealing, and further overcoated. In the cross section of the product obtained in this way, (A) showed only grooves, whereas (B) showed grains penetrating the plate thickness under the SnO 2 coating area in addition to the grooves. Fine grains with a diameter of about 0.5 mm were found. Table 2 shows the results obtained by collecting Epstein coupons from the product thus obtained, performing strain relief annealing, and measuring magnetic properties. As is evident from Table 2, the iron loss is lower in the adaptation example in which the linear fine crystal grain region is introduced between the grooves than in the conventional steel sheet in which only the grooves are introduced. [Table 2] EXAMPLE 2 A hot rolled plate of 3.2% silicon steel containing MnSe and AlN as inhibitors was subjected to 0.18 cold rolling twice with intermediate annealing.
It was rolled to a thickness of mm and subjected to the following processes (D) to (F) to obtain samples (D) to (F), respectively. (D) After applying an etching resist by gravure offset printing, a linear groove is formed by electrolytic etching, and the etching resist is removed by dipping in an alkaline solution. (E) After forming a groove by the same process as the sample (D), place a 100 μm
A SnO 2 powder was applied at an interval of 4 mm. (F) After forming a groove by the same process as sample (D), SnO 2
Powder was filled into the groove. (G) A comparative example without a groove forming treatment. The grooves introduced in (D) to (F) have a width of 180 μm.
m and a depth of 18 μm, and were introduced at 6 mm intervals from the rolling direction.
Samples (E), (F), and (G) were further subjected to decarburization finish annealing, and then to final finish annealing, followed by a topcoat coating. As a result of observing the cross section of the product thus obtained and observing it, in the sample (E), fine grains having a grain diameter of 0.3 mm penetrating in the Sn coating portion in the region between the grooves were found. On the other hand, in (F), a similar grain region was formed below the groove. Epstein coupons were collected from the product thus obtained, and after the strain relief annealing, the magnetic properties were measured. Table 3 shows the results. [Table 3] As is apparent from Table 3, the conforming example having fine grains penetrating the plate thickness in a portion other than the groove shows a lower iron loss value than the comparative example having the fine grains below the groove. The grain-oriented electrical steel sheet of the present invention has on its surface linear grooves extending in a direction substantially perpendicular to the rolling direction, and a width penetrating the sheet thickness between adjacent grooves. A grain-oriented electrical steel sheet having a low iron loss having a fine crystal grain area of 2 mm or less,
The steel sheet according to the present invention not only exhibits a lower iron loss than the conventional steel sheet, but also has no deterioration of the iron loss due to strain relief annealing.
Can be used with wound iron cores, greatly contributing to transformer efficiency.

【図面の簡単な説明】 【図1】鋼板の断面構造を示す図である。 【図2】溝幅と鉄損W17/50との関係を示す図である。 【図3】溝深さと鉄損W17/50との関係を示す図である。 【図4】溝導入角度と鉄損W17/50との関係を示す図であ
る。 【図5】溝間隔と鉄損W17/50との関係を示す図である。 【図6】微細粒領域の幅と鉄損W17/50との関係を示す図
である。 【図7】微細粒領域の間隔と鉄損W17/50との関係を示す
図である。 【図8】微細粒領域導入角度と鉄損W17/50との関係を示
す図である。 【図9】微細粒領域導入時のマクロ組織の例を示す図で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a cross-sectional structure of a steel plate. FIG. 2 is a diagram showing the relationship between groove width and iron loss W 17/50 . FIG. 3 is a diagram showing a relationship between groove depth and iron loss W 17/50 . FIG. 4 is a diagram showing a relationship between a groove introduction angle and iron loss W 17/50 . FIG. 5 is a diagram showing the relationship between groove spacing and iron loss W 17/50 . FIG. 6 is a view showing the relationship between the width of a fine grain region and iron loss W 17/50 . FIG. 7 is a diagram showing the relationship between the interval between fine grain regions and iron loss W 17/50 . FIG. 8 is a diagram showing a relationship between a fine grain region introduction angle and iron loss W 17/50 . FIG. 9 is a diagram showing an example of a macrostructure when a fine grain region is introduced.

フロントページの続き (72)発明者 鈴木 一弘 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (72)発明者 小松原 道郎 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平6−100997(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/12 - 1/375 Continuing on the front page (72) Inventor Kazuhiro Suzuki 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works Co., Ltd. (72) Inventor Michio Komatsubara 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation (56) References JP-A-6-100997 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 1/12-1/375

Claims (1)

(57)【特許請求の範囲】 【請求項1】 表面に圧延方向とほぼ直交する方向に延
びる線状の溝を複数本有する方向性電磁鋼板であって、
線状の溝は、幅が30μm 以上300 μm 以下、深さが10μ
m 以上70μm 以下、圧延方向の間隔が1mm以上30mm以
下、圧延方向と直交する方向からの偏倚角度が30°以内
であり、互いに隣り合う溝間に微細結晶粒群からなる帯
状領域をそなえ、該帯状微細粒領域は、幅2mm以下、圧
延方向の間隔が1mm以上50mm以下、圧延方向と直交する
方向からの偏倚角度が30°以内であることを特徴とする
鉄損の低い方向性電磁鋼板。
(57) [Claim 1] A grain-oriented electrical steel sheet having a plurality of linear grooves extending on a surface thereof in a direction substantially orthogonal to a rolling direction,
The linear groove has a width of 30 μm or more and 300 μm or less and a depth of 10 μm.
m to 70 μm, spacing in the rolling direction is 1 mm to 30 mm
Bottom, deviation angle from the direction perpendicular to the rolling direction is within 30 °
And a band-like region consisting of a group of fine crystal grains is provided between adjacent grooves, and the band-like fine-grain region has a width of 2 mm or less and a pressure
1mm or more and 50mm or less in the rolling direction, perpendicular to the rolling direction
A grain- oriented electrical steel sheet with low iron loss, wherein the angle of deviation from the direction is within 30 ° .
JP11518994A 1994-05-27 1994-05-27 Grain-oriented electrical steel sheet with low iron loss Expired - Fee Related JP3369724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11518994A JP3369724B2 (en) 1994-05-27 1994-05-27 Grain-oriented electrical steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11518994A JP3369724B2 (en) 1994-05-27 1994-05-27 Grain-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH07320921A JPH07320921A (en) 1995-12-08
JP3369724B2 true JP3369724B2 (en) 2003-01-20

Family

ID=14656561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11518994A Expired - Fee Related JP3369724B2 (en) 1994-05-27 1994-05-27 Grain-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP3369724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210060694A1 (en) * 2017-12-26 2021-03-04 Posco Grain-oriented electrical steel sheet and magnetic domain refining method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593678B2 (en) 2008-02-19 2010-12-08 新日本製鐵株式会社 Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
WO2011125672A1 (en) * 2010-04-01 2011-10-13 新日本製鐵株式会社 Directional electromagnetic steel plate and method for manufacturing same
EP2615184B1 (en) * 2010-09-09 2015-08-05 Nippon Steel & Sumitomo Metal Corporation Oriented electromagnetic steel sheet and process for production thereof
KR102162984B1 (en) * 2018-12-19 2020-10-07 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210060694A1 (en) * 2017-12-26 2021-03-04 Posco Grain-oriented electrical steel sheet and magnetic domain refining method therefor
US11772189B2 (en) * 2017-12-26 2023-10-03 Posco Co., Ltd Grain-oriented electrical steel sheet and magnetic domain refining method therefor

Also Published As

Publication number Publication date
JPH07320921A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
EP0202339B1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
EP0539236B1 (en) Low-iron loss grain oriented electromagnetic steel sheet and method of producing the same
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
GB2167324A (en) Grain-oriented electrical steel sheet having a low watt loss and method for producing same
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
WO2020203928A1 (en) Directional electromagnetic steel sheet and manufacturing method of same
JP3369724B2 (en) Grain-oriented electrical steel sheet with low iron loss
JP3882103B2 (en) Low iron loss unidirectional electrical steel sheet with tension-applying anisotropic coating
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
EP0584610A1 (en) Method and low iron loss grain-oriented electromagnetic steel and method of manufacturing same
JP2942074B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3252700B2 (en) Electrical steel sheet with excellent magnetic properties and punchability
JP2019123936A (en) Method for manufacturing grain-oriented electromagnetic steel sheets
JP3364305B2 (en) Unidirectional electrical steel sheet with low iron loss
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JPH07258739A (en) Production of grain oriented magnetic steel sheet having low iron loss
JPH07316655A (en) Production of low-iron loss grain oriented electrical steel sheet
JP4807064B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JPS6330968B2 (en)
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JPH0641640A (en) Manufacture of grain-oriented silicon steel with low core loss
JP2000124020A (en) Unidirectionally-oriented silicon steel plate having superior magnetic properties, and its manufacture
JPH0841602A (en) Grain-oriented silicon steel sheet excellent in magnetic property and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees