JP3463314B2 - Manufacturing method of electrical steel sheet with excellent magnetic properties - Google Patents

Manufacturing method of electrical steel sheet with excellent magnetic properties

Info

Publication number
JP3463314B2
JP3463314B2 JP08463393A JP8463393A JP3463314B2 JP 3463314 B2 JP3463314 B2 JP 3463314B2 JP 08463393 A JP08463393 A JP 08463393A JP 8463393 A JP8463393 A JP 8463393A JP 3463314 B2 JP3463314 B2 JP 3463314B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
annealing
magnetic properties
linear groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08463393A
Other languages
Japanese (ja)
Other versions
JPH06299244A (en
Inventor
昌義 石田
圭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP08463393A priority Critical patent/JP3463314B2/en
Publication of JPH06299244A publication Critical patent/JPH06299244A/en
Application granted granted Critical
Publication of JP3463314B2 publication Critical patent/JP3463314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、特に変圧器やその他
の電気機器用鉄心素材に有利に適合する、歪取焼鈍後も
鉄損低減効果が消失しない磁気特性の優れた方向性電磁
鋼板の製造方法に関する。 【0002】 【従来の技術】方向性電磁鋼板は変圧器やその他の電気
機器鉄心として利用され、磁気特性に優れること、中で
も鉄損の低いことが要求される。この鉄損は概ねヒステ
リシス損と渦電流損の和で表わすことができ、ヒステリ
シス損は強い抑制力をもつインヒビターを用いることに
より、結晶方位をゴス方位、すなわち(110)<001>方位に
高度に集積させること、磁化したとき磁壁移動の際のピ
ンニング因子の生成原因となる不純物元素を低減するこ
と、等により大幅に低減されてきた。一方渦電流損につ
いては、Si含有量を増加して電気抵抗を増大させるこ
と、鋼板板厚を薄くすること、鋼板地鉄表面に地鉄と熱
膨張係数の異なる被膜を形成して地鉄に張力を付与する
こと、結晶粒の微細化により磁区幅を低減すること、等
によって低減が図られてきた。 【0003】さらに渦電流損を低減すべく、鋼板の圧延
方向と垂直な方向にレーザー光(特公昭57-2252 号公
報) 、プラズマ炎(特開昭62-96617号公報) 等を照射す
る方法が提案されている。これらの方法は、鋼板表面に
線状又は点状に微小な熱歪みを導入することにより磁区
を細分化し、鉄損を大幅に低減しようとするものであ
る。ところがこれらの方法においては、磁区細分化後に
高温での焼鈍を施すと、鉄損低減効果は消失してしまう
ため、照射処理後に歪取焼鈍を必要とする巻鉄心用素材
として用いることはできなかった。 【0004】そこで歪取焼鈍にも耐え得る磁区細分化方
法として、鋼板への溝形成を行う手法が種々提案されて
いる。例えば、最終仕上げ焼鈍後即ち二次再結晶後の鋼
板に局所的に溝を形成し、その反磁界効果によって磁区
を細分化する方法があるが、この溝の形成手段として
は、特公昭50-35679号公報に開示されている機械的な加
工や、特開昭63-76819号公報に示されているレーザー光
照射により絶縁被膜及び下地被膜を局所的に除去した後
電解エッチングする、等がある。また特公昭62-53579号
公報には、歯車型ロールで圧刻後、歪取焼鈍することで
溝形成及び再結晶を達成して磁区を細分化する方法が、
そして特開昭59-197520 号公報には最終仕上げ焼鈍前の
鋼板に溝を形成する方法が、それぞれ開示されている。 【0005】 【発明が解決しようとする課題】これらの方法によれ
ば、歪取焼鈍後も磁区細分化効果を維持できるが、一方
鉄損の低減幅は、上記したレーザー光やプラズマ炎等を
照射する方法と比較すると不十分で、さらなる低鉄損化
が望まれている。 【0006】この発明は、上記問題を有利に解決するも
ので、歪取焼鈍後においても鉄損の劣化のない、低い鉄
損の方向性電磁鋼板を、安定してしかも低コストで製造
し得る方法について提案することを目的とする。 【0007】 【課題を解決するための手段】発明者らは、方向性電磁
鋼板の低鉄損化を安定して図れる製造方法の開発を目的
として鋭意実験および検討を重ねた結果、最終冷延板に
局所的に溝を形成する方法において、その溝の形状に工
夫を加えることによって、従来に比べてさらに低い鉄損
が得られることを新たに知見し、この発明を完成させ
た。 【0008】すなわちこの発明は、含けい素鋼素材を熱
間圧延した後、1回または中間焼鈍を挟む2回以上の冷
間圧延を施して最終製品板厚とし、しかる後脱炭焼鈍、
次いで仕上げ焼鈍を施す一連の工程からなる方向性電磁
鋼板の製造方法において、最終冷間圧延後の鋼板に、そ
の圧延方向とほぼ直交する向きに延びる線状溝を、圧延
方向に所定間隔で多数本形成するに当たり、該線状溝の
少なくとも1つの外縁は、少なくとも2直線が相互に角
度を成す配置で組合わされた屈曲部分を有する要素を、
各要素の板幅方向の長さを50〜100 μmとして、圧延方
向とほぼ直交する向きに、複数配列した構成に成ること
を特徴とする、磁気特性に優れた電磁鋼板の製造方法で
ある。 【0009】また、線状溝は、平均幅:30〜300 μm お
よび平均深さ:5〜100 μm で、圧延方向に対して60〜
90°の角度で延び、この線状溝を圧延方向に1mm以上の
平均間隔で配列することが、鉄損の低減にはとりわけ有
利である。 【0010】ここで、この発明の素材である含珪素鋼と
しては、従来公知の成分組成のものいずれもが適合する
が、代表組成を掲げると次のとおりである。 C:0.01〜0.10wt%(以下単に%と示す) Cは、熱間圧延、冷間圧延中の組織の均一微細化のみら
なず、ゴス方位の発達に有用な成分であり、少なくとも
0.01%以上の添加が好ましい。しかしながら0.10%を超
えて含有されるとかえってゴス方位に乱れが生じるので
上限は0.10%程度が好ましい。 【0011】Si:2.0 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5 %を上回ると冷延性が損なわれ、一方2.0 %に
満たないと比抵抗が低下するだけでなく、2次再結晶・
純化のために行われる最終高温焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Si量は2.0 〜4.5 %程度とするのが
好ましい。 【0012】Mn:0.02〜0.12% Mnは、熱間脆化を防止するため少なくとも0.02%程度を
必要とするが、あまりに多すぎると磁気特性を劣化させ
るので上限は0.12%程度に定めるのが好ましい。 【0013】インヒビターとしては、いわゆるMnS,MnSe
系とAlN 系とがある。まず、 MnS, MnSe系の場合は、S
e, Sのうちから選ばれる少なくとも1種を、0.005 〜
0.06%の範囲で含有する。Se, Sは、いずれもインヒビ
ターとして有力な元素である。抑制力確保の観点から
は、少なくとも0.005 %程度を必要とするが、0.06%を
超えるとその効果が損なわれるので、その下限、上限は
それぞれ0.01%, 0.06%程度とするのが好ましい。 【0014】AlN 系の場合は、Al:0.005 〜0.10%,
N:0.004 〜0.015 %の範囲で含有する。AlおよびNの
範囲についても、上述したMnS, MnSe系の場合と同様な
理由により、上記の範囲に定めた。ここに上記した Mn
S, MnSe系および AlN系はそれぞれ併用が可能である。 【0015】インヒビター成分としては上記したS, S
e, Alの他、Cu, Sn, Cr、Ge, Sb, Mo, Te, BiおよびP
なども有利に適合するので、それぞれ少量併せて含有さ
せることもできる。ここに上記成分の好適添加範囲はそ
れぞれ、Cu, Sn, Cr:0.01〜0.15%、Ge, Sb, Mo, Te,
Bi:0.005 〜0.1 %、P:0.01〜0.2 %であり、これら
の各インヒビター成分についても、単独使用および複合
使用いずれもが可能である。 【0016】 【作用】鋼板表面に線状溝を導入すると、電磁鋼板が磁
化されたときに自由磁極が生じ、その反磁界による磁気
エネルギーを減少させるように磁区幅が減少することが
知られている。そしてこの発明では、この鋼板表面に導
入する線状溝に関し、その少なくとも1つの外縁は、少
なくとも2直線が相互に角度を成す配置で組合わされた
要素を、圧延方向とほぼ直交する向きに、複数配列した
構成にすることによって、磁区幅の減少をさらに促進す
るのである。 【0017】ここで、少なくとも2直線が相互に角度を
成す配置で組合わされた要素を複数配列した構成とは、
2直線の接合部を山形の頂点とする形状や3直線が台形
状に接合する形状などの多角形の一部または全部の輪郭
形状が、その典型例である。すなわち、まず圧延方向と
ほぼ直交する向きに連続する線状溝の場合には、その具
体例を図1(a) 〜(c) に示すように、線状溝の両側また
は片側の外縁はジグザグ状となり、また図1(a) および
(c) に示した線状溝を不連続化すると、図1(d) および
(e) に示す線状溝となる。さらに、図1(f) は、3直線
を台形状に接合した外縁を有する線状溝である。なお、
直線同士の接合部に、図2に示すように、適当な曲率を
持たすようにしても一向に構わない。 【0018】図1に示した線状溝の形状に共通するの
は、その外縁の各構成要素において、直線の接合部が屈
曲していることであり、一方この屈曲部分には磁壁が発
生し易いため、直線の接合数を十分に多くすることによ
って、全く屈曲のない直線状溝を導入する場合に比べ
て、磁区幅を狭くすることができる。従って、図1に示
す、各要素の板幅方向の長さlを直線溝における磁区幅
よりも狭くすることによって、磁壁移動による渦電流損
を直線溝よりも低減することが可能となるのである。 【0019】ここで、上記の理由から、長さlは50〜10
0 μm とする。また、2直線がなす角度αに関して、そ
の下限は特に規定しないが、角度が小さ過ぎると磁区細
分化効果が十分に発揮されないため、20°以上にするこ
とが望ましい。一方、角度が180 °に近づき過ぎると、
磁区細分化効果がかえって失われるため、150 °以下と
することが望ましい。 【0020】なお、線状溝の形成は、最終冷間圧延後ま
たは脱炭焼鈍後に行うことができる。最終冷間圧延後に
線状溝を形成する場合は、レジスト−電解エッチング法
等の電気化学的方法および酸洗等の化学的方法のいずれ
でもよい。すなわち、この発明にかかる形状を有する溝
部以外の非腐食部にレジスト剤を塗布することにより、
容易に溝形成を達成できる。 【0021】 【実施例】C:0.040 %、Si:3.32%、Mn:0.066 %、
Mo:0.012 %、Se:0.020 %およびSb:0.025 %を含有
する珪素鋼スラブを、1360℃で3時間加熱後、熱間圧延
して2.4 mm厚の熱延板とした後、970 ℃で3分間の中間
焼鈍を挟む2回の冷間圧延を施して0.23mm厚の最終冷延
板とした。次いで仕上焼鈍を施す前の鋼板に、図1(a)
に示したところに従う、線状溝の形状に対応する形状の
非塗布部を残してレジストインキを塗布しマスキングし
た。レジストインキの塗布は、グラビアオフセット印刷
によって行い、アルキド系樹脂を主成分とするグラビア
インキを用いた。 【0022】ここで、非塗布部は、板幅方向に対する傾
きが8〜80°の範囲で交互に逆向きとなって山形を成す
板幅方向の長さが100 μm の要素の繰り返しによる、幅
100μmの折れ線とした。このような折れ線からなる非
塗布部を、圧延方向に間隔3mm毎に残した。次に、鋼板
にNaCl浴を用いた電解エッチング処理を施すことによ
り、深さ20μmの折れ線状の溝を形成した。 【0023】なお、電解エッチングはNaCl水溶液中で電
流密度10A/dm2 および電解時間20sの条件で行った。 【0024】その後、レジスト剤を除去し、脱炭焼鈍、
次いで仕上焼鈍を施したのち、張力コーティングを塗布
焼き付けして、800 ℃で3時間の歪取焼鈍を施した。 【0025】また比較のため、最終冷延板に対し線状溝
形成処理を施さない鋼板、および深さ20μm、幅100 μ
m、圧延方向の間隔3mmで、板幅方向に平行な直線状溝
を同様の手法で形成してレジスト剤を除去したのちの鋼
板に対し、それぞれ脱炭焼鈍以降は同様に一連の工程を
施した。 【0026】かくして得られた歪取焼鈍後の鋼板から、
エプスタイン試験片を、その長手方向が圧延方向と一致
するように切り出し、それぞれの磁気特性を測定した結
果を表1に示す。 【0027】 【表1】【0028】表1から、鋼板に線状溝を導入することに
よって磁気特性が向上すること、特に線状溝をこの発明
に従う形状にすることによって、鉄損が大幅に向上する
ことがわかる。なお、上記した線状溝のほかにも、図1
(b) 〜(f) に示した線状溝についても同様の評価を行っ
たところ、表1と同様の結果を得た。 【0029】 【発明の効果】この発明によれば、磁気特性が良好で安
定しており、特に歪取焼鈍を行った後も磁気特性の劣化
がきわめて小さい方向性電磁鋼板を安定して製造するこ
とが可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is particularly suitable for transformers and other core materials for electric equipment, and the effect of reducing iron loss is not lost even after strain relief annealing. The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties. [0002] Grain-oriented electrical steel sheets are used as iron cores for transformers and other electrical equipment, and are required to have excellent magnetic properties, especially low iron loss. This iron loss can be generally expressed by the sum of the hysteresis loss and the eddy current loss. It has been greatly reduced by integration, reduction of an impurity element which causes generation of a pinning factor at the time of domain wall movement when magnetized, and the like. On the other hand, regarding eddy current loss, increasing the Si content to increase the electrical resistance, reducing the thickness of the steel sheet, forming a film with a different thermal expansion coefficient from that of the Attempts have been made by applying tension, reducing the domain width by refining the crystal grains, and the like. In order to further reduce eddy current loss, a method of irradiating a laser beam (Japanese Patent Publication No. 57-2252), a plasma flame (Japanese Patent Application Laid-Open No. 62-96617) or the like in a direction perpendicular to the rolling direction of the steel sheet. Has been proposed. In these methods, magnetic domains are subdivided by introducing minute thermal strain into the surface of a steel sheet in a linear or dot-like manner, and an attempt is made to significantly reduce iron loss. However, in these methods, when annealing at a high temperature after the domain refining, the iron loss reduction effect is lost, it can not be used as a material for wound cores that require strain relief annealing after irradiation treatment Was. Therefore, various methods of forming grooves in a steel sheet have been proposed as a magnetic domain refining method capable of withstanding strain relief annealing. For example, there is a method in which a groove is locally formed in the steel sheet after the final annealing, that is, after the secondary recrystallization, and the magnetic domain is subdivided by the demagnetizing effect. Mechanical processing disclosed in 35679, or electrolytic etching after locally removing the insulating film and the underlying film by laser light irradiation shown in JP-A-63-76819, etc. . Japanese Patent Publication No. 62-53579 discloses a method of subdividing magnetic domains by achieving groove formation and recrystallization by performing stress relief annealing after embossing with a gear type roll,
JP-A-59-197520 discloses a method of forming grooves in a steel sheet before final annealing. According to these methods, the magnetic domain refining effect can be maintained even after strain relief annealing, but the iron loss can be reduced only by the laser light or plasma flame described above. Compared with the irradiation method, it is insufficient, and further reduction in iron loss is desired. The present invention advantageously solves the above-mentioned problem, and can produce a low-loss, grain-oriented electrical steel sheet with no iron loss deterioration even after strain relief annealing, stably and at low cost. The aim is to propose a method. The inventors of the present invention have conducted intensive experiments and studies with the aim of developing a manufacturing method capable of stably reducing the iron loss of grain-oriented electrical steel sheets. In the method of locally forming a groove in a plate, the present inventors have newly found that by devising the shape of the groove, it is possible to obtain a lower iron loss than in the past, and completed the present invention. That is, the present invention is to provide a steel product containing steel, which is hot-rolled, and then cold-rolled once or twice or more with intermediate annealing to obtain a final product sheet thickness.
Then, in a method for manufacturing a grain-oriented electrical steel sheet comprising a series of steps of performing a finish annealing, a steel sheet after final cold rolling has a large number of linear grooves extending in a direction substantially perpendicular to the rolling direction at predetermined intervals in the rolling direction. In the present formation, at least one outer edge of the linear groove is provided with an element having a bent portion in which at least two straight lines are combined at an angle with each other.
A method for producing an electromagnetic steel sheet having excellent magnetic properties, wherein a plurality of elements are arranged in a direction substantially perpendicular to a rolling direction, with a length of each element in a sheet width direction being 50 to 100 μm . The linear groove has an average width of 30 to 300 μm and an average depth of 5 to 100 μm, and has a width of 60 to 300 μm with respect to the rolling direction.
Extending at an angle of 90 ° and arranging the linear grooves at an average interval of 1 mm or more in the rolling direction is particularly advantageous for reducing iron loss. [0010] Here, as the silicon-containing steel as the material of the present invention, any of the conventionally known component compositions are suitable, and typical compositions are as follows. C: 0.01 to 0.10 wt% (hereinafter simply referred to as%) C is a component useful not only for uniform micronization of the structure during hot rolling and cold rolling, but also for the development of Goss orientation.
Addition of 0.01% or more is preferable. However, if the content exceeds 0.10%, the Goss orientation is rather disturbed. Therefore, the upper limit is preferably about 0.10%. Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss. However, when the content exceeds 4.5%, the cold rolling property is impaired. Not only decrease, but also secondary recrystallization
Since the crystal orientation is randomized by the α-γ transformation during the final high-temperature annealing performed for purification, a sufficient iron loss improvement effect cannot be obtained, so the Si content is preferably set to about 2.0 to 4.5%. Mn: 0.02 to 0.12% Mn needs to be at least about 0.02% in order to prevent hot embrittlement, but if it is too much, the magnetic properties are deteriorated. Therefore, the upper limit is preferably set to about 0.12%. . As inhibitors, so-called MnS, MnSe
System and AlN system. First, in the case of MnS and MnSe,
e, at least one selected from the group consisting of 0.005 to
It is contained in the range of 0.06%. Se and S are both effective elements as inhibitors. From the viewpoint of securing the suppressing power, at least about 0.005% is required, but if it exceeds 0.06%, its effect is impaired. Therefore, it is preferable that the lower limit and the upper limit are about 0.01% and 0.06%, respectively. In the case of AlN system, Al: 0.005 to 0.10%,
N: contained in the range of 0.004 to 0.015%. The ranges of Al and N are also set to the above ranges for the same reason as in the case of the MnS or MnSe system described above. Mn mentioned above here
S, MnSe and AlN can be used together. As the inhibitor component, the above-mentioned S, S
e, Al, Cu, Sn, Cr, Ge, Sb, Mo, Te, Bi and P
And the like can be advantageously used, so that they can be contained together in small amounts. Here, the preferable addition ranges of the above components are respectively Cu, Sn, Cr: 0.01 to 0.15%, Ge, Sb, Mo, Te,
Bi: 0.005 to 0.1%, P: 0.01 to 0.2%, and each of these inhibitor components can be used alone or in combination. It is known that when a linear groove is introduced into the surface of a steel sheet, a free magnetic pole is generated when the electromagnetic steel sheet is magnetized, and the magnetic domain width is reduced so as to reduce the magnetic energy due to the demagnetizing field. I have. In the present invention, with respect to the linear groove to be introduced into the surface of the steel sheet, at least one outer edge has a plurality of elements formed by combining at least two straight lines at an angle to each other in a direction substantially orthogonal to the rolling direction. With the arrangement, the reduction of the magnetic domain width is further promoted. Here, a configuration in which at least two straight lines form a plurality of elements combined in an arrangement forming an angle with each other is as follows.
A typical example is a part or all of the outline shape of a polygon such as a shape in which a joint portion of two straight lines is a vertex of a chevron or a shape in which three straight lines are joined in a trapezoidal shape. That is, first, in the case of a linear groove continuous in a direction substantially perpendicular to the rolling direction, as shown in FIGS. 1 (a) to 1 (c), the outer edges of both sides or one side of the linear groove are zigzag. Figure 1 (a) and
When the linear groove shown in (c) is made discontinuous, FIG.
It becomes the linear groove shown in (e). Further, FIG. 1F shows a linear groove having an outer edge formed by joining three straight lines in a trapezoidal shape. In addition,
As shown in FIG. 2, the joint between the straight lines may have an appropriate curvature. A common feature of the shape of the linear groove shown in FIG. 1 is that a straight joint portion is bent at each of the components on the outer edge thereof, whereas a magnetic wall is generated at the bent portion. For this reason, the magnetic domain width can be narrowed by sufficiently increasing the number of straight junctions, as compared with the case where a straight groove having no bending is introduced. Therefore, by making the length l of each element in the plate width direction smaller than the magnetic domain width in the linear groove shown in FIG. 1, eddy current loss due to domain wall movement can be reduced more than in the linear groove. . Here, for the above reason, the length l is 50 to 10
0 μm . The lower limit of the angle α formed by the two straight lines is not particularly defined. However, if the angle is too small, the magnetic domain refining effect is not sufficiently exerted. On the other hand, if the angle approaches 180 °,
Since the magnetic domain refining effect is rather lost, it is preferable to set the angle to 150 ° or less. The formation of the linear grooves can be performed after final cold rolling or after decarburizing annealing. When a linear groove is formed after the final cold rolling, any of an electrochemical method such as a resist-electrolytic etching method and a chemical method such as pickling may be used. That is, by applying a resist agent to non-corrosive parts other than the groove having the shape according to the present invention,
Groove formation can be easily achieved. Examples C: 0.040%, Si: 3.32%, Mn: 0.066%,
A silicon steel slab containing Mo: 0.012%, Se: 0.020% and Sb: 0.025% was heated at 1360 ° C for 3 hours, hot-rolled into a 2.4 mm thick hot-rolled sheet, and then heated at 970 ° C. The steel sheet was subjected to two cold rolling operations with an intermediate annealing for two minutes to obtain a final cold-rolled sheet having a thickness of 0.23 mm. Next, the steel sheet before the finish annealing is applied to the steel sheet as shown in FIG.
The resist ink was applied and masked except for the non-applied portion having a shape corresponding to the shape of the linear groove, as shown in FIG. The application of the resist ink was performed by gravure offset printing, and a gravure ink containing an alkyd-based resin as a main component was used. Here, the non-applied portion is formed by repeating an element having a length of 100 μm in the width direction of the plate, which alternates in the opposite direction in the range of 8 to 80 ° with respect to the width direction of the plate to form a mountain shape.
The line was 100 μm. The non-applied portions composed of such broken lines were left at intervals of 3 mm in the rolling direction. Next, the steel plate was subjected to an electrolytic etching treatment using a NaCl bath to form a polygonal groove having a depth of 20 μm. The electrolytic etching was performed in a NaCl aqueous solution under the conditions of a current density of 10 A / dm 2 and an electrolysis time of 20 s. Thereafter, the resist agent is removed, and decarburization annealing is performed.
Next, after finish annealing, a tension coating was applied and baked, followed by strain relief annealing at 800 ° C. for 3 hours. For comparison, a steel sheet not subjected to a linear groove forming process on the final cold-rolled sheet, a depth of 20 μm and a width of 100 μm
m, a linear groove parallel to the sheet width direction with a gap of 3 mm in the rolling direction was formed in the same manner to remove the resist agent, and then the steel sheet was subjected to the same series of steps after decarburization annealing. did. From the steel sheet after the strain relief annealing thus obtained,
An Epstein test piece was cut out so that its longitudinal direction coincided with the rolling direction, and the results of measuring the respective magnetic properties are shown in Table 1. [Table 1] From Table 1, it can be seen that the magnetic properties are improved by introducing the linear grooves into the steel sheet, and in particular, the iron loss is significantly improved by forming the linear grooves into the shape according to the present invention. In addition to the linear grooves described above, FIG.
When the same evaluation was performed for the linear grooves shown in (b) to (f), the same results as in Table 1 were obtained. According to the present invention, it is possible to stably produce a grain-oriented electrical steel sheet which has good and stable magnetic properties, and in particular, has very little deterioration in magnetic properties even after performing strain relief annealing. It is possible.

【図面の簡単な説明】 【図1】この発明に適合する溝形状を示す模式図であ
る。 【図2】直線の接合部を示す拡大図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a groove shape suitable for the present invention. FIG. 2 is an enlarged view showing a straight joint.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 H01F 1/16 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/12 H01F 1/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】 含けい素鋼素材を熱間圧延した後、1回
または中間焼鈍を挟む2回以上の冷間圧延を施して最終
製品板厚とし、しかる後脱炭焼鈍、次いで仕上げ焼鈍を
施す一連の工程からなる方向性電磁鋼板の製造方法にお
いて、最終冷間圧延後の鋼板に、その圧延方向とほぼ直
交する向きに延びる線状溝を、圧延方向に所定間隔で多
数本形成するに当たり、該線状溝の少なくとも1つの外
縁は、少なくとも2直線が相互に角度を成す配置で組合
わされた屈曲部分を有する要素を、各要素の板幅方向の
長さを50〜100 μmとして、圧延方向とほぼ直交する向
きに、複数配列した構成に成ることを特徴とする、磁気
特性に優れた電磁鋼板の製造方法。
(57) [Claims] [Claim 1] After the silicon-containing steel material is hot-rolled, it is subjected to one or two or more cold-rolling steps including intermediate annealing to obtain a final product thickness. In a method for manufacturing a grain-oriented electrical steel sheet comprising a series of steps of performing post-decarburization annealing and then finish annealing, a steel sheet after final cold rolling is provided with a linear groove extending in a direction substantially orthogonal to the rolling direction in a rolling direction. In forming a large number of the linear grooves at predetermined intervals, at least one outer edge of the linear groove is formed by combining at least two straight lines with elements having bent portions combined in an angled arrangement with each other in the width direction of each element.
A method for producing an electromagnetic steel sheet having excellent magnetic properties, wherein a plurality of the steel sheets have a length of 50 to 100 μm and are arranged in a direction substantially perpendicular to a rolling direction.
JP08463393A 1993-04-12 1993-04-12 Manufacturing method of electrical steel sheet with excellent magnetic properties Expired - Fee Related JP3463314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08463393A JP3463314B2 (en) 1993-04-12 1993-04-12 Manufacturing method of electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08463393A JP3463314B2 (en) 1993-04-12 1993-04-12 Manufacturing method of electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH06299244A JPH06299244A (en) 1994-10-25
JP3463314B2 true JP3463314B2 (en) 2003-11-05

Family

ID=13836096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08463393A Expired - Fee Related JP3463314B2 (en) 1993-04-12 1993-04-12 Manufacturing method of electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3463314B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843062B1 (en) * 2012-04-27 2020-07-29 Nippon Steel Corporation Grain-oriented electrical steel sheet and manufacturing method therefor
JP6838321B2 (en) * 2016-09-01 2021-03-03 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP7277755B2 (en) * 2019-08-01 2023-05-19 日本製鉄株式会社 Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for producing wound iron core
JP7372520B2 (en) * 2019-08-01 2023-11-01 日本製鉄株式会社 Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for manufacturing wound iron core

Also Published As

Publication number Publication date
JPH06299244A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
WO1986002950A1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
CA2139063C (en) Low-iron-loss grain-oriented electromagnetic steel sheet and method of producing the same
JP4120121B2 (en) Method for producing grain-oriented electrical steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
JP2012126980A (en) Electromagnetic steel sheet and method for manufacturing the same
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
JP3390345B2 (en) Grain-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
JPH05186827A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JP3369724B2 (en) Grain-oriented electrical steel sheet with low iron loss
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
JP7537505B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0641640A (en) Manufacture of grain-oriented silicon steel with low core loss
JP3541419B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP7414145B2 (en) Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets
WO2024111642A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JPH07268472A (en) Grain oriented silicon steel sheet excellent in magnetic property
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JP3364305B2 (en) Unidirectional electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees