JPH07268472A - Grain oriented silicon steel sheet excellent in magnetic property - Google Patents

Grain oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH07268472A
JPH07268472A JP6063180A JP6318094A JPH07268472A JP H07268472 A JPH07268472 A JP H07268472A JP 6063180 A JP6063180 A JP 6063180A JP 6318094 A JP6318094 A JP 6318094A JP H07268472 A JPH07268472 A JP H07268472A
Authority
JP
Japan
Prior art keywords
steel sheet
groove
rolling direction
respect
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6063180A
Other languages
Japanese (ja)
Inventor
Masayoshi Ishida
昌義 石田
Kunihiro Senda
邦浩 千田
Keiji Sato
圭司 佐藤
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6063180A priority Critical patent/JPH07268472A/en
Publication of JPH07268472A publication Critical patent/JPH07268472A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain oriented silicon steel sheet free from deterioration in core loss after stress relief annealing and reduced in core loss by arranging many linear grooves in the surface of a steel sheet. CONSTITUTION:After cold rolling, many linear grooves stretching in a direction intersecting the rolling direction of a steel sheet is arranged in the surface of the steel sheet. At this time, it is desirable that at least one of the side walls constituting each linear grooves consists of a plane inclined toward the groove bottom side with respect to the plane perpendicular to the surface of the steel sheet and its angle of inclination is also regulated to 5-60 deg.. It is preferable that the linear grooves have 30-300mum bottom width and 10-70mum depth and stretch in the direction at <=30 deg. angle of inclination with respect to the axis orthogonal to rolling direction and are disposed at 1-30mm spacing in the rolling direction. By this method, the grain oriented silicon steel sheet, minimal in deterioration in magnetic properties even after stress relief annealing in particular and suitable for transformer iron core, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、特に変圧器やその他
の電気機器用鉄心素材に有利に適合する、歪取焼鈍後も
鉄損低減効果が消失しない磁気特性の優れた方向性電磁
鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having excellent magnetic properties, which is suitable for transformers and other iron core materials for electric equipment and whose iron loss reducing effect does not disappear even after strain relief annealing. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】方向性電磁鋼板は変圧器やその他の電気
機器鉄心として利用され、磁気特性に優れること、中で
も鉄損の低いことが要求される。この鉄損は概ねヒステ
リシス損と渦電流損の和で表わすことができ、ヒステリ
シス損は強い抑制力をもつインヒビターを用いることに
より、結晶方位をゴス方位、すなわち(110)<001>方位に
高度に集積させること、磁化したとき磁壁移動の際のピ
ンニング因子の生成原因となる不純物元素を低減するこ
と、等により大幅に低減されてきた。一方渦電流損につ
いては、Si含有量を増加して電気抵抗を増大させるこ
と、鋼板板厚を薄くすること、鋼板地鉄表面に地鉄と熱
膨張係数の異なる被膜を形成して地鉄に張力を付与する
こと、結晶粒の微細化により磁区幅を低減すること、等
によって低減が図られてきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as iron cores for transformers and other electric equipment, and are required to have excellent magnetic properties, and particularly low iron loss. This iron loss can be roughly expressed as the sum of hysteresis loss and eddy current loss.By using an inhibitor with a strong inhibitory force, the hysteresis loss can be increased to the Goss orientation, that is, the (110) <001> orientation. It has been significantly reduced by the integration, the reduction of the impurity element that causes the generation of the pinning factor when the domain wall moves when magnetized, and the like. Regarding eddy current loss, on the other hand, increasing the Si content to increase electrical resistance, reducing the steel plate thickness, and forming a coating on the surface of the steel plate with a coefficient of thermal expansion different from that of the base steel The reduction has been attempted by applying tension, reducing the magnetic domain width by miniaturizing the crystal grains, and the like.

【0003】さらに渦電流損を低減すべく、鋼板の圧延
方向と垂直な方向にレーザー光(特公昭57-2252 号公
報) 、プラズマ炎(特開昭62-96617号公報) 等を照射す
る方法が提案されている。これらの方法は、鋼板表面に
線状又は点状に微小な熱歪みを導入することにより磁区
を細分化し、鉄損を大幅に低減しようとするものであ
る。ところがこれらの方法においては、磁区細分化後に
高温での焼鈍を施すと、鉄損低減効果は消失してしまう
ため、照射処理後に歪取焼鈍を必要とする巻鉄心用素材
として用いることはできなかった。
In order to further reduce eddy current loss, a method of irradiating a laser beam (Japanese Patent Publication No. 57-2252), a plasma flame (Japanese Patent Publication No. 62-96617), etc. in a direction perpendicular to the rolling direction of the steel sheet. Is proposed. These methods are intended to subdivide magnetic domains by introducing minute thermal strains on the surface of the steel sheet in a linear or dot-like manner to significantly reduce iron loss. However, in these methods, when annealing at high temperature after magnetic domain refinement, the iron loss reducing effect disappears, so it cannot be used as a material for a wound iron core that requires stress relief annealing after irradiation treatment. It was

【0004】そこで歪取焼鈍にも耐え得る磁区細分化方
法として、鋼板への溝形成を行う手法が種々提案されて
いる。例えば、最終仕上げ焼鈍後即ち二次再結晶後の鋼
板に局所的に溝を形成し、その反磁界効果によって磁区
を細分化する方法があるが、この溝の形成手段として
は、特公昭50-35679号公報に開示されている機械的な加
工や、特開昭63-76819号公報に示されているレーザー光
照射により絶縁被膜及び下地被膜を局所的に除去した後
電解エッチングする、等がある。また特公昭62-53579号
公報には、歯車型ロールで圧刻後、歪取焼鈍することで
溝形成及び再結晶を達成して磁区を細分化する方法が、
そして特開昭59-197520 号公報には最終仕上げ焼鈍前の
鋼板に溝を形成する方法が、それぞれ開示されている。
Therefore, various methods for forming grooves in a steel sheet have been proposed as a method of subdividing magnetic domains that can withstand strain relief annealing. For example, there is a method in which a groove is locally formed in a steel sheet after final finish annealing, that is, after secondary recrystallization, and the magnetic domains are subdivided by the diamagnetic field effect. There are mechanical processing disclosed in Japanese Patent No. 35679, and electrolytic etching after locally removing the insulating coating and the underlying coating by laser light irradiation disclosed in Japanese Patent Laid-Open No. 63-76819. . Further, Japanese Patent Publication No. 62-53579 discloses a method of subdividing magnetic domains by achieving groove formation and recrystallization by stress relief annealing after stamping with a gear type roll,
JP-A-59-197520 discloses a method of forming grooves in a steel sheet before final finish annealing.

【0005】[0005]

【発明が解決しようとする課題】これらの方法によれ
ば、歪取焼鈍後も磁区細分化効果を維持できるが、一方
鉄損の低減幅は、上記したレーザー光やプラズマ炎等を
照射する方法と比較すると不十分で、さらなる低鉄損化
が望まれている。
According to these methods, the magnetic domain refining effect can be maintained even after strain relief annealing, while the iron loss reduction width is the method of irradiating the above-mentioned laser beam or plasma flame. This is insufficient as compared with, and further reduction of iron loss is desired.

【0006】この発明は、上記問題を有利に解決するも
ので、歪取焼鈍後においても鉄損の劣化のない、低い鉄
損の方向性電磁鋼板について提案することを目的とす
る。
The present invention advantageously solves the above problems, and an object of the present invention is to propose a grain-oriented electrical steel sheet with low iron loss, which is free from deterioration of iron loss even after stress relief annealing.

【0007】[0007]

【課題を解決するための手段】発明者らは、方向性電磁
鋼板の低鉄損化を安定して図れる製造方法の開発を目的
として、最終冷延板に局所的に形成する溝の形状につい
て、鋭意実験を行った。すなわち、Al, Mn, Se, および
Sbをインヒビターとして微量含有する珪素鋼スラブを、
方向性電磁鋼板の製造の一般に従って、熱間圧延および
中間焼鈍を挟む2回の冷間圧延を経て0.23mm厚の最終冷
延板とした。その後、この冷延板に対して、機械加工に
よって線状溝を形成した。
Means for Solving the Problems The present inventors have investigated the shape of the groove locally formed in the final cold-rolled sheet for the purpose of developing a manufacturing method capable of stably reducing the iron loss of grain-oriented electrical steel sheet. , Conducted an earnest experiment. That is, Al, Mn, Se, and
A silicon steel slab containing a trace amount of Sb as an inhibitor,
In accordance with the general production of grain-oriented electrical steel sheets, the final cold-rolled sheet having a thickness of 0.23 mm was obtained through hot rolling and two cold rolling steps with intermediate annealing. After that, linear grooves were formed on the cold rolled sheet by machining.

【0008】ここで、線状溝は、深さ:20μm および底
面の幅:250 μm であり、両側壁の鋼板表面に垂直な面
に対する傾斜角が、(a) 溝外側(溝底と逆向き)に20
°、(b) 垂直(0°)、(c) 溝底側に20°となる3種の
溝を形成した。なお、線状溝は、圧延方向と直交する軸
に対する傾きが10°の向きに延びる直線状とし、圧延方
向に3mmの間隔で繰り返し形成した。次いで、脱炭焼鈍
および仕上焼鈍を施した後、張力コーティングを塗布、
そして焼き付け、850 ℃で3時間の歪取焼鈍を施した。
また、比較のため、(d) 最終冷延後に線状溝形成処理を
施さない鋼板に対し、脱炭焼鈍および仕上げ焼鈍を施
し、張力コーティングを塗布、そして焼き付けた後、85
0 ℃で3時間の歪取焼鈍を施した、鋼板も作製した。
Here, the linear groove has a depth of 20 μm and a bottom width of 250 μm, and the inclination angle of both side walls with respect to the plane perpendicular to the steel plate surface is (a) outside the groove (opposite to the groove bottom). ) To 20
, (B) vertical (0 °), and (c) three kinds of grooves having a 20 ° angle were formed on the groove bottom side. The linear groove was a straight line extending in a direction having an inclination of 10 ° with respect to an axis orthogonal to the rolling direction, and was repeatedly formed at intervals of 3 mm in the rolling direction. Then, after performing decarburization annealing and finish annealing, apply a tension coating,
Then, it was baked and subjected to strain relief annealing at 850 ° C. for 3 hours.
For comparison, (d) decarburization annealing and finish annealing were performed on the steel sheet that was not subjected to the linear groove forming treatment after the final cold rolling, a tension coating was applied, and after baking, 85
A steel sheet which was subjected to strain relief annealing at 0 ° C. for 3 hours was also manufactured.

【0009】かくして得られた歪取焼鈍後の鋼板から、
エプスタイン試験片を、その長手方向が圧延方向と一致
するように切り出し、それぞれの磁気特性を測定した結
果を表1に示す。同表から明かなように、(c) の両側壁
が溝底側に傾斜する線状溝を形成した鋼板が最も優れた
磁気特性を示した。
From the thus obtained steel sheet after stress relief annealing,
Table 1 shows the results obtained by cutting the Epstein test pieces so that the longitudinal direction thereof coincides with the rolling direction and measuring the magnetic properties of the cut Epstein test pieces. As is clear from the table, the steel sheet having linear grooves in which both side walls of (c) are inclined toward the groove bottom side showed the best magnetic properties.

【0010】[0010]

【表1】 [Table 1]

【0011】以上の実験結果から、最終冷延板に局所的
に溝を形成するに当たり、その溝の形状を適正化するこ
とによって、従来に比べてさらに低い鉄損が得られるこ
とを新たに知見し、この発明を完成させた。すなわち、
この発明は、鋼板の圧延方向と交わる向きに延びる線状
溝を、鋼板の表面に多数本配列した方向性電磁鋼板であ
って、該線状溝を構成する側壁の少なくとも一方は、鋼
板表面に垂直な面(以下、垂直面と示す)に対して溝底
側に傾斜した面に成ることを特徴とする、磁気特性に優
れた方向性電磁鋼板である。
From the above experimental results, it is newly found that, when locally forming a groove in the final cold-rolled sheet, by optimizing the shape of the groove, a lower iron loss than that in the conventional case can be obtained. Then, this invention was completed. That is,
This invention is a grain-oriented electrical steel sheet in which a large number of linear grooves extending in a direction intersecting the rolling direction of the steel sheet are arranged on the surface of the steel sheet, and at least one of the side walls forming the linear groove is on the steel sheet surface. A grain-oriented electrical steel sheet having excellent magnetic characteristics, characterized in that it is a surface inclined to the groove bottom side with respect to a vertical surface (hereinafter referred to as a vertical surface).

【0012】ここで、線状溝は、垂直面に対する溝底側
への傾斜角度が、5〜60°であること、また底面の幅が
30〜300 μm および深さが10〜70μm で圧延方向と直交
する軸に対する傾きが30°以内の向きに延び、かつ圧延
方向に1〜30mmの間隔で配置されることが、鉄損の低減
にはとりわけ有利である。
Here, the linear groove has an inclination angle of 5 to 60 ° to the groove bottom side with respect to the vertical surface, and the width of the bottom surface.
Iron loss can be reduced by 30 to 300 μm and depth of 10 to 70 μm, extending within 30 ° with respect to the axis orthogonal to the rolling direction and arranged at intervals of 1 to 30 mm in the rolling direction. Is particularly advantageous.

【0013】ここで、この発明の素材である含珪素鋼と
しては、従来公知の成分組成のものいずれもが適合する
が、代表組成を掲げると次のとおりである。 C:0.01〜0.10wt%(以下単に%と示す) Cは、熱間圧延、冷間圧延中の組織の均一微細化のみら
なず、ゴス方位の発達に有用な成分であり、少なくとも
0.01%以上の含有が好ましい。しかしながら0.10%を超
えて含有されるとかえってゴス方位に乱れが生じるので
上限は0.10%程度が好ましい。
Here, as the silicon-containing steel which is the material of the present invention, any of the conventionally known component compositions is suitable, and the representative compositions are as follows. C: 0.01 to 0.10 wt% (hereinafter simply referred to as%) C is a component useful not only for the refinement of the structure during hot rolling and cold rolling but also for the development of Goss orientation, and at least
The content of 0.01% or more is preferable. However, if the content exceeds 0.10%, the Goss orientation is rather disordered, so the upper limit is preferably about 0.10%.

【0014】Si:2.0 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5 %を上回ると冷延性が損なわれ、一方2.0 %に
満たないと比抵抗が低下するだけでなく、2次再結晶・
純化のために行われる最終高温焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Si量は2.0 〜4.5 %程度とするのが
好ましい。
Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5%, the cold rolling property is impaired, while if it is less than 2.0%, the specific resistance is reduced. Not only decreases but also secondary recrystallization
Since the crystal orientation is randomized by α-γ transformation during the final high-temperature annealing performed for purification, and a sufficient iron loss improving effect cannot be obtained, the Si content is preferably set to about 2.0 to 4.5%.

【0015】Mn:0.02〜0.12% Mnは、熱間脆化を防止するため少なくとも0.02%程度を
必要とするが、あまりに多すぎると磁気特性を劣化させ
るので上限は0.12%程度に定めるのが好ましい。
Mn: 0.02 to 0.12% Mn needs to be at least about 0.02% in order to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably set to about 0.12%. .

【0016】インヒビターとしては、いわゆるMnS,MnSe
系とAlN 系とがある。まず、 MnS, MnSe系の場合は、S
e, Sのうちから選ばれる少なくとも1種を、0.005 〜
0.06%の範囲で含有する。Se, Sは、いずれもインヒビ
ターとして有力な元素である。抑制力確保の観点から
は、少なくとも0.005 %程度を必要とするが、0.06%を
超えるとその効果が損なわれるので、その下限、上限は
それぞれ0.01%, 0.06%程度とするのが好ましい。
As the inhibitor, so-called MnS, MnSe
There are systems and AlN systems. First, in the case of MnS, MnSe system, S
At least one selected from e and S is 0.005
It is contained in the range of 0.06%. Se and S are both powerful elements as inhibitors. From the viewpoint of securing the suppression power, at least about 0.005% is required, but if it exceeds 0.06%, the effect is impaired, so it is preferable to set the lower and upper limits to about 0.01% and 0.06%, respectively.

【0017】AlN 系の場合は、Al:0.005 〜0.10%,
N:0.004 〜0.015 %の範囲で含有する。AlおよびNの
範囲についても、上述したMnS, MnSe系の場合と同様な
理由により、上記の範囲に定めた。ここに上記した Mn
S, MnSe系および AlN系はそれぞれ併用が可能である。
In the case of AlN system, Al: 0.005 to 0.10%,
N: contained in the range of 0.004 to 0.015%. The Al and N ranges are also set to the above ranges for the same reason as in the case of the MnS and MnSe systems described above. Mn mentioned above
S, MnSe and AlN can be used together.

【0018】インヒビター成分としては上記したS, S
e, Alの他、Cu, Sn, Cr、Ge, Sb, Mo, Te, BiおよびP
なども有利に適合するので、それぞれ少量併せて含有さ
せることもできる。ここに上記成分の好適添加範囲はそ
れぞれ、Cu, Sn, Cr:0.01〜0.15%、Ge, Sb, Mo, Te,
Bi:0.005 〜0.1 %、P:0.01〜0.2 %であり、これら
の各インヒビター成分についても、単独使用および複合
使用いずれもが可能である。
As the inhibitor component, the above-mentioned S, S
e, Al, Cu, Sn, Cr, Ge, Sb, Mo, Te, Bi and P
Etc. are advantageously suited, so that a small amount can be included in each case. Here, the preferred addition ranges of the above components are Cu, Sn, Cr: 0.01 to 0.15%, Ge, Sb, Mo, Te,
Bi: 0.005 to 0.1%, P: 0.01 to 0.2%, and each of these inhibitor components can be used alone or in combination.

【0019】[0019]

【作用】鋼板表面に線状溝を導入することによって、電
磁鋼板が磁化されたときに自由磁極を生じ、この磁極よ
って生じる磁気エネルギーを減少させるように磁区幅が
減少する結果、異常渦電流損が減少することが知られて
いる。
By introducing a linear groove on the surface of the steel sheet, a free magnetic pole is generated when the electromagnetic steel sheet is magnetized, and the magnetic domain width is reduced so as to reduce the magnetic energy generated by this magnetic pole, resulting in abnormal eddy current loss. Is known to decrease.

【0020】しかしながら、磁束線は線状溝の下部を迂
回して磁極の発生を抑制しようとする傾向があって、磁
極発生による磁区幅低減効果が減殺されるため、渦電流
損の減少が抑制されてしまう。この磁束線の迂回は、線
状溝の側壁が鋼板表面に垂直な面から溝外側へ傾いた場
合に、より生じやすくなるため、側壁面を垂直に近付け
ること、さらには側壁面を溝底側へ傾けることが、磁束
線の迂回による磁区細分化効果の低下を抑制する上で非
常に効果的である。ここで、この発明に適合する線状溝
の断面形状について、図1に例示する。
However, the magnetic flux lines tend to bypass the lower part of the linear groove to suppress the generation of magnetic poles, and the effect of reducing the magnetic domain width due to the generation of magnetic poles is diminished, so that the reduction of eddy current loss is suppressed. Will be done. This detour of the magnetic flux lines is more likely to occur when the side wall of the linear groove is inclined from the plane perpendicular to the steel plate surface to the outside of the groove. Inclination is very effective in suppressing the decrease of the magnetic domain subdivision effect due to the detour of the magnetic flux lines. Here, FIG. 1 illustrates the cross-sectional shape of the linear groove that conforms to the present invention.

【0021】なお、線状溝を構成する両側壁が、図1
(a) に示したように、溝底側に傾斜していることが望ま
しいが、同図(b) または(c) に示したように、いずれか
一方の側壁のみが溝底側に傾斜した場合にも鉄損改善効
果は期待できる。また、側壁は平面状であることがより
望ましいが、同図(d) に示したように、底面と側壁の交
線および側壁上端縁が、側壁の傾斜を損なわない範囲で
丸みを帯びていてもよい。
Both side walls forming the linear groove are shown in FIG.
As shown in (a), it is desirable to incline toward the groove bottom side, but as shown in (b) or (c) of the figure, only one of the side walls inclines toward the groove bottom side. In this case, the effect of improving iron loss can be expected. It is more preferable that the side wall be flat, but as shown in Fig. 6 (d), the intersection line between the bottom surface and the side wall and the upper edge of the side wall are rounded as long as the inclination of the side wall is not impaired. Good.

【0022】さらに、線状溝は、その垂直面に対する溝
底側への傾斜角度が、5〜60°であること、そして底面
の幅が30〜300 μm および深さが10〜70μm で圧延方向
と直交する軸に対する傾きが30°以内の向きに延び、か
つ圧延方向に1〜30mmの間隔で配置されることが、鉄損
の低減にはとりわけ有利である。すなわち、垂直面に対
する溝底側への傾斜角度が、5°未満であると、磁束線
の迂回を抑制する効果が小さく、また60°を超えると、
磁束線迂回抑制効果は大きいものの、ヒステリシス損が
上昇するため、垂直面に対する溝底側への傾斜角度は5
〜60°であることが好ましい。そして、溝幅が30μm に
満たない場合、あるいは溝の深さが10μm に満たない場
合には、磁極発生量が少なく磁区細分化効果が小さいた
め、鉄損低減が十分に行われない。一方、溝幅が300 μ
m を超える場合、あるいは溝深さが70μm を超える場合
には磁束密度の低下が著しい。次に、溝と溝との間隔が
1mm未満である場合には磁束密度の低下が著しく、一方
溝間隔が30mmを超えると磁区細分化効果が小さく、鉄損
低減が十分でなくなり、同様に、線状溝の延びる方向が
圧延方向と直交する軸に対する傾きが30°を超えると、
鉄損低減効果が著しく損なわれる。なお、線状溝の延び
る方向が圧延方向と直行する方向であってもよいのは、
勿論である。
Further, the linear groove has an inclination angle of 5 to 60 ° to the groove bottom side with respect to the vertical surface, and has a bottom width of 30 to 300 μm and a depth of 10 to 70 μm. It is particularly advantageous for reducing the iron loss that the inclination with respect to the axis orthogonal to the axis extends within 30 ° and is arranged at intervals of 1 to 30 mm in the rolling direction. That is, when the inclination angle to the groove bottom side with respect to the vertical surface is less than 5 °, the effect of suppressing the detour of the magnetic flux lines is small, and when it exceeds 60 °,
Although the effect of suppressing the detour of the magnetic flux lines is large, the hysteresis loss increases, so the inclination angle to the groove bottom side with respect to the vertical surface is
It is preferably -60 °. When the groove width is less than 30 μm or the groove depth is less than 10 μm, the magnetic pole generation amount is small and the magnetic domain subdivision effect is small, so that the iron loss cannot be sufficiently reduced. On the other hand, the groove width is 300 μ
When it exceeds m or when the groove depth exceeds 70 μm, the magnetic flux density is remarkably reduced. Next, when the spacing between the grooves is less than 1 mm, the magnetic flux density is remarkably reduced, while when the spacing between the grooves exceeds 30 mm, the magnetic domain subdivision effect is small and the iron loss reduction becomes insufficient. If the inclination of the linear groove extending direction with respect to the axis orthogonal to the rolling direction exceeds 30 °,
The iron loss reduction effect is significantly impaired. The direction in which the linear grooves extend may be orthogonal to the rolling direction,
Of course.

【0023】また、線状溝の形成は、最終冷間圧延後ま
たは脱炭焼鈍後に行うことができる。その手法としては
機械的方法によるほか、最終冷間圧延後に行う場合は、
レジススト−電解エッチング法等の電気化学的方法、エ
ッチング等の化学的方法によってもよい。すなわち、こ
の発明にかかる形状を有する溝部以外の非腐食部にレジ
スト剤を塗布することにより、容易に溝形成を達成でき
る。
The linear grooves can be formed after the final cold rolling or after the decarburization annealing. In addition to the mechanical method as the method, when performing after the final cold rolling,
An electrochemical method such as resist-electrolytic etching or a chemical method such as etching may be used. That is, the groove formation can be easily achieved by applying the resist agent to the non-corrosion portion other than the groove portion having the shape according to the present invention.

【0024】[0024]

【実施例】【Example】

実施例1 C:0.040 %、Si:3.32%、Mn:0.065 %、Mo:0.013
%、Se:0.020 %、Al:0.025 %、Sb:0.025 %および
N:0.008 %を含有する珪素鋼スラブを、1360℃で3時
間加熱後、熱間圧延して2.4 mm厚の熱延板とした後、97
0 ℃で3分間の中間焼鈍を挟む2回の冷間圧延を施して
0.23mm厚の最終冷延板とした。次いで仕上焼鈍を施す前
の鋼板に、機械加工によって、線状溝を形成した。線状
溝は、深さ20μm および底面の幅200 μm であり、両側
壁の垂直面に対する傾斜角を、溝外側に40°のから溝底
側に40°まで変化させ、かつ圧延方向と直交する軸に対
する傾きが10°の向きに延びる直線状とし、圧延方向の
間隔を5mmとして形成した。
Example 1 C: 0.040%, Si: 3.32%, Mn: 0.065%, Mo: 0.013
%, Se: 0.020%, Al: 0.025%, Sb: 0.025% and N: 0.008% of a silicon steel slab heated at 1360 ° C for 3 hours and then hot rolled into a 2.4 mm thick hot-rolled sheet. After, 97
Two cold-rolls with intermediate annealing at 0 ° C for 3 minutes
The final cold-rolled sheet had a thickness of 0.23 mm. Then, linear grooves were formed in the steel sheet before finish annealing by machining. The linear groove has a depth of 20 μm and a bottom width of 200 μm. The inclination angle of both side walls with respect to the vertical plane is changed from 40 ° on the outside of the groove to 40 ° on the bottom side of the groove and is orthogonal to the rolling direction. A straight line extending in the direction of 10 ° with respect to the axis was formed, and the interval in the rolling direction was 5 mm.

【0025】次に、脱炭焼鈍および仕上焼鈍を施した
後、張力コーティングを塗布、そして焼き付け、850 ℃
で3時間の歪取焼鈍を施した。かくして得られた歪取焼
鈍後の鋼板から、エプスタイン試験片を、その長手方向
が圧延方向と一致するように切り出し、それぞれの磁気
特性を測定した結果を図2に示す。同図から明らかなよ
うに、溝底側に両側壁を傾斜させた場合に極めて良好な
鉄損が得られる。
Next, after decarburization annealing and finish annealing, a tension coating is applied and baked at 850 ° C.
Then, stress relief annealing was performed for 3 hours. From the thus obtained steel sheet after stress relief annealing, Epstein test pieces were cut so that the longitudinal direction thereof coincided with the rolling direction, and the respective magnetic characteristics were measured. The results are shown in FIG. As is clear from the figure, extremely good iron loss can be obtained when both side walls are inclined toward the groove bottom side.

【0026】実施例2 C:0.044 %、Si:3.26%、Mn:0.067 %、Mo:0.012
%、Se:0.017 %、Al:0.026 %、Sb:0.026 %および
N:0.008 %を含有する珪素鋼スラブを、1360℃で3時
間加熱後、熱間圧延して2.4 mm厚の熱延板とした後、97
0 ℃で3分間の中間焼鈍を挟む2回の冷間圧延を施して
0.23mm厚の最終冷延板とした。次いで仕上焼鈍を施す前
の鋼板に、機械加工によって、線状溝を形成した。線状
溝は、深さ25μm および底面の幅250 μm であり、両側
壁の垂直面に対する傾斜角を、溝外側に20°のから溝底
側に40°まで変化させ、かつ圧延方向と直交する向きに
延びる直線状とし、圧延方向の間隔を3mmとして形成し
た。次に、脱炭焼鈍および仕上焼鈍を施した後、張力コ
ーティングを塗布、そして焼き付け、850 ℃で3時間の
歪取焼鈍を施した。
Example 2 C: 0.044%, Si: 3.26%, Mn: 0.067%, Mo: 0.012
%, Se: 0.017%, Al: 0.026%, Sb: 0.026%, and N: 0.008%, a silicon steel slab heated at 1360 ° C for 3 hours and hot-rolled to form a 2.4 mm thick hot-rolled sheet. After, 97
Two cold-rolls with intermediate annealing at 0 ° C for 3 minutes
The final cold-rolled sheet had a thickness of 0.23 mm. Then, linear grooves were formed in the steel sheet before finish annealing by machining. The linear groove has a depth of 25 μm and a bottom width of 250 μm. The inclination angle of both side walls with respect to the vertical plane is changed from 20 ° outside the groove to 40 ° toward the groove bottom side and is orthogonal to the rolling direction. It was formed in a straight line extending in the direction, and the interval in the rolling direction was 3 mm. Next, decarburization annealing and finish annealing were performed, and then a tension coating was applied and baked, and strain relief annealing was performed at 850 ° C. for 3 hours.

【0027】また、溝部分に化学研摩を施して溝底面を
広げるとともに平滑化した後、同様の処理を施した鋼
板、さらに溝を形成しない歪取焼鈍後の製品板、を比較
のためにそれぞれ用意した。
For comparison, a steel sheet subjected to the same treatment after chemical groove polishing to widen and smooth the groove bottom surface, and a product sheet after strain relief annealing without groove formation were respectively compared. I prepared.

【0028】かくして得られた歪取焼鈍後の鋼板から、
エプスタイン試験片を、その長手方向が圧延方向と一致
するように切り出し、それぞれの磁気特性を測定した結
果を表2に示す。同表から明らかなように、溝底側に少
なくとも一方の側壁を傾斜させた場合に極めて良好な鉄
損が得られる。
From the steel sheet thus obtained after strain relief annealing,
Table 2 shows the results of cutting the Epstein test piece so that its longitudinal direction coincides with the rolling direction and measuring the magnetic properties of each. As is clear from the table, extremely good iron loss is obtained when at least one side wall is inclined toward the groove bottom side.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】この発明の方向性電磁鋼板は、磁気特性
が良好で安定しており、特に歪取焼鈍を行った後も磁気
特性の劣化がきわめて小さいため、変圧器鉄心、特に巻
鉄心に適用した場合に優れた変圧器特性を得ることが可
能となる。
INDUSTRIAL APPLICABILITY The grain-oriented electrical steel sheet of the present invention has good magnetic properties and is stable, and the deterioration of the magnetic properties is extremely small even after stress relief annealing. When applied, excellent transformer characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】線状溝の形状を示す断面図である。FIG. 1 is a cross-sectional view showing a shape of a linear groove.

【図2】線状溝側壁の傾斜角と鉄損との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the inclination angle of the linear groove side wall and iron loss.

フロントページの続き (72)発明者 佐藤 圭司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 小松原 道郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内Front Page Continuation (72) Inventor Keiji Sato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. Technology Research Division, Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の圧延方向と交わる向きに延びる線
状溝を、鋼板の表面に多数本配列した方向性電磁鋼板で
あって、該線状溝を構成する側壁の少なくとも一方は、
鋼板表面に垂直な面に対して溝底側に傾斜した面に成る
ことを特徴とする、磁気特性に優れた方向性電磁鋼板。
1. A grain-oriented electrical steel sheet in which a large number of linear grooves extending in a direction intersecting with a rolling direction of a steel sheet are arranged on a surface of the steel sheet, and at least one of side walls forming the linear groove is
A grain-oriented electrical steel sheet having excellent magnetic properties, characterized by having a surface inclined to the groove bottom side with respect to a surface perpendicular to the steel sheet surface.
【請求項2】 線状溝は、鋼板表面に垂直な面に対する
溝底側への傾斜角度が、5〜60°である請求項1に記載
の方向性電磁鋼板。
2. The grain-oriented electrical steel sheet according to claim 1, wherein the linear groove has an inclination angle to the groove bottom side with respect to a plane perpendicular to the steel sheet surface of 5 to 60 °.
【請求項3】 線状溝は、底面の幅が30〜300 μm およ
び深さが10〜70μmで圧延方向と直交する軸に対する傾
きが30°以内の向きに延び、かつ圧延方向に1〜30mmの
間隔で配置される請求項1に記載の方向性電磁鋼板。
3. The linear groove has a bottom width of 30 to 300 μm and a depth of 10 to 70 μm, extends in a direction within 30 ° with respect to an axis orthogonal to the rolling direction, and is 1 to 30 mm in the rolling direction. The grain-oriented electrical steel sheet according to claim 1, wherein the grain-oriented electrical steel sheets are arranged at intervals of.
JP6063180A 1994-03-31 1994-03-31 Grain oriented silicon steel sheet excellent in magnetic property Withdrawn JPH07268472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6063180A JPH07268472A (en) 1994-03-31 1994-03-31 Grain oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6063180A JPH07268472A (en) 1994-03-31 1994-03-31 Grain oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH07268472A true JPH07268472A (en) 1995-10-17

Family

ID=13221795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6063180A Withdrawn JPH07268472A (en) 1994-03-31 1994-03-31 Grain oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH07268472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573193A1 (en) * 2010-06-25 2013-03-27 Nippon Steel & Sumitomo Metal Corporation Method for producing unidirectional electromagnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573193A1 (en) * 2010-06-25 2013-03-27 Nippon Steel & Sumitomo Metal Corporation Method for producing unidirectional electromagnetic steel sheet
EP2573193A4 (en) * 2010-06-25 2014-12-31 Nippon Steel & Sumitomo Metal Corp Method for producing unidirectional electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
WO2012017670A1 (en) Grain-oriented magnetic steel sheet and process for producing same
JP5954421B2 (en) Oriented electrical steel sheet for iron core and method for producing the same
RU2610204C1 (en) Method of making plate of textured electrical steel
CN111566245A (en) Dual-orientation electrical steel sheet and method for manufacturing the same
JP4120121B2 (en) Method for producing grain-oriented electrical steel sheet
JP5740854B2 (en) Oriented electrical steel sheet
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JP2004197217A (en) Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2008050663A (en) Method for producing high-silicon steel sheet
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH07268472A (en) Grain oriented silicon steel sheet excellent in magnetic property
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP2011063829A (en) Method for manufacturing grain-oriented magnetic steel sheet
JP4876799B2 (en) Oriented electrical steel sheet
JP4192332B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3364305B2 (en) Unidirectional electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308