JPH06299244A - Manufacture of silicon steel sheet having excellent magnetic characteristic - Google Patents

Manufacture of silicon steel sheet having excellent magnetic characteristic

Info

Publication number
JPH06299244A
JPH06299244A JP5084633A JP8463393A JPH06299244A JP H06299244 A JPH06299244 A JP H06299244A JP 5084633 A JP5084633 A JP 5084633A JP 8463393 A JP8463393 A JP 8463393A JP H06299244 A JPH06299244 A JP H06299244A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
rolling
rolling direction
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5084633A
Other languages
Japanese (ja)
Other versions
JP3463314B2 (en
Inventor
Masayoshi Ishida
昌義 石田
Keiji Sato
圭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP08463393A priority Critical patent/JP3463314B2/en
Publication of JPH06299244A publication Critical patent/JPH06299244A/en
Application granted granted Critical
Publication of JP3463314B2 publication Critical patent/JP3463314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably manufacture a grain oriented silicon steel sheet having low iron loss without deteriorating the iron loss even after stress relieving annealing. CONSTITUTION:The manufacturing method of the grain oriented silicon steel sheet is composed of series of processes, i.e., after hot-rolling a silicon contg. steel stock, one time or two or more times of cold rolling including process annealing is applied to form the finish product sheet thickness and thereafter, decarburizing annealing and successively, finish annealing are applied, plural linear grooves are formed so as to extend in the direction crossed almost orthogonally to this rolling direction at prescribed intervals in the rolling direction. Then, at least one of outer edges in these linear grooves has such constitution that plural elements each combined in the arrangement of forming an angle with at least two straight lines mutually are arranged in the direction crossed orthogonally to the rolling direction. By this constitution, the silicon steel sheet having good and stable magnetic characteristics is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、特に変圧器やその他
の電気機器用鉄心素材に有利に適合する、歪取焼鈍後も
鉄損低減効果が消失しない磁気特性の優れた方向性電磁
鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having excellent magnetic properties, which is suitable for transformers and other iron core materials for electric equipment and whose iron loss reducing effect does not disappear even after strain relief annealing. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】方向性電磁鋼板は変圧器やその他の電気
機器鉄心として利用され、磁気特性に優れること、中で
も鉄損の低いことが要求される。この鉄損は概ねヒステ
リシス損と渦電流損の和で表わすことができ、ヒステリ
シス損は強い抑制力をもつインヒビターを用いることに
より、結晶方位をゴス方位、すなわち(110)<001>方位に
高度に集積させること、磁化したとき磁壁移動の際のピ
ンニング因子の生成原因となる不純物元素を低減するこ
と、等により大幅に低減されてきた。一方渦電流損につ
いては、Si含有量を増加して電気抵抗を増大させるこ
と、鋼板板厚を薄くすること、鋼板地鉄表面に地鉄と熱
膨張係数の異なる被膜を形成して地鉄に張力を付与する
こと、結晶粒の微細化により磁区幅を低減すること、等
によって低減が図られてきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as iron cores for transformers and other electric equipment, and are required to have excellent magnetic properties, and particularly low iron loss. This iron loss can be roughly expressed as the sum of hysteresis loss and eddy current loss.By using an inhibitor with a strong suppressing force, the hysteresis loss can be increased to the Goss orientation, that is, the (110) <001> orientation. It has been significantly reduced by the integration, the reduction of the impurity element that causes the generation of the pinning factor when the domain wall moves when magnetized, and the like. Regarding eddy current loss, on the other hand, increasing the Si content to increase electrical resistance, reducing the steel plate thickness, and forming a coating on the surface of the steel plate with a coefficient of thermal expansion different from that of the base steel The reduction has been attempted by applying tension, reducing the magnetic domain width by miniaturizing the crystal grains, and the like.

【0003】さらに渦電流損を低減すべく、鋼板の圧延
方向と垂直な方向にレーザー光(特公昭57-2252 号公
報) 、プラズマ炎(特開昭62-96617号公報) 等を照射す
る方法が提案されている。これらの方法は、鋼板表面に
線状又は点状に微小な熱歪みを導入することにより磁区
を細分化し、鉄損を大幅に低減しようとするものであ
る。ところがこれらの方法においては、磁区細分化後に
高温での焼鈍を施すと、鉄損低減効果は消失してしまう
ため、照射処理後に歪取焼鈍を必要とする巻鉄心用素材
として用いることはできなかった。
In order to further reduce eddy current loss, a method of irradiating a laser beam (Japanese Patent Publication No. 57-2252), a plasma flame (Japanese Patent Publication No. 62-96617), etc. in a direction perpendicular to the rolling direction of the steel sheet. Is proposed. These methods are intended to subdivide magnetic domains by introducing minute thermal strains on the surface of the steel sheet in a linear or dot-like manner to significantly reduce iron loss. However, in these methods, when annealing at high temperature after magnetic domain refinement, the iron loss reducing effect disappears, so it cannot be used as a material for a wound iron core that requires stress relief annealing after irradiation treatment. It was

【0004】そこで歪取焼鈍にも耐え得る磁区細分化方
法として、鋼板への溝形成を行う手法が種々提案されて
いる。例えば、最終仕上げ焼鈍後即ち二次再結晶後の鋼
板に局所的に溝を形成し、その反磁界効果によって磁区
を細分化する方法があるが、この溝の形成手段として
は、特公昭50-35679号公報に開示されている機械的な加
工や、特開昭63-76819号公報に示されているレーザー光
照射により絶縁被膜及び下地被膜を局所的に除去した後
電解エッチングする、等がある。また特公昭62-53579号
公報には、歯車型ロールで圧刻後、歪取焼鈍することで
溝形成及び再結晶を達成して磁区を細分化する方法が、
そして特開昭59-197520 号公報には最終仕上げ焼鈍前の
鋼板に溝を形成する方法が、それぞれ開示されている。
Therefore, various methods for forming grooves in a steel sheet have been proposed as a method of subdividing magnetic domains that can withstand strain relief annealing. For example, there is a method in which a groove is locally formed in a steel sheet after final finish annealing, that is, after secondary recrystallization, and the magnetic domains are subdivided by the diamagnetic field effect. There are mechanical processing disclosed in Japanese Patent No. 35679, and electrolytic etching after locally removing the insulating coating and the underlying coating by laser light irradiation disclosed in Japanese Patent Laid-Open No. 63-76819. . Further, Japanese Patent Publication No. 62-53579 discloses a method of subdividing magnetic domains by achieving groove formation and recrystallization by stress relief annealing after stamping with a gear type roll,
JP-A-59-197520 discloses a method of forming grooves in a steel sheet before final finish annealing.

【0005】[0005]

【発明が解決しようとする課題】これらの方法によれ
ば、歪取焼鈍後も磁区細分化効果を維持できるが、一方
鉄損の低減幅は、上記したレーザー光やプラズマ炎等を
照射する方法と比較すると不十分で、さらなる低鉄損化
が望まれている。
According to these methods, the magnetic domain refining effect can be maintained even after strain relief annealing, while the iron loss reduction width is the method of irradiating the above-mentioned laser beam or plasma flame. This is insufficient as compared with, and further reduction of iron loss is desired.

【0006】この発明は、上記問題を有利に解決するも
ので、歪取焼鈍後においても鉄損の劣化のない、低い鉄
損の方向性電磁鋼板を、安定してしかも低コストで製造
し得る方法について提案することを目的とする。
The present invention advantageously solves the above problems, and it is possible to stably manufacture a grain-oriented electrical steel sheet having a low iron loss without deterioration of the iron loss even after stress relief annealing at a low cost. The purpose is to suggest a method.

【0007】[0007]

【課題を解決するための手段】発明者らは、方向性電磁
鋼板の低鉄損化を安定して図れる製造方法の開発を目的
として鋭意実験および検討を重ねた結果、最終冷延板に
局所的に溝を形成する方法において、その溝の形状に工
夫を加えることによって、従来に比べてさらに低い鉄損
が得られることを新たに知見し、この発明を完成させ
た。
Means for Solving the Problems The inventors of the present invention have conducted extensive experiments and studies for the purpose of developing a manufacturing method capable of stably reducing the iron loss of grain-oriented electrical steel sheets, and as a result, the final cold-rolled sheet is locally In the method of forming a groove, it was newly found that iron loss lower than that of the conventional one can be obtained by adding a device to the shape of the groove, and the present invention was completed.

【0008】すなわちこの発明は、含けい素鋼素材を熱
間圧延した後、1回または中間焼鈍を挟む2回以上の冷
間圧延を施して最終製品板厚とし、しかる後脱炭焼鈍、
次いで仕上げ焼鈍を施す一連の工程からなる方向性電磁
鋼板の製造方法において、最終冷間圧延後の鋼板に、そ
の圧延方向とほぼ直交する向きに延びる線状溝を、圧延
方向に所定間隔で多数本形成するに当たり、該線状溝の
少なくとも1つの外縁は、少なくとも2直線が相互に角
度を成す配置で組合わされた要素を、圧延方向とほぼ直
交する向きに、複数配列した構成に成ることを特徴とす
る、磁気特性に優れた電磁鋼板の製造方法である。
That is, according to the present invention, after the silicon-containing steel material is hot-rolled, it is cold-rolled once or twice or more with intermediate annealing to obtain a final product sheet thickness, and then decarburization-annealed.
Then, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing finish annealing, the steel sheet after the final cold rolling has a large number of linear grooves extending in a direction substantially orthogonal to the rolling direction at predetermined intervals in the rolling direction. In this forming, at least one outer edge of the linear groove is formed by arranging a plurality of elements, which are combined in an arrangement in which at least two straight lines form an angle with each other, in a direction substantially orthogonal to the rolling direction. It is a characteristic method for producing an electromagnetic steel sheet having excellent magnetic properties.

【0009】また、線状溝は、平均幅:30〜300 μm お
よび平均深さ:5〜100 μm で、圧延方向に対して60〜
90°の角度で延び、この線状溝を圧延方向に1mm以上の
平均間隔で配列することが、鉄損の低減にはとりわけ有
利である。
The linear grooves have an average width of 30 to 300 μm and an average depth of 5 to 100 μm, and have an average width of 60 to 60 μm in the rolling direction.
It is particularly advantageous to reduce iron loss by extending at 90 ° and arranging the linear grooves in the rolling direction at an average interval of 1 mm or more.

【0010】ここで、この発明の素材である含珪素鋼と
しては、従来公知の成分組成のものいずれもが適合する
が、代表組成を掲げると次のとおりである。 C:0.01〜0.10wt%(以下単に%と示す) Cは、熱間圧延、冷間圧延中の組織の均一微細化のみら
なず、ゴス方位の発達に有用な成分であり、少なくとも
0.01%以上の添加が好ましい。しかしながら0.10%を超
えて含有されるとかえってゴス方位に乱れが生じるので
上限は0.10%程度が好ましい。
Here, as the silicon-containing steel which is the material of the present invention, any of the conventionally known component compositions is suitable, and the representative compositions are as follows. C: 0.01 to 0.10 wt% (hereinafter simply referred to as%) C is a component useful not only for the refinement of the structure during hot rolling and cold rolling but also for the development of Goss orientation, and at least
Addition of 0.01% or more is preferable. However, if the content exceeds 0.10%, the Goss orientation is rather disordered, so the upper limit is preferably about 0.10%.

【0011】Si:2.0 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5 %を上回ると冷延性が損なわれ、一方2.0 %に
満たないと比抵抗が低下するだけでなく、2次再結晶・
純化のために行われる最終高温焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Si量は2.0 〜4.5 %程度とするのが
好ましい。
Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5%, the cold ductility is impaired, while if it is less than 2.0%, the specific resistance is reduced. Not only decreases but also secondary recrystallization
Since the crystal orientation is randomized by α-γ transformation during the final high-temperature annealing performed for purification, and a sufficient iron loss improving effect cannot be obtained, the Si content is preferably set to about 2.0 to 4.5%.

【0012】Mn:0.02〜0.12% Mnは、熱間脆化を防止するため少なくとも0.02%程度を
必要とするが、あまりに多すぎると磁気特性を劣化させ
るので上限は0.12%程度に定めるのが好ましい。
Mn: 0.02 to 0.12% Mn needs to be at least about 0.02% in order to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably set to about 0.12%. .

【0013】インヒビターとしては、いわゆるMnS,MnSe
系とAlN 系とがある。まず、 MnS, MnSe系の場合は、S
e, Sのうちから選ばれる少なくとも1種を、0.005 〜
0.06%の範囲で含有する。Se, Sは、いずれもインヒビ
ターとして有力な元素である。抑制力確保の観点から
は、少なくとも0.005 %程度を必要とするが、0.06%を
超えるとその効果が損なわれるので、その下限、上限は
それぞれ0.01%, 0.06%程度とするのが好ましい。
As inhibitors, so-called MnS and MnSe are used.
There are systems and AlN systems. First, in the case of MnS, MnSe system, S
At least one selected from e and S is 0.005
It is contained in the range of 0.06%. Se and S are both powerful elements as inhibitors. From the viewpoint of securing the suppression power, at least about 0.005% is required, but if it exceeds 0.06%, the effect is impaired, so the lower and upper limits thereof are preferably set to about 0.01% and 0.06%, respectively.

【0014】AlN 系の場合は、Al:0.005 〜0.10%,
N:0.004 〜0.015 %の範囲で含有する。AlおよびNの
範囲についても、上述したMnS, MnSe系の場合と同様な
理由により、上記の範囲に定めた。ここに上記した Mn
S, MnSe系および AlN系はそれぞれ併用が可能である。
In the case of AlN system, Al: 0.005 to 0.10%,
N: contained in the range of 0.004 to 0.015%. The Al and N ranges are also set to the above ranges for the same reason as in the case of the MnS and MnSe systems described above. Mn mentioned above
S, MnSe and AlN can be used together.

【0015】インヒビター成分としては上記したS, S
e, Alの他、Cu, Sn, Cr、Ge, Sb, Mo, Te, BiおよびP
なども有利に適合するので、それぞれ少量併せて含有さ
せることもできる。ここに上記成分の好適添加範囲はそ
れぞれ、Cu, Sn, Cr:0.01〜0.15%、Ge, Sb, Mo, Te,
Bi:0.005 〜0.1 %、P:0.01〜0.2 %であり、これら
の各インヒビター成分についても、単独使用および複合
使用いずれもが可能である。
As the inhibitor component, S and S described above are used.
e, Al, Cu, Sn, Cr, Ge, Sb, Mo, Te, Bi and P
Etc. are advantageously suited, so that a small amount can be included in each case. Here, the preferred addition ranges of the above components are Cu, Sn, Cr: 0.01 to 0.15%, Ge, Sb, Mo, Te,
Bi: 0.005 to 0.1%, P: 0.01 to 0.2%, and each of these inhibitor components can be used alone or in combination.

【0016】[0016]

【作用】鋼板表面に線状溝を導入すると、電磁鋼板が磁
化されたときに自由磁極が生じ、その反磁界による磁気
エネルギーを減少させるように磁区幅が減少することが
知られている。そしてこの発明では、この鋼板表面に導
入する線状溝に関し、その少なくとも1つの外縁は、少
なくとも2直線が相互に角度を成す配置で組合わされた
要素を、圧延方向とほぼ直交する向きに、複数配列した
構成にすることによって、磁区幅の減少をさらに促進す
るのである。
It is known that when a linear groove is introduced on the surface of a steel sheet, a free magnetic pole is generated when the electromagnetic steel sheet is magnetized, and the magnetic domain width is reduced so as to reduce the magnetic energy due to the demagnetizing field. And in this invention, regarding the linear groove to be introduced into the surface of the steel sheet, at least one outer edge of the linear groove has a plurality of elements combined in an arrangement in which at least two straight lines form an angle with each other in a direction substantially orthogonal to the rolling direction. The arrayed structure further promotes the reduction of the magnetic domain width.

【0017】ここで、少なくとも2直線が相互に角度を
成す配置で組合わされた要素を複数配列した構成とは、
2直線の接合部を山形の頂点とする形状や3直線が台形
状に接合する形状などの多角形の一部または全部の輪郭
形状が、その典型例である。すなわち、まず圧延方向と
ほぼ直交する向きに連続する線状溝の場合には、その具
体例を図1(a) 〜(c) に示すように、線状溝の両側また
は片側の外縁はジグザグ状となり、また図1(a) および
(b) に示した線状溝を不連続化すると、図1(d) および
(e) に示す線状溝となる。さらに、図1(f) は、3直線
を台形状に接合した外縁を有する線状溝である。なお、
直線同士の接合部に、図2に示すように、適当な曲率を
持たすようにしても一向に構わない。
Here, the configuration in which a plurality of elements combined in an arrangement in which at least two straight lines form an angle with each other are arranged,
A typical example is a part or all of the contour shape of a polygon such as a shape in which two straight line joints are apexes of a chevron or a shape in which three straight lines are trapezoidal. That is, first, in the case of a linear groove continuous in a direction substantially orthogonal to the rolling direction, as shown in a specific example in FIGS. 1 (a) to 1 (c), the outer edge on one side or both sides of the linear groove is zigzag. And also in Figure 1 (a) and
When the linear groove shown in (b) is made discontinuous, as shown in Fig. 1 (d) and
It becomes the linear groove shown in (e). Further, FIG. 1 (f) shows a linear groove having an outer edge formed by joining three straight lines in a trapezoidal shape. In addition,
As shown in FIG. 2, the joining portion between the straight lines may have an appropriate curvature, which is unidirectional.

【0018】図1に示した線状溝の形状に共通するの
は、その外縁の各構成要素において、直線の接合部が屈
曲していることであり、一方この屈曲部分には磁壁が発
生し易いため、直線の接合数を十分に多くすることによ
って、全く屈曲のない直線状溝を導入する場合に比べ
て、磁区幅を狭くすることができる。従って、図1に示
す、各要素の板幅方向の長さlを直線溝における磁区幅
よりも狭くすることによって、磁壁移動による渦電流損
を直線溝よりも低減することが可能となるのである。
What is common to the shape of the linear groove shown in FIG. 1 is that the straight joints are bent in each of the constituent elements of the outer edge thereof, while a domain wall is generated in this bent portion. Since it is easy, the magnetic domain width can be narrowed by sufficiently increasing the number of straight line junctions as compared with the case of introducing a straight groove having no bending. Therefore, by making the length l of each element in the plate width direction shown in FIG. 1 narrower than the magnetic domain width in the linear groove, it is possible to reduce the eddy current loss due to the domain wall movement as compared with the linear groove. .

【0019】ここで、上記の理由から、長さlは50〜10
00μm 程度とすることが好ましい。また、2直線がなす
角度αに関して、その下限は特に規定しないが、角度が
小さ過ぎると磁区細分化効果が十分に発揮されないた
め、20°以上にすることが望ましい。一方、角度が180
°に近づき過ぎると、磁区細分化効果がかえって失われ
るため、150 °以下とすることが望ましい。
Here, for the above reason, the length l is 50 to 10
It is preferably about 00 μm. The lower limit of the angle α formed by the two straight lines is not particularly specified, but if the angle is too small, the effect of domain refinement will not be sufficiently exerted, so it is desirable to set it to 20 ° or more. On the other hand, the angle is 180
If it gets too close to °, the effect of subdividing the magnetic domains is lost, so it is desirable to set it to 150 ° or less.

【0020】なお、線状溝の形成は、最終冷間圧延後ま
たは脱炭焼鈍後に行うことができる。最終冷間圧延後に
線状溝を形成する場合は、レジスト−電解エッチング法
等の電気化学的方法および酸洗等の化学的方法のいずれ
でもよい。すなわち、この発明にかかる形状を有する溝
部以外の非腐食部にレジスト剤を塗布することにより、
容易に溝形成を達成できる。
The linear grooves can be formed after the final cold rolling or after the decarburization annealing. When the linear groove is formed after the final cold rolling, either an electrochemical method such as a resist-electrolytic etching method or a chemical method such as pickling may be used. That is, by applying the resist agent to the non-corrosion portion other than the groove portion having the shape according to the present invention,
Groove formation can be easily achieved.

【0021】[0021]

【実施例】C:0.040 %、Si:3.32%、Mn:0.066 %、
Mo:0.012 %、Se:0.020 %およびSb:0.025 %を含有
する珪素鋼スラブを、1360℃で3時間加熱後、熱間圧延
して2.4 mm厚の熱延板とした後、970 ℃で3分間の中間
焼鈍を挟む2回の冷間圧延を施して0.23mm厚の最終冷延
板とした。次いで仕上焼鈍を施す前の鋼板に、図1(a)
に示したところに従う、線状溝の形状に対応する形状の
非塗布部を残してレジストインキを塗布しマスキングし
た。レジストインキの塗布は、グラビアオフセット印刷
によって行い、アルキド系樹脂を主成分とするグラビア
インキを用いた。
Example: C: 0.040%, Si: 3.32%, Mn: 0.066%,
A silicon steel slab containing Mo: 0.012%, Se: 0.020% and Sb: 0.025% was heated at 1360 ° C for 3 hours and hot-rolled into a hot rolled sheet with a thickness of 2.4 mm, then at 970 ° C. The cold-rolled sheet was subjected to two times of cold rolling with intermediate annealing for 2 minutes to obtain a 0.23 mm-thick final cold-rolled sheet. Then, on the steel sheet before finish annealing,
Then, the resist ink was applied and masked, leaving the non-application portion having a shape corresponding to the shape of the linear groove according to the point shown in FIG. The resist ink was applied by gravure offset printing, and a gravure ink containing an alkyd resin as a main component was used.

【0022】ここで、非塗布部は、板幅方向に対する傾
きが8〜80°の範囲で交互に逆向きとなって山形を成す
板幅方向の長さが100 μm の要素の繰り返しによる、幅
100μmの折れ線とした。このような折れ線からなる非
塗布部を、圧延方向に間隔3mm毎に残した。次に、鋼板
にNaCl浴を用いた電解エッチング処理を施すことによ
り、深さ20μmの折れ線状の溝を形成した。
Here, the non-coated portion is formed by repeating elements having a length of 100 μm in the plate width direction, which are alternately inverted in the range of 8 to 80 ° with respect to the plate width direction and form a mountain shape.
The line was 100 μm. The non-coating portion composed of such polygonal lines was left at intervals of 3 mm in the rolling direction. Next, the steel sheet was subjected to electrolytic etching treatment using a NaCl bath to form a polygonal groove having a depth of 20 μm.

【0023】なお、電解エッチングはNaCl水溶液中で電
流密度10A/dm2 および電解時間20sの条件で行った。
The electrolytic etching was carried out in a NaCl aqueous solution under the conditions of a current density of 10 A / dm 2 and an electrolysis time of 20 s.

【0024】その後、レジスト剤を除去し、脱炭焼鈍、
次いで仕上焼鈍を施したのち、張力コーティングを塗布
焼き付けして、800 ℃で3時間の歪取焼鈍を施した。
Thereafter, the resist agent is removed, decarburization annealing,
Then, after finish annealing, tension coating was applied and baked, and strain relief annealing was carried out at 800 ° C. for 3 hours.

【0025】また比較のため、最終冷延板に対し線状溝
形成処理を施さない鋼板、および深さ20μm、幅100 μ
m、圧延方向の間隔3mmで、板幅方向に平行な直線状溝
を同様の手法で形成してレジスト剤を除去したのちの鋼
板に対し、それぞれ脱炭焼鈍以降は同様に一連の工程を
施した。
For comparison, a steel plate not subjected to linear groove forming treatment on the final cold-rolled sheet, a depth of 20 μm, and a width of 100 μm
m, the distance in the rolling direction is 3 mm, and straight grooves parallel to the sheet width direction are formed by the same method to remove the resist agent, and then the steel sheet is subjected to the same series of steps after decarburization annealing. did.

【0026】かくして得られた歪取焼鈍後の鋼板から、
エプスタイン試験片を、その長手方向が圧延方向と一致
するように切り出し、それぞれの磁気特性を測定した結
果を表1に示す。
From the steel sheet thus obtained after strain relief annealing,
Table 1 shows the results obtained by cutting the Epstein test pieces so that the longitudinal direction thereof coincides with the rolling direction and measuring the magnetic properties of the cut Epstein test pieces.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から、鋼板に線状溝を導入することに
よって磁気特性が向上すること、特に線状溝をこの発明
に従う形状にすることによって、鉄損が大幅に向上する
ことがわかる。なお、上記した線状溝のほかにも、図1
(b) 〜(f) に示した線状溝についても同様の評価を行っ
たところ、表1と同様の結果を得た。
From Table 1, it can be seen that the magnetic properties are improved by introducing the linear groove into the steel sheet, and particularly the iron loss is significantly improved by forming the linear groove according to the present invention. In addition to the above-mentioned linear groove, FIG.
When the same evaluation was performed for the linear grooves shown in (b) to (f), the same results as in Table 1 were obtained.

【0029】[0029]

【発明の効果】この発明によれば、磁気特性が良好で安
定しており、特に歪取焼鈍を行った後も磁気特性の劣化
がきわめて小さい方向性電磁鋼板を安定して製造するこ
とが可能である。
According to the present invention, it is possible to stably manufacture a grain-oriented electrical steel sheet which has good and stable magnetic properties, and in particular, has little deterioration in magnetic properties even after strain relief annealing. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に適合する溝形状を示す模式図であ
る。
FIG. 1 is a schematic view showing a groove shape suitable for the present invention.

【図2】直線の接合部を示す拡大図である。FIG. 2 is an enlarged view showing a straight joint portion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 含けい素鋼素材を熱間圧延した後、1回
または中間焼鈍を挟む2回以上の冷間圧延を施して最終
製品板厚とし、しかる後脱炭焼鈍、次いで仕上げ焼鈍を
施す一連の工程からなる方向性電磁鋼板の製造方法にお
いて、最終冷間圧延後の鋼板に、その圧延方向とほぼ直
交する向きに延びる線状溝を、圧延方向に所定間隔で多
数本形成するに当たり、該線状溝の少なくとも1つの外
縁は、少なくとも2直線が相互に角度を成す配置で組合
わされた要素を、圧延方向とほぼ直交する向きに、複数
配列した構成に成ることを特徴とする、磁気特性に優れ
た電磁鋼板の製造方法。
1. A hot-rolled silicon-containing steel material is subjected to cold rolling once or twice or more with intermediate annealing to obtain a final product sheet thickness, which is followed by decarburization annealing and then finish annealing. In the method for producing a grain-oriented electrical steel sheet consisting of a series of steps to be performed, in the steel sheet after the final cold rolling, a large number of linear grooves extending in a direction substantially orthogonal to the rolling direction are formed at predetermined intervals in the rolling direction. At least one outer edge of the linear groove is configured by arranging a plurality of elements, which are combined in an arrangement in which at least two straight lines form an angle with each other, in a direction substantially orthogonal to the rolling direction, A method for manufacturing electrical steel sheets with excellent magnetic properties.
JP08463393A 1993-04-12 1993-04-12 Manufacturing method of electrical steel sheet with excellent magnetic properties Expired - Fee Related JP3463314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08463393A JP3463314B2 (en) 1993-04-12 1993-04-12 Manufacturing method of electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08463393A JP3463314B2 (en) 1993-04-12 1993-04-12 Manufacturing method of electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH06299244A true JPH06299244A (en) 1994-10-25
JP3463314B2 JP3463314B2 (en) 2003-11-05

Family

ID=13836096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08463393A Expired - Fee Related JP3463314B2 (en) 1993-04-12 1993-04-12 Manufacturing method of electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3463314B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161863A1 (en) * 2012-04-27 2013-10-31 新日鐵住金株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor
JP2018035412A (en) * 2016-09-01 2018-03-08 新日鐵住金株式会社 Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
JP2021025072A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP2021025073A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161863A1 (en) * 2012-04-27 2013-10-31 新日鐵住金株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor
CN104203486A (en) * 2012-04-27 2014-12-10 新日铁住金株式会社 Oriented electromagnetic steel sheet and manufacturing method therefor
EP2843062A4 (en) * 2012-04-27 2015-12-30 Nippon Steel & Sumitomo Metal Corp Grain-oriented electrical steel sheet and manufacturing method therefor
CN104203486B (en) * 2012-04-27 2016-08-24 新日铁住金株式会社 Grain-oriented magnetic steel sheet and manufacture method thereof
US10131018B2 (en) 2012-04-27 2018-11-20 Nippon Steel & Sumitomo Metal Corporation Grain-oriented magnetic steel sheet and method of producing the same
JP2018035412A (en) * 2016-09-01 2018-03-08 新日鐵住金株式会社 Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
JP2021025072A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP2021025073A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method

Also Published As

Publication number Publication date
JP3463314B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
EP0202339B1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
KR20160138253A (en) Method for producing oriented electromagnetic steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP2012126980A (en) Electromagnetic steel sheet and method for manufacturing the same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPS60255926A (en) Manufacture of grain oriented electrical steel sheet low in iron loss
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JPH05186827A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH1161261A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JP2942074B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JP3369724B2 (en) Grain-oriented electrical steel sheet with low iron loss
JPH0347974A (en) Heat-stable extremely low-iron loss grain-oriented silicon steel sheet and its production
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
JP7414145B2 (en) Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets
JP3541419B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3364305B2 (en) Unidirectional electrical steel sheet with low iron loss
CN115335546B (en) Grain-oriented electrical steel sheet and method for producing same
JPH07268472A (en) Grain oriented silicon steel sheet excellent in magnetic property
JP2002194444A (en) Method for producing grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees