JP2018035412A - Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet - Google Patents

Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet Download PDF

Info

Publication number
JP2018035412A
JP2018035412A JP2016170874A JP2016170874A JP2018035412A JP 2018035412 A JP2018035412 A JP 2018035412A JP 2016170874 A JP2016170874 A JP 2016170874A JP 2016170874 A JP2016170874 A JP 2016170874A JP 2018035412 A JP2018035412 A JP 2018035412A
Authority
JP
Japan
Prior art keywords
steel sheet
groove
grain
width direction
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016170874A
Other languages
Japanese (ja)
Other versions
JP6838321B2 (en
Inventor
濱村 秀行
Hideyuki Hamamura
秀行 濱村
弘二 平野
Koji Hirano
弘二 平野
岩田 圭司
Keiji Iwata
圭司 岩田
史明 高橋
Fumiaki Takahashi
史明 高橋
俊介 奥村
Shunsuke Okumura
俊介 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016170874A priority Critical patent/JP6838321B2/en
Publication of JP2018035412A publication Critical patent/JP2018035412A/en
Application granted granted Critical
Publication of JP6838321B2 publication Critical patent/JP6838321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of the cracks upon bending in a grain oriented silicon steel sheet while reducing the core loss of the grain oriented silicon steel sheet.SOLUTION: Provided is a method for producing a grain oriented silicon steel sheet comprising a process where laser beams are applied to a direction crossed with the carrying direction of a steel sheet to form grooves at prescribed intervals to the carrying direction, in which first grooves in which the stretching direction is formed in parallel with the sheet width direction of the steel sheet and second grooves in which the stretching direction is formed so as to be crossed with the sheet width direction are formed so as to be mixed in the sheet width direction.SELECTED DRAWING: Figure 6

Description

本発明は、レーザビームを照射して溝を形成する方向性電磁鋼板の製造方法、及び方向性電磁鋼板に関する。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet that forms grooves by irradiating a laser beam, and to a grain-oriented electrical steel sheet.

方向性電磁鋼板は、比較的小さな磁化力において磁化する際のエネルギー損失(鉄損)が低いため、例えば変圧器(トランス)の巻鉄芯を製造する際に用いられている。なお、方向性電磁鋼板の表面には、通常、絶縁被膜がコーティングされる。これにより、巻鉄芯における鋼板層間の絶縁を確保している。   The grain-oriented electrical steel sheet has a low energy loss (iron loss) when magnetized with a relatively small magnetizing force, and is used, for example, when manufacturing a wound iron core of a transformer. The surface of the grain-oriented electrical steel sheet is usually coated with an insulating film. Thereby, the insulation between the steel plate layers in a wound iron core is ensured.

上記の方向性電磁鋼板においては、鉄損を更に低減することが求められている。かかる鉄損を改善する方策として、鋼板に溝を形成する方法が行なわれている。   In the grain-oriented electrical steel sheet, it is required to further reduce iron loss. As a measure for improving such iron loss, a method of forming a groove in a steel sheet has been performed.

例えば、下記の特許文献1に開示されているように、電解エッチングにより溝を形成する方法がある。かかる方法では、例えば二次再結晶後の表面にグラス被膜が形成された鋼板を用い、レーザや機械的方法により表面のグラス被膜を線状に除去し、エッチングにより地鉄が露出した部分に溝を形成する。しかし、電解エッチング法では、工程が複雑であり、製造コストが高くなり、処理速度に限界がある。   For example, as disclosed in Patent Document 1 below, there is a method of forming a groove by electrolytic etching. In such a method, for example, a steel sheet having a glass film formed on the surface after secondary recrystallization is used, and the glass film on the surface is linearly removed by a laser or a mechanical method, and a groove is formed in a portion where the ground iron is exposed by etching. Form. However, in the electrolytic etching method, the process is complicated, the manufacturing cost increases, and the processing speed is limited.

また、特許文献2に開示されているように、機械的な歯型プレスにより溝を形成する方法がある。しかし、かかる方法では、電磁鋼板が約3%のSiを含む非常に硬い鋼板であるため、歯型の摩耗及び損傷が発生しやすい。歯型が摩耗すると、溝深さにばらつきが発生するため、鉄損改善効果が不均一になる。   Further, as disclosed in Patent Document 2, there is a method of forming grooves by a mechanical tooth type press. However, in such a method, the electromagnetic steel plate is a very hard steel plate containing about 3% Si, so that tooth wear and damage are likely to occur. When the tooth mold is worn, the groove depth varies, and the iron loss improvement effect becomes non-uniform.

上述した方法の問題を解決する方法として、特許文献3、4に開示されているように、鋼板にレーザビームを照射して溝を形成する方法がある。かかる方法では、高パワー密度の集光レーザビームにより高速溝加工が可能である。また、非接触加工であるため、レーザパワー等の制御により安定して均一な溝加工を行うことが可能である。   As a method for solving the problems of the above-described method, as disclosed in Patent Documents 3 and 4, there is a method of forming a groove by irradiating a steel plate with a laser beam. In this method, high-speed grooving can be performed with a high-power density focused laser beam. Further, since it is non-contact processing, stable and uniform groove processing can be performed by controlling laser power and the like.

特公昭62−54873号公報Japanese Patent Publication No.62-54873 特公昭62−53579号公報Japanese Examined Patent Publication No. 62-53579 特開平6−57335号公報JP-A-6-57335 特開2003−129135号公報JP 2003-129135 A

ところで、レーザビームを照射して溝を形成する際に、鋼板の溝部に、溶融物や溶融再凝固物(以下、溶融物等と呼ぶ)が発生する。かかる溶融物等が発生すると、応力が集中しやすくなる。かかる場合には、巻鉄芯の製造時において方向性電磁鋼板の曲げ加工を行う際に、方向性電磁鋼板が割れる恐れがある。   By the way, when a groove is formed by irradiating a laser beam, a melt or a melt re-solidified product (hereinafter referred to as a melt or the like) is generated in the groove of the steel plate. When such a melt or the like occurs, stress tends to concentrate. In such a case, the directional electromagnetic steel sheet may be cracked when bending the directional electromagnetic steel sheet during the manufacture of the wound iron core.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、方向性電磁鋼板の鉄損を低減しつつ、方向性電磁鋼板の曲げ加工時の割れの発生を抑制することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to generate cracks during bending of the directional electromagnetic steel sheet while reducing the iron loss of the directional electromagnetic steel sheet. It is to suppress.

上記課題を解決するために、本発明のある観点によれば、鋼板の搬送方向と交差する方向にレーザビームを照射して、前記搬送方向に所定間隔で溝を形成する工程を含む方向性電磁鋼板の製造方法であって、延在方向が前記鋼板の板幅方向と平行に形成された第1溝と、延在方向が前記板幅方向と交差するように形成された第2溝とを、前記板幅方向において混在するように形成することを特徴とする、方向性電磁鋼板の製造方法が提供される。   In order to solve the above problems, according to one aspect of the present invention, a directional electromagnetic wave including a step of irradiating a laser beam in a direction intersecting a conveyance direction of a steel sheet and forming grooves at a predetermined interval in the conveyance direction. A method for manufacturing a steel sheet, comprising: a first groove whose extending direction is formed in parallel with the plate width direction of the steel sheet; and a second groove formed so that the extending direction intersects the plate width direction. A method for producing a grain-oriented electrical steel sheet is provided, wherein the grain-wise electrical steel sheet is formed so as to be mixed in the plate width direction.

また、上記の方向性電磁鋼板の製造方法において、前記板幅方向に沿って、レーザビームを照射する第1照射部及び第2照射部が配置されており、前記第1照射部によって前記第1溝を形成し、前記第2照射部によって前記第2溝を形成しても良い。   Moreover, in the manufacturing method of the grain-oriented electrical steel sheet, a first irradiation unit and a second irradiation unit that irradiate a laser beam are disposed along the plate width direction, and the first irradiation unit performs the first irradiation unit. A groove may be formed, and the second groove may be formed by the second irradiation unit.

また、上記の方向性電磁鋼板の製造方法において、前記第1溝と前記第2溝を、前記板幅方向において交互に形成しても良い。   In the method for manufacturing a grain-oriented electrical steel sheet, the first groove and the second groove may be alternately formed in the plate width direction.

また、上記の方向性電磁鋼板の製造方法において、前記第1溝と前記第2溝のうちの前記第2溝の割合Aは、前記第2溝と前記板幅方向との成す角度を角度θとした場合に、下記の式(1)を満たしても良い。
割合A=−3.22×角度θ+110 ・・・(1)
In the method for manufacturing a grain-oriented electrical steel sheet, the ratio A of the second groove of the first groove and the second groove is an angle θ between the second groove and the plate width direction. In this case, the following formula (1) may be satisfied.
Ratio A = −3.22 × angle θ + 110 (1)

また、上記の方向性電磁鋼板の製造方法において、前記レーザビームを照射する工程より前に、前記鋼板の前記板幅方向についての鉄損の分布を測定する工程をさらに含み、
前記板幅方向において前記鉄損が比較的大きい部分に前記第1溝を優先的に形成し、前記板幅方向において前記鉄損が比較的小さい部分に前記第2溝を優先的に形成してもよい。
Moreover, in the method for manufacturing the grain-oriented electrical steel sheet, further comprising a step of measuring a distribution of iron loss in the sheet width direction of the steel sheet before the step of irradiating the laser beam,
The first groove is preferentially formed in a portion where the iron loss is relatively large in the plate width direction, and the second groove is preferentially formed in a portion where the iron loss is relatively small in the plate width direction. Also good.

また、上記の方向性電磁鋼板の製造方法において、前記溝の深さの大きさは、前記溝の幅の大きさの0.2倍以上であっても良い。   In the method for manufacturing a grain-oriented electrical steel sheet, the depth of the groove may be 0.2 times or more the width of the groove.

上記課題を解決するために、本発明の別の観点によれば、鋼板の搬送方向と交差する方向にレーザビームが照射されて、前記搬送方向に所定間隔で形成された溝を有する方向性電磁鋼板であって、延在方向が前記鋼板の板幅方向と平行に形成された第1溝と、延在方向が前記板幅方向と交差するように形成された第2溝とが、前記板幅方向において混在するように形成されていることを特徴とする、方向性電磁鋼板が提供される。   In order to solve the above-mentioned problem, according to another aspect of the present invention, a directional electromagnetic wave having grooves formed at predetermined intervals in the transport direction is irradiated with a laser beam in a direction intersecting the transport direction of the steel sheet. A first groove in which the extending direction is formed in parallel with the plate width direction of the steel sheet and a second groove formed so that the extending direction intersects the plate width direction are the steel plates. A grain-oriented electrical steel sheet is provided that is formed so as to be mixed in the width direction.

以上説明したように本発明によれば、方向性電磁鋼板の鉄損を低減しつつ、方向性電磁鋼板の曲げ加工時の割れの発生を抑制することが可能となる。   As described above, according to the present invention, it is possible to suppress the occurrence of cracks during bending of the directional electromagnetic steel sheet while reducing the iron loss of the directional electromagnetic steel sheet.

本実施形態に係る方向性電磁鋼板10の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the grain-oriented electrical steel plate 10 which concerns on this embodiment. 本実施形態に係る方向性電磁鋼板10の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the grain-oriented electrical steel sheet 10 which concerns on this embodiment. 本実施形態に係る方向性電磁鋼板10の製造工程の図2に示した例と異なる例を示すフローチャートである。It is a flowchart which shows the example different from the example shown in FIG. 2 of the manufacturing process of the grain-oriented electrical steel plate 10 which concerns on this embodiment. 本実施形態に係るレーザ加工装置100の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the laser processing apparatus 100 which concerns on this embodiment. 比較例に係る方向性電磁鋼板900における溝の形成状態を示す模式図である。It is a schematic diagram which shows the formation state of the groove | channel in the grain-oriented electrical steel sheet 900 which concerns on a comparative example. 本実施形態に係る方向性電磁鋼板10における溝の形成状態を示す模式図である。It is a schematic diagram which shows the formation state of the groove | channel in the grain-oriented electrical steel sheet 10 which concerns on this embodiment. 方向性電磁鋼板10における溝の形成状態の変形例を示す模式図である。FIG. 6 is a schematic diagram showing a modification of the formation state of grooves in the grain-oriented electrical steel sheet 10. 本実施形態に係る方向性電磁鋼板10の製造工程の図2及び図3に示した例と異なる例を示すフローチャートである。It is a flowchart which shows the example different from the example shown in FIG.2 and FIG.3 of the manufacturing process of the grain-oriented electrical steel plate 10 which concerns on this embodiment. 溝の傾斜角度と、鋼板の繰り返し曲げ平均回数との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the inclination angle of a groove | channel, and the repetition bending average frequency | count of a steel plate. 溝の傾斜角度と、鉄損改善率との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the inclination-angle of a groove | channel, and an iron loss improvement rate. 傾斜溝の比率と、繰り返し曲げ平均回数との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the ratio of an inclination groove | channel, and the number of repeated bending averages. 傾斜溝の傾斜角度と、傾斜溝の比率との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the inclination-angle of an inclination groove | channel, and the ratio of an inclination groove | channel.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<方向性電磁鋼板の概要>
方向性電磁鋼板は、鋼板の結晶粒の磁化容易軸(体心立方晶の<100>方向)が製造工程における圧延方向に略揃っている電磁鋼板である。方向性電磁鋼板は、圧延方向に磁化が向いた磁区を、磁壁を挟んで複数配列した構造を有する。このような方向性電磁鋼板は圧延方向に磁化しやすいため、磁力線の方向がほぼ一定に流れるトランスの鉄芯材料として適している。
<Outline of grain-oriented electrical steel sheet>
A grain-oriented electrical steel sheet is an electrical steel sheet in which the easy axis of magnetization of the crystal grains of the steel sheet (the <100> direction of the body-centered cubic crystal) is substantially aligned with the rolling direction in the manufacturing process. The grain-oriented electrical steel sheet has a structure in which a plurality of magnetic domains whose magnetization is oriented in the rolling direction are arranged with a domain wall interposed therebetween. Such grain-oriented electrical steel sheets are easily magnetized in the rolling direction, and are therefore suitable as an iron core material for transformers in which the direction of the lines of magnetic force flows almost constant.

トランスは、通常、積みトランスと巻きトランスとに大別される。本実施形態に係る方向性電磁鋼板は、鋼板に巻き変形を加えながらトランスの形状に組み上げる巻きトランスの鉄芯材料として利用される。   Transformers are generally divided into loading transformers and winding transformers. The grain-oriented electrical steel sheet according to the present embodiment is used as an iron core material for a wound transformer that is assembled into a transformer shape while being wound into the steel sheet.

図1は、本実施形態に係る方向性電磁鋼板10の構成の一例を示す断面図である。図1に示すように、方向性電磁鋼板10は、鋼板本体(地鉄)12と、鋼板本体12の両面に形成されたグラス被膜14と、グラス被膜14上に形成された絶縁被膜16と、を有する。   FIG. 1 is a cross-sectional view showing an example of the configuration of a grain-oriented electrical steel sheet 10 according to this embodiment. As shown in FIG. 1, the grain-oriented electrical steel sheet 10 includes a steel sheet main body (ground iron) 12, a glass coating 14 formed on both surfaces of the steel sheet main body 12, an insulating coating 16 formed on the glass coating 14, Have

鋼板本体12は、Siを含有する鉄合金で構成されている。鋼板本体12の組成は、一例として、Si;2.5質量%以上4.0質量%以下、C;0.02質量%以上0.10質量%以下、Mn;0.05質量%以上0.20質量%以下、酸可溶性Al;0.020質量%以上0.040質量%以下、N;0.002質量%以上0.012質量%以下、S;0.001質量%以上0.010質量%以下、P;0.01質量%以上0.04質量%以下、残部がFe及び不可避不純物である。鋼板本体12の厚さは、例えば0.15mm以上で、かつ0.35mm以下である。   The steel plate body 12 is made of an iron alloy containing Si. As an example, the composition of the steel sheet body 12 is Si: 2.5 mass% to 4.0 mass%, C: 0.02 mass% to 0.10 mass%, Mn: 0.05 mass% to 0.00 mass%. 20 mass% or less, acid-soluble Al; 0.020 mass% or more and 0.040 mass% or less, N: 0.002 mass% or more and 0.012 mass% or less, S; 0.001 mass% or more and 0.010 mass% or less Hereinafter, P: 0.01% by mass or more and 0.04% by mass or less, and the balance is Fe and inevitable impurities. The thickness of the steel plate body 12 is, for example, 0.15 mm or more and 0.35 mm or less.

グラス被膜14は、例えば、フォルステライト(Mg2SiO4)、スピネル(MgAl2O4)及びコージライト(Mg2Al4Si5O18)、といった複合酸化物によって構成されている。グラス被膜14の厚さは、例えば1μmである。   The glass coating 14 is made of a composite oxide such as forsterite (Mg2SiO4), spinel (MgAl2O4), and cordierite (Mg2Al4Si5O18). The thickness of the glass coating 14 is, for example, 1 μm.

絶縁被膜16は、例えば、コロイド状シリカとリン酸塩(リン酸マグネシウム、リン酸アルミニウムなど)を主体とするコーティング液やアルミナゾルとホウ酸を混合したコーティング液によって構成されている。   The insulating coating 16 is composed of, for example, a coating liquid mainly composed of colloidal silica and phosphate (magnesium phosphate, aluminum phosphate, etc.) or a coating liquid in which alumina sol and boric acid are mixed.

上述した構成の方向性電磁鋼板10は変圧器(トランス)の巻鉄芯に用いられ、鉄損を更に低減させるために、方向性電磁鋼板10の製造時の搬送方向(圧延方向)と交差する方向に延在する溝が、鋼板本体(地鉄)12の表面に圧延方向に所定の溝間隔で形成されている。詳細は後述するが、溝は、レーザ加工装置によって地鉄の表面にレーザビームを照射することで形成される。   The grain-oriented electrical steel sheet 10 having the above-described configuration is used for a wound iron core of a transformer (transformer), and intersects the conveying direction (rolling direction) at the time of manufacturing the grain-oriented electrical steel sheet 10 in order to further reduce iron loss. Grooves extending in the direction are formed on the surface of the steel plate body (base iron) 12 at a predetermined groove interval in the rolling direction. Although the details will be described later, the groove is formed by irradiating the surface of the steel bar with a laser beam by a laser processing apparatus.

<方向性電磁鋼板の製造方法>
図2を参照しながら、本実施形態に係る方向性電磁鋼板10の製造方法について説明する。図2は、本実施形態に係る方向性電磁鋼板10の製造工程の一例を示すフローチャートである。
<Method for producing grain-oriented electrical steel sheet>
The manufacturing method of the grain-oriented electrical steel sheet 10 according to the present embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing an example of a manufacturing process of the grain-oriented electrical steel sheet 10 according to this embodiment.

方向性電磁鋼板10の製造工程は、図2に示すように、鋳造工程S2と、熱間圧延工程S4と、焼鈍工程S6と、冷間圧延工程S8と、脱炭焼鈍工程S10と、焼鈍分離剤塗布工程S12と、最終仕上げ焼鈍工程S14と、絶縁被膜形成工程S16と、レーザ照射工程S18と、絶縁被膜形成工程S20と、を含む。   As shown in FIG. 2, the manufacturing process of the grain-oriented electrical steel sheet 10 includes a casting process S2, a hot rolling process S4, an annealing process S6, a cold rolling process S8, a decarburizing annealing process S10, and an annealing separation. An agent coating step S12, a final finish annealing step S14, an insulating film forming step S16, a laser irradiation step S18, and an insulating film forming step S20 are included.

鋳造工程S2では、所定の組成に調整された溶鋼を連続鋳造機に供給して、鋳塊を連続的に形成する。熱間圧延工程S4では、鋳塊を所定温度(例えば1150〜1400℃)に加熱して熱間圧延を行う。これにより、所定厚さ(例えば1.8〜3.5mm)の熱間圧延材が形成される。   In the casting step S2, the molten steel adjusted to a predetermined composition is supplied to a continuous casting machine to continuously form an ingot. In the hot rolling step S4, the ingot is heated to a predetermined temperature (for example, 1150 to 1400 ° C.) to perform hot rolling. Thereby, a hot-rolled material having a predetermined thickness (for example, 1.8 to 3.5 mm) is formed.

焼鈍工程S6では、熱間圧延材に対して、例えば、加熱温度750〜1200℃、加熱時間30秒〜10分の条件で熱処理を行う。冷間圧延工程S8では、熱間圧延材の表面を酸洗した後に、冷間圧延を行う。これにより、所定厚さ(例えば、0.15〜0.35mm)の冷間圧延材が形成される。   In the annealing step S6, the hot-rolled material is heat-treated, for example, under conditions of a heating temperature of 750 to 1200 ° C. and a heating time of 30 seconds to 10 minutes. In the cold rolling step S8, the surface of the hot rolled material is pickled and then cold rolled. Thereby, a cold-rolled material having a predetermined thickness (for example, 0.15 to 0.35 mm) is formed.

脱炭焼鈍工程S10では、冷間圧延材に対して、例えば、加熱温度700〜900℃、加熱時間1〜3分の条件で熱処理を行い、鋼板本体を形成する。鋼板本体12の表面には、シリカ(SiO2)を主体とする酸化物層が形成される。焼鈍分離剤塗布工程S12では、鋼板本体12の酸化物層の上に、マグネシア(MgO)を主体とする焼鈍分離剤を塗布する。   In the decarburization annealing step S10, the cold-rolled material is heat-treated, for example, under conditions of a heating temperature of 700 to 900 ° C. and a heating time of 1 to 3 minutes to form a steel plate body. An oxide layer mainly composed of silica (SiO 2) is formed on the surface of the steel plate body 12. In the annealing separator application step S12, an annealing separator mainly composed of magnesia (MgO) is applied on the oxide layer of the steel plate body 12.

最終仕上げ焼鈍工程S14では、焼鈍分離剤が塗布された鋼板本体12をコイル状に巻き取った状態で、バッチ式炉内に挿入して熱処理を行う。熱処理条件は、例えば、加熱温度1100〜1300℃、加熱時間20〜24時間である。この際、鋼板本体12の圧延方向と磁化容易軸とが一致した、いわゆるゴス粒が優先的に結晶成長する。この結果、仕上げ焼鈍の後に結晶方位性(結晶配向性)が高い方向性電磁鋼板が得られることとなる。また、最終仕上げ焼鈍工程S14により、酸化物層と焼鈍分離剤が反応し、鋼板本体12の表面にフォルステライト(Mg2SiO4)からなるグラス被膜14が形成される。   In the final finish annealing step S14, the steel sheet main body 12 coated with the annealing separator is wound in a coil shape and inserted into a batch furnace to perform heat treatment. The heat treatment conditions are, for example, a heating temperature of 1100 to 1300 ° C. and a heating time of 20 to 24 hours. At this time, so-called goth grains in which the rolling direction of the steel plate body 12 and the easy magnetization axis coincide with each other preferentially grow. As a result, a grain-oriented electrical steel sheet having high crystal orientation (crystal orientation) after finish annealing is obtained. In addition, in the final finish annealing step S <b> 14, the oxide layer and the annealing separator react to form a glass film 14 made of forsterite (Mg2SiO4) on the surface of the steel plate body 12.

絶縁被膜形成工程S16では、コイル状に巻き取られた鋼板本体12を巻き解して板状に伸ばして搬送する。そして、鋼板本体12の両面に形成されたグラス被膜14の上に絶縁剤を塗布、焼付けを行い、絶縁被膜16を形成する。絶縁被膜16が形成された鋼板本体12は、コイル状に巻き取られる。   In the insulating coating forming step S16, the steel sheet body 12 wound in a coil shape is unwound and stretched into a plate shape and conveyed. And an insulating agent is apply | coated and baked on the glass film 14 formed in both surfaces of the steel plate main body 12, and the insulating film 16 is formed. The steel plate body 12 on which the insulating coating 16 is formed is wound up in a coil shape.

レーザ照射工程S18では、コイル状に巻き取られた鋼板本体12を巻き解して板状に伸ばして搬送する。そして、後述するレーザ照射装置によって、鋼板本体12の片面に向けてレーザビームを集光・照射し、圧延方向に搬送される電磁鋼板の圧延方向と交差する交差方向に走査する。これにより、鋼板本体12の表面に、交差方向に延在する溝が、圧延方向において所定間隔で形成される。なお、レーザビームの集光・照射は、鋼板本体12の表面及び裏面の両方から行ってもよい。   In the laser irradiation step S18, the steel sheet body 12 wound in a coil shape is unwound and stretched into a plate shape and conveyed. Then, a laser beam is focused and irradiated toward one surface of the steel sheet main body 12 by a laser irradiation apparatus to be described later, and scanned in the crossing direction intersecting the rolling direction of the electromagnetic steel sheet conveyed in the rolling direction. Thereby, the groove | channel extended in the cross direction is formed in the surface of the steel plate main body 12 at predetermined intervals in the rolling direction. In addition, you may perform condensing and irradiation of a laser beam from both the surface of the steel plate main body 12, and a back surface.

絶縁被膜形成工程S20では、溝が形成された鋼板本体12に対して、絶縁被膜形成工程S16と同様に絶縁被膜16を形成する。すなわち、2回目の絶縁被膜16を形成する。上記の一連の工程により、圧延方向と交差する方向に延在する溝が、鋼板本体(地鉄)の表面に圧延方向に所定の溝間隔で形成された方向性電磁鋼板が製造される。   In the insulating coating forming step S20, the insulating coating 16 is formed on the steel plate body 12 with the grooves formed in the same manner as in the insulating coating forming step S16. That is, the second insulating film 16 is formed. Through the above-described series of steps, a grain-oriented electrical steel sheet is manufactured in which grooves extending in a direction intersecting the rolling direction are formed on the surface of the steel sheet body (base iron) at a predetermined groove interval in the rolling direction.

このようにして、鋼板本体12の表面にグラス被膜14及び絶縁被膜16が形成され、レーザ照射によって磁区制御された方向性電磁鋼板10が製造される。その後、製造された複数枚の方向性電磁鋼板10を重ねた状態で巻くことで、巻鉄芯が製造されることになる。   In this way, the glass coating 14 and the insulating coating 16 are formed on the surface of the steel plate body 12, and the grain-oriented electrical steel plate 10 whose magnetic domain is controlled by laser irradiation is manufactured. Then, a wound iron core is manufactured by winding the manufactured directional electromagnetic steel sheets 10 in a state of being stacked.

なお、上記では、レーザ照射工程S18が絶縁被膜形成工程S16の後に行われることとしたが、これに限定されず、レーザ照射工程S18が絶縁被膜形成工程S16よりも前に行われてもよい。例えば、方向性電磁鋼板10の製造工程において、図3に示すように、冷間圧延工程S8の後に、レーザ照射工程S18が行われても良い。かかる場合には、図3に示すように、レーザ照射工程S18の後に絶縁被膜形成工程S16が行われるので、2回目の絶縁被膜形成工程S20は方向性電磁鋼板10の製造工程から省略され得るので、製造工程を短縮できる。また、脱炭焼鈍工程S10の後に、レーザ照射工程S18が行われても良い。更に、最終仕上げ焼鈍工程S14の後に、レーザ照射工程S18が行われても良い。かかる場合においても、レーザ照射工程S18の後に絶縁被膜形成工程S16が行われるので、2回目の絶縁被膜形成工程S20が不要となり、製造工程を短縮できる。   In the above description, the laser irradiation step S18 is performed after the insulating film forming step S16. However, the present invention is not limited to this, and the laser irradiation step S18 may be performed before the insulating film forming step S16. For example, in the manufacturing process of the grain-oriented electrical steel sheet 10, as shown in FIG. 3, the laser irradiation process S18 may be performed after the cold rolling process S8. In such a case, as shown in FIG. 3, since the insulating coating forming step S16 is performed after the laser irradiation step S18, the second insulating coating forming step S20 can be omitted from the manufacturing process of the grain-oriented electrical steel sheet 10. Manufacturing process can be shortened. Moreover, laser irradiation process S18 may be performed after decarburization annealing process S10. Further, the laser irradiation step S18 may be performed after the final finish annealing step S14. Even in such a case, since the insulating coating forming step S16 is performed after the laser irradiation step S18, the second insulating coating forming step S20 becomes unnecessary, and the manufacturing process can be shortened.

<レーザ加工装置の構成>
図4を参照しながら、方向性電磁鋼板10にレーザビームを照射して溝を形成するレーザ加工装置100の構成例について説明する。図4は、本実施形態に係るレーザ加工装置100の構成例を示す模式図である。
<Configuration of laser processing equipment>
A configuration example of the laser processing apparatus 100 that forms grooves by irradiating the grain-oriented electrical steel sheet 10 with a laser beam will be described with reference to FIG. FIG. 4 is a schematic diagram illustrating a configuration example of the laser processing apparatus 100 according to the present embodiment.

レーザ加工装置100は、圧延方向に一定速度で搬送される方向性電磁鋼板10の絶縁被膜16の上から圧延方向と交差する交差方向にレーザビームを照射して、交差方向に延在する溝を形成する。交差方向は、鋼板の板厚方向とも交差する方向である。レーザ加工装置100は、図4に示すように、レーザ発振器102と、伝送ファイバ104と、レーザ照射装置106とを、それぞれ複数有する。図4では、3つのレーザ発振器102、伝送ファイバ104、及びレーザ照射装置106が示されているが、それぞれの構成は同様である。   The laser processing apparatus 100 irradiates a laser beam in an intersecting direction intersecting with the rolling direction from above the insulating coating 16 of the grain-oriented electrical steel sheet 10 conveyed at a constant speed in the rolling direction, thereby forming grooves extending in the intersecting direction. Form. The intersecting direction is a direction intersecting with the sheet thickness direction of the steel sheet. As shown in FIG. 4, the laser processing apparatus 100 includes a plurality of laser oscillators 102, transmission fibers 104, and laser irradiation apparatuses 106. In FIG. 4, three laser oscillators 102, a transmission fiber 104, and a laser irradiation device 106 are shown, but each configuration is the same.

レーザ発振器102は、例えば高出力のレーザビームを出射する。伝送ファイバ104は、レーザ発振器102から出射されたレーザビームをレーザ照射装置106まで伝送する光ファイバである。   The laser oscillator 102 emits a high-power laser beam, for example. The transmission fiber 104 is an optical fiber that transmits the laser beam emitted from the laser oscillator 102 to the laser irradiation device 106.

レーザ発振器102の種類としては、微小集光特性に優れ、狭い溝を形成できる観点等から、ファイバレーザ又はディスクレーザが好ましい。ファイバレーザ又はディスクレーザは、波長が近紫外域から近赤外域(例えば1μm帯)にあるためレーザビームを光ファイバによる伝送が可能であり、レーザビームを光ファイバで伝送することで比較的コンパクトなレーザ加工装置100を実現できる。また、レーザ発振器102は連続波レーザでもパルスレーザでも良い。   As the type of the laser oscillator 102, a fiber laser or a disk laser is preferable from the viewpoint of excellent minute focusing characteristics and the ability to form a narrow groove. A fiber laser or a disk laser has a wavelength in the near-ultraviolet region to the near-infrared region (for example, 1 μm band), so that the laser beam can be transmitted by an optical fiber, and the laser beam is transmitted by an optical fiber to be relatively compact. The laser processing apparatus 100 can be realized. The laser oscillator 102 may be a continuous wave laser or a pulsed laser.

レーザ照射装置106は、レーザ発振器102から伝送ファイバ104により伝送されたレーザビームを方向性電磁鋼板10に集光・走査させる。ここで、レーザビームの集光形状は、例えばレーザ照射に伴う溶融物の発生を抑制する観点等から、楕円形状である。一つのレーザ照射装置106がレーザビームを走査できる幅は、方向性電磁鋼板10の板幅よりも小さいこともあるが、図4に示すようにレーザ照射装置106を板幅方向に複数配列させることにより、方向性電磁鋼板10の板幅全域に亘ってレーザビームを走査できる。   The laser irradiation device 106 causes the directional electromagnetic steel sheet 10 to focus and scan the laser beam transmitted from the laser oscillator 102 through the transmission fiber 104. Here, the condensing shape of the laser beam is an elliptical shape, for example, from the viewpoint of suppressing the generation of a melt accompanying laser irradiation. The width that one laser irradiation device 106 can scan the laser beam may be smaller than the plate width of the grain-oriented electrical steel sheet 10, but a plurality of laser irradiation devices 106 are arranged in the plate width direction as shown in FIG. Thus, the laser beam can be scanned over the entire width of the grain-oriented electrical steel sheet 10.

本実施形態としては、レーザ照射装置106としてレーザ照射装置106Aとレーザ照射装置106Bが、板幅方向に沿って交互に配置されている。レーザ照射装置106Aは、延在方向が鋼板の板幅方向と平行な溝(以下、平行溝とも呼ぶ)D1を形成する。具体的には、レーザ照射装置106Aは、板幅方向と平行な方向へレーザビームを少なくとも1回走査することによって、平行溝D1を形成する。レーザ照射装置106Bは、延在方向が鋼板の板幅方向と交差する溝(以下、傾斜溝とも呼ぶ)D2を形成する。具体的には、レーザ照射装置106Bは、板幅方向と交差する方向へレーザビームを少なくとも1回走査することによって、傾斜溝D2を形成する。これにより、板幅方向において、平行溝D1と傾斜溝D2が交互に形成される。本実施形態では、平行溝D1が第1溝に該当し、傾斜溝D2が第2溝に該当する。また、レーザ照射装置106Aが第1照射部に該当し、レーザ照射装置106Bが第2照射部に該当する。このように平行溝D1と傾斜溝D2を板幅方向において混在させる理由については、後述する。   In this embodiment, as the laser irradiation device 106, the laser irradiation device 106A and the laser irradiation device 106B are alternately arranged along the plate width direction. The laser irradiation device 106A forms a groove (hereinafter also referred to as a parallel groove) D1 whose extending direction is parallel to the plate width direction of the steel sheet. Specifically, the laser irradiation device 106A forms the parallel groove D1 by scanning the laser beam at least once in a direction parallel to the plate width direction. The laser irradiation device 106B forms a groove (hereinafter also referred to as an inclined groove) D2 whose extending direction intersects the sheet width direction of the steel sheet. Specifically, the laser irradiation device 106B forms the inclined groove D2 by scanning the laser beam at least once in a direction crossing the plate width direction. Thereby, the parallel grooves D1 and the inclined grooves D2 are alternately formed in the plate width direction. In the present embodiment, the parallel groove D1 corresponds to the first groove, and the inclined groove D2 corresponds to the second groove. Further, the laser irradiation device 106A corresponds to the first irradiation unit, and the laser irradiation device 106B corresponds to the second irradiation unit. The reason why the parallel grooves D1 and the inclined grooves D2 are mixed in the plate width direction will be described later.

また、複数のレーザ照射装置106により形成される複数の溝は、例えば、互いに離れるように、板幅方向に沿って断続的に形成される。具体的には、平行溝D1及び傾斜溝D2は、互いに離れるように、板幅方向に沿って断続的に形成され得る。その場合、互いに隣り合う溝が結合することにより所定の角度を成すような屈曲した溝部は形成されない。なお、以下では、方向性電磁鋼板10において複数の溝が互いに離れるように形成される例について主に説明するが、かかる例に限定されず、レーザ照射装置106と方向性電磁鋼板10との相対関係に起因して、複数の溝は互いに接触して形成されたり、交差するように形成されることがあってもよい。   Further, the plurality of grooves formed by the plurality of laser irradiation devices 106 are formed intermittently along the plate width direction so as to be separated from each other, for example. Specifically, the parallel grooves D1 and the inclined grooves D2 can be intermittently formed along the plate width direction so as to be separated from each other. In that case, a groove portion that is bent to form a predetermined angle by joining adjacent grooves is not formed. In the following, an example in which a plurality of grooves are formed in the grain-oriented electrical steel sheet 10 so as to be separated from each other will be mainly described. However, the present invention is not limited to this example, and the relative relationship between the laser irradiation device 106 and the grain-oriented electrical steel sheet 10 is described. Due to the relationship, the plurality of grooves may be formed in contact with each other or may be formed to cross each other.

なお、上記では、方向性電磁鋼板10上のレーザビームの集光形状が楕円形状であることとしたが、これに限定されない。例えば、レーザビームの集光形状が、真円形状であっても良い。   In the above description, the condensing shape of the laser beam on the grain-oriented electrical steel sheet 10 is an elliptical shape, but is not limited to this. For example, the condensing shape of the laser beam may be a perfect circle.

また、上記では、レーザ発振器102がファイバレーザ又はディスクレーザであることとしたが、これに限定されない。例えば、レーザ発振器102が、COレーザであっても良い。 In the above description, the laser oscillator 102 is a fiber laser or a disk laser. However, the present invention is not limited to this. For example, the laser oscillator 102 may be a CO 2 laser.

<巻トランス製造時の鋼板の曲げ加工に伴う割れの発生>
溝が形成された方向性電磁鋼板は、巻きトランスの鉄芯(巻鉄芯)として利用される。そして、巻鉄芯の製造時に、方向性電磁鋼板の曲げ加工が行なわれる。かかる曲げ加工の際に、溝に起因して鋼板が割れる恐れがある。
<Occurrence of cracks associated with bending of steel sheet during winding transformer production>
The grain-oriented electrical steel sheet in which the groove is formed is used as an iron core (winding iron core) of a winding transformer. And at the time of manufacture of a wound iron core, bending of a grain-oriented electrical steel sheet is performed. During such bending, the steel sheet may break due to the grooves.

ここで、比較例として、図5に示すように圧延方向に直交する溝(別言すれば、板幅方向に平行な溝)D1が形成された方向性電磁鋼板を例に挙げて、鋼板の割れについて説明する。   Here, as a comparative example, as shown in FIG. 5, a directional electrical steel sheet in which grooves perpendicular to the rolling direction (in other words, grooves parallel to the sheet width direction) D1 are formed is given as an example. The crack will be described.

図5は、比較例に係る方向性電磁鋼板900における溝D1の形成状態を示す模式図である。図5では、延在方向が板幅方向と平行な4つの溝D1が、板幅方向に沿って断続的に形成されている。すなわち、4つの溝D1が、圧延方向において若干隙間があるように形成されている。方向性電磁鋼板の曲げ加工においては、通常、鋼板の圧延方向が曲げられる。このため、図5に示すように溝D1が鋼板の板幅方向に平行に形成された場合には、溝D1の幅方向が曲げ方向と同じであるため、鋼板の割れが発生する可能性が高まる。   FIG. 5 is a schematic diagram showing a formation state of the groove D1 in the grain-oriented electrical steel sheet 900 according to the comparative example. In FIG. 5, four grooves D1 whose extending direction is parallel to the plate width direction are formed intermittently along the plate width direction. That is, the four grooves D1 are formed so that there is a slight gap in the rolling direction. In bending a grain-oriented electrical steel sheet, the rolling direction of the steel sheet is usually bent. For this reason, as shown in FIG. 5, when the groove D1 is formed in parallel to the sheet width direction of the steel sheet, the width direction of the groove D1 is the same as the bending direction, so that the steel sheet may be cracked. Rise.

鋼板が割れる原因としては、レーザビームを照射して溝D1を形成する際に鋼板の溝部に発生する溶融物や溶融再凝固物(以下、溶融物等と呼ぶ)が挙げられる。かかる溶融物等が発生すると、応力が集中しやすくなるため、鋼板の曲げ加工を行う際に、鋼板が割れる可能性が高まる。   The cause of the cracking of the steel sheet includes a melt and a re-solidified product (hereinafter referred to as a melt) generated in the groove of the steel sheet when the groove D1 is formed by irradiating a laser beam. When such a melt or the like is generated, stress tends to be concentrated, and therefore, the possibility that the steel plate will break when bending the steel plate is increased.

また、方向性電磁鋼板においては、鉄損の改善の観点等から、溝D1が深く形成される場合がある。かかる場合には、溝の深さの溝の幅に対する比率が高まり、割れが発生しやすい。   In the grain-oriented electrical steel sheet, the groove D1 may be formed deeply from the viewpoint of improving iron loss. In such a case, the ratio of the depth of the groove to the width of the groove increases, and cracking is likely to occur.

図5では、4つの溝D1が板幅方向に沿って断続的に形成されていることとしたが、これに限定されない。例えば、4つの溝D1が、圧延方向において同じ位置に位置して1本の線状に形成されても、鋼板の割れが発生する可能性が高まる。   In FIG. 5, the four grooves D1 are intermittently formed along the plate width direction, but the present invention is not limited to this. For example, even if the four grooves D1 are located at the same position in the rolling direction and are formed in a single line shape, the possibility of cracking of the steel sheet increases.

<鋼板の割れを抑制する方策>
上述した鋼板の割れを防止するために、本実施形態に係る方向性電磁鋼板10においては、図6に示すような溝D1、D2が圧延方向に所定間隔PLで形成されている。
<Measures to suppress cracking of steel sheet>
In order to prevent the above-described cracking of the steel sheet, in the grain-oriented electrical steel sheet 10 according to the present embodiment, grooves D1 and D2 as shown in FIG. 6 are formed at a predetermined interval PL in the rolling direction.

図6は、本実施形態に係る方向性電磁鋼板10における溝の形成状態を示す模式図である。本実施形態では、溝として、延在方向が鋼板の板幅方向と平行な平行溝D1と、延在方向が鋼板の板幅方向と交差する傾斜溝D2が、形成されている。そして、平行溝D1と傾斜溝D2は、鋼板の板幅方向において混在し、かつ鋼板の板幅全域に亘って形成されている。   FIG. 6 is a schematic diagram showing a groove formation state in the grain-oriented electrical steel sheet 10 according to the present embodiment. In the present embodiment, parallel grooves D1 whose extending direction is parallel to the sheet width direction of the steel sheet and inclined grooves D2 whose extending direction intersects the sheet width direction of the steel sheet are formed as the grooves. And the parallel groove | channel D1 and the inclination groove | channel D2 are mixed in the plate width direction of a steel plate, and are formed over the plate width whole region of a steel plate.

また、平行溝D1と傾斜溝D2は、板幅方向において交互に配置されている。平行溝D1と傾斜溝D2は、板幅方向に配置された異なるレーザ照射装置106によって形成されている。例えば、平行溝D1は、図4に示すレーザ照射装置106Aによって形成され、傾斜溝D2は、レーザ照射装置106Bによって形成されている。   Further, the parallel grooves D1 and the inclined grooves D2 are alternately arranged in the plate width direction. The parallel grooves D1 and the inclined grooves D2 are formed by different laser irradiation devices 106 arranged in the plate width direction. For example, the parallel groove D1 is formed by the laser irradiation device 106A shown in FIG. 4, and the inclined groove D2 is formed by the laser irradiation device 106B.

傾斜溝D2を形成した場合には、傾斜溝D2の延在方向が鋼板の曲げ加工時の曲げ方向と垂直な板幅方向と交差するので(別言すれば、傾斜溝の幅方向が曲げ方向と同じ方向でないため)、鋼板が曲がった際の鋼板の割れを抑制できる。ここで、傾斜溝の延在方向と板幅方向との成す角度(傾斜溝の傾斜角度とも呼ぶ)θが大きい方が、鋼板の割れの防止には有効である。本実施形態では、傾斜溝の傾斜角度θは、例えば20度である。   When the inclined groove D2 is formed, the extending direction of the inclined groove D2 intersects the plate width direction perpendicular to the bending direction at the time of bending the steel sheet (in other words, the width direction of the inclined groove is the bending direction). Therefore, it is possible to suppress cracking of the steel plate when the steel plate is bent. Here, a larger angle θ (also referred to as an inclination angle of the inclined groove) θ between the extending direction of the inclined groove and the plate width direction is effective in preventing cracking of the steel sheet. In the present embodiment, the inclination angle θ of the inclined groove is, for example, 20 degrees.

一方で、傾斜溝D2を形成した場合には、鋼板の割れを抑制できる一方で、鉄損改善の効果が低下する恐れがある。特に、溝の傾斜角度θが大きいほど、鉄損改善の効果が低下しやすい。これは、傾斜溝の場合には、圧延方向に直交する溝に比べて磁極の発生が減少するためである。   On the other hand, when the inclined groove D2 is formed, cracking of the steel sheet can be suppressed, while the effect of improving the iron loss may be reduced. In particular, the greater the groove inclination angle θ, the lower the effect of iron loss improvement. This is because in the case of inclined grooves, the generation of magnetic poles is reduced compared to grooves perpendicular to the rolling direction.

そこで、本実施形態では、傾斜溝D2だけを形成するのでは無く、板幅方向において平行溝D1と傾斜溝D2を混在して配置させることで、方向性電磁鋼板10の曲げ加工の際の割れを防止しつつ、鉄損改善の効果の低下を抑制可能である。特に、本実施形態では、板幅方向において平行溝D1と傾斜溝D2を交互に配置させることで、平行溝D1の延在方向での長さを小さくできるので、上記の効果がより有効に奏される。   Therefore, in this embodiment, not only the inclined grooves D2 are formed, but the parallel grooves D1 and the inclined grooves D2 are mixedly arranged in the plate width direction, so that cracks during bending of the grain-oriented electrical steel sheet 10 occur. It is possible to suppress a decrease in the effect of iron loss improvement while preventing the above. In particular, in this embodiment, by arranging the parallel grooves D1 and the inclined grooves D2 alternately in the plate width direction, the length in the extending direction of the parallel grooves D1 can be reduced, so that the above effect is more effectively achieved. Is done.

図6では、平行溝D1と傾斜溝D2が同じ割合で形成されている。しかし、これに限定されず、傾斜溝D2の割合は、傾斜溝D2の傾斜角度θに応じて変化することが、後述する実験例から導かれる。具体的には、上述した効果を発揮させるためには、傾斜溝D2の割合A(%)が、下記の近似式(1)のように設定されることが望ましい。
割合A=−3.22×傾斜角度θ+110 ・・・(1)
In FIG. 6, the parallel grooves D1 and the inclined grooves D2 are formed at the same ratio. However, the present invention is not limited to this, and it is derived from an experimental example described later that the ratio of the inclined groove D2 changes according to the inclination angle θ of the inclined groove D2. Specifically, in order to exhibit the above-described effect, it is desirable that the ratio A (%) of the inclined groove D2 is set as the following approximate expression (1).
Ratio A = −3.22 × tilt angle θ + 110 (1)

ところで、鉄損改善を向上するには、溝を深くすることが有効であることが分かっている。そこで、本実施形態では、幅を大きくせずに深さを大きくするように、溝(平行溝D1と傾斜溝D2)が形成されている。例えば、溝の深さの大きさは、溝の幅の大きさの0.2倍以上である。溝の深さは、具体的には20μm前後の大きさである。   By the way, in order to improve iron loss improvement, it turns out that it is effective to deepen a groove | channel. Therefore, in the present embodiment, grooves (parallel grooves D1 and inclined grooves D2) are formed so as to increase the depth without increasing the width. For example, the depth of the groove is 0.2 times or more the width of the groove. Specifically, the depth of the groove is about 20 μm.

このような深さが大きい溝を形成した場合には、方向性電磁鋼板の曲げ加工の際に鋼板の割れが発生する恐れがある。これに対して、本実施形態のように板幅方向において平行溝D1と傾斜溝D2を混在するように形成することで、溝の深さが大きくても、曲げ加工の際の鋼板の割れの発生を有効に抑制できる。   When a groove having such a large depth is formed, the steel sheet may be cracked during bending of the grain-oriented electrical steel sheet. On the other hand, by forming the parallel grooves D1 and the inclined grooves D2 in the plate width direction as in the present embodiment, even if the depth of the grooves is large, the cracking of the steel plate during bending is caused. Generation can be effectively suppressed.

なお、図6では、板幅方向において平行溝D1と傾斜溝D2が離れるように形成されているが、これに限定されない。例えば、平行溝D1と傾斜溝D2が板幅方向において繋がって1本の線状に形成されても良い。   In FIG. 6, the parallel grooves D1 and the inclined grooves D2 are formed so as to be separated from each other in the plate width direction, but the present invention is not limited to this. For example, the parallel grooves D1 and the inclined grooves D2 may be connected in the plate width direction and formed in one line.

また、平行溝と傾斜溝は、図6に示すような形成状態に限定されず、例えば図7に示すように形成されても良い。かかる場合であっても、方向性電磁鋼板10の曲げ加工の際の割れを防止しつつ、鉄損改善の効果の低下を抑制可能である。   Further, the parallel grooves and the inclined grooves are not limited to the formation state as shown in FIG. 6, and may be formed as shown in FIG. 7, for example. Even in such a case, it is possible to suppress a decrease in the effect of iron loss improvement while preventing cracking during bending of the grain-oriented electrical steel sheet 10.

図7は、方向性電磁鋼板10における溝の形成状態の変形例を示す模式図である。図7では、平行溝D1に加えて、2種類の傾斜溝D2と傾斜溝D3が形成されている。傾斜溝D2と傾斜溝D3は、板幅方向に対する傾斜の向きが異なる。図7では、傾斜溝D2の板幅方向に対する傾斜角度θと、傾斜溝D3の板幅方向に対する傾斜角度θとが、同じ大きさである。しかし、これに限定されず、傾斜溝D2の傾斜角度と、傾斜溝D3の傾斜角度とが、異なる大きさであっても良い。   FIG. 7 is a schematic diagram showing a modification of the groove formation state in the grain-oriented electrical steel sheet 10. In FIG. 7, in addition to the parallel grooves D1, two types of inclined grooves D2 and inclined grooves D3 are formed. The inclined grooves D2 and D3 have different inclination directions with respect to the plate width direction. In FIG. 7, the inclination angle θ of the inclined groove D2 with respect to the plate width direction is the same as the inclination angle θ of the inclined groove D3 with respect to the plate width direction. However, the present invention is not limited to this, and the inclination angle of the inclined groove D2 and the inclination angle of the inclined groove D3 may be different sizes.

また、方向性電磁鋼板10の製造方法は、レーザビームを照射する工程(図2におけるレーザ照射工程S18)より前に、(鋼板における各部分間の鉄損の差を明確にするためには最終仕上げ焼鈍工程S14より後に、)鋼板の板幅方向についての鉄損の分布を測定する工程である鉄損分布測定工程をさらに含んでもよい。かかる場合において、レーザ照射工程S18では、当該鋼板の板幅方向において鉄損が比較的大きい部分に平行溝D1を優先的に形成し、当該鋼板の板幅方向において鉄損が比較的小さい部分に傾斜溝D2を優先的に形成する。ここで、鋼板に傾斜溝D2を形成することによって、上述したように、鋼板の割れを抑制できる一方で、鉄損改善の効果が低下し得る。ゆえに、平行溝D1及び傾斜溝D2の板幅方向における配置を、上記のように鋼板の板幅方向についての鉄損の分布に基づいて、決定することによって、より効果的に鉄損改善を向上させることができる。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet 10 is the final in order to clarify the difference of the iron loss between each part in a steel plate before the laser beam irradiation process (laser irradiation process S18 in FIG. 2). After the finish annealing step S14, it may further include an iron loss distribution measuring step which is a step of measuring the iron loss distribution in the sheet width direction of the steel sheet. In such a case, in the laser irradiation step S18, the parallel groove D1 is preferentially formed in a portion where the iron loss is relatively large in the plate width direction of the steel plate, and the iron loss is set in a portion where the iron loss is relatively small in the plate width direction of the steel plate. The inclined groove D2 is formed preferentially. Here, by forming the inclined groove D2 in the steel plate, as described above, cracking of the steel plate can be suppressed, while the effect of improving the iron loss can be reduced. Therefore, the arrangement of the parallel grooves D1 and the inclined grooves D2 in the plate width direction is determined based on the distribution of iron loss in the plate width direction of the steel plate as described above, thereby improving the iron loss improvement more effectively. Can be made.

鉄損分布測定工程S30は、例えば、図8に示すように、絶縁被膜形成工程S16の後に行われる。その後、鉄損分布の測定結果に基づいて、レーザ照射工程S18が行われる。鉄損分布測定工程S30では、鋼板の板幅方向の各位置に対応する部分をサンプルとして切り取り、各サンプルについて、鉄損の測定を行う。なお、鉄損分布測定工程S30は、絶縁被膜形成工程S16よりも前に行われてもよい。例えば、最終仕上げ焼鈍工程S14の後に鉄損分布測定工程S30が行われてもよい。   For example, as shown in FIG. 8, the iron loss distribution measuring step S30 is performed after the insulating film forming step S16. Thereafter, the laser irradiation step S18 is performed based on the measurement result of the iron loss distribution. In the iron loss distribution measurement step S30, portions corresponding to the respective positions in the plate width direction of the steel plate are cut out as samples, and the iron loss is measured for each sample. The iron loss distribution measuring step S30 may be performed before the insulating film forming step S16. For example, the iron loss distribution measurement step S30 may be performed after the final finish annealing step S14.

各サンプルは、例えば、鋼板における圧延方向の先端側の所定の長さ(例えば1m)の部分を当該鋼板から切り取り、さらに、切り取られた当該先端側の部分を圧延方向に沿って短冊状に切り分けることによって得られる。このようにして得られる各サンプルは、鋼板の板幅方向における各位置と対応関係を有する。例えば、各サンプルは、図4に示す各レーザ照射装置106によりレーザビームを走査可能な範囲と対応してもよい。その場合、各サンプルの板幅方向の長さは、各レーザ照射装置106によりレーザビームを走査可能な幅と略一致してもよい。   Each sample, for example, cuts a portion of a predetermined length (for example, 1 m) on the front end side in the rolling direction of the steel plate from the steel plate, and further cuts the cut front end portion into a strip shape along the rolling direction. Can be obtained. Each sample thus obtained has a corresponding relationship with each position in the plate width direction of the steel plate. For example, each sample may correspond to a range in which a laser beam can be scanned by each laser irradiation device 106 shown in FIG. In that case, the length of each sample in the plate width direction may substantially coincide with the width in which each laser irradiation device 106 can scan the laser beam.

また、鉄損分布測定工程S30では、例えば、各サンプルについて、SST(Single Sheet Test)を行うことによって、鉄損が測定される。測定される鉄損の値は、具体的には、周波数が50Hz、最大磁束密度が1.7Tのときの鉄損値である。鉄損分布測定工程S30では、このように、鋼板の板幅方向における各位置での鉄損として、各サンプルについての鉄損を測定することによって、鋼板の板幅方向についての鉄損の分布を測定する。   Moreover, in iron loss distribution measurement process S30, an iron loss is measured by performing SST (Single Sheet Test) about each sample, for example. Specifically, the measured iron loss value is the iron loss value when the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T. In the iron loss distribution measuring step S30, the iron loss distribution in the sheet width direction of the steel sheet is thus measured by measuring the iron loss for each sample as the iron loss at each position in the sheet width direction of the steel sheet. taking measurement.

鉄損分布測定工程S30の後のレーザ照射工程S18では、具体的には、平行溝D1及び傾斜溝D2の板幅方向における配置を、傾斜溝D2の割合A(%)及び鋼板の板幅方向についての鉄損の分布に基づいて決定する。傾斜溝D2の割合A(%)は、上述したように、傾斜角度θに基づいて設定され得る。具体的には、傾斜溝D2の割合A(%)は、近似式(1)のように設定され得る。例えば、傾斜溝D2の割合A(%)が50%であり、サンプルが10個得られた場合、鋼板の板幅方向において、鉄損についての上位5個のサンプルに対応する位置に平行溝D1を配置し、鉄損についての下位5個のサンプルに対応する位置に傾斜溝D2を配置する(なお、ここでいう上位とは、鉄損の測定値が高い、即ち、磁化する際のエネルギー効率についての性能が悪く、当該性能が劣位にあることを示しており、下位とはその逆であることを示している)。   In the laser irradiation step S18 after the iron loss distribution measuring step S30, specifically, the arrangement of the parallel grooves D1 and the inclined grooves D2 in the plate width direction is determined by the ratio A (%) of the inclined grooves D2 and the plate width direction of the steel plate. Determine based on the distribution of iron loss. The ratio A (%) of the inclined groove D2 can be set based on the inclination angle θ as described above. Specifically, the ratio A (%) of the inclined groove D2 can be set as approximate expression (1). For example, when the ratio A (%) of the inclined groove D2 is 50% and 10 samples are obtained, the parallel grooves D1 are located at positions corresponding to the top five samples for iron loss in the sheet width direction of the steel sheet. And the inclined grooves D2 are arranged at positions corresponding to the lower five samples of iron loss (the upper term here means that the measured value of the iron loss is high, that is, the energy efficiency at the time of magnetization) The performance is poor, indicating that the performance is inferior, and the lower order is the opposite).

また、レーザ照射工程S18では、平行溝D1及び傾斜溝D2の板幅方向における配置を、鋼板の割れをより確実に抑制する観点から、2つの平行溝D1が互いに隣接しないように、決定してもよい。なお、このような場合において、当該鋼板の板幅方向において鉄損が比較的大きい部分の一部に傾斜溝D2が形成されてもよい。また、絶縁被膜形成工程S20の後工程として、方向性電磁鋼板10を圧延方向に沿って切断することによって、所定の幅を有する複数の鋼板を成形する切断工程が行われる場合がある。そのような場合において、レーザ照射工程S18では、平行溝D1及び傾斜溝D2の板幅方向における配置を、切断工程による分割後の所定の幅を有する各鋼板に形成される溝が平衡溝D1のみにならないように、決定してもよい。それにより、切断工程による分割後の各鋼板の割れをより確実に抑制することができる。なお、このような場合において、当該鋼板の板幅方向において鉄損が比較的大きい部分の一部に傾斜溝D2が形成されてもよい。   In the laser irradiation step S18, the arrangement of the parallel grooves D1 and the inclined grooves D2 in the plate width direction is determined so that the two parallel grooves D1 are not adjacent to each other from the viewpoint of more reliably suppressing cracking of the steel plate. Also good. In such a case, the inclined groove D2 may be formed in a part of a portion where the iron loss is relatively large in the plate width direction of the steel plate. Moreover, the cutting process which shape | molds the some steel plate which has a predetermined | prescribed width | variety may be performed by cut | disconnecting the directionality electromagnetic steel plate 10 along a rolling direction as a post process of insulating-film formation process S20. In such a case, in the laser irradiation step S18, the parallel grooves D1 and the inclined grooves D2 are arranged in the plate width direction, and the grooves formed in each steel plate having a predetermined width after the cutting step are only balanced grooves D1. You may decide so that it may not become. Thereby, the crack of each steel plate after the division | segmentation by a cutting process can be suppressed more reliably. In such a case, the inclined groove D2 may be formed in a part of a portion where the iron loss is relatively large in the plate width direction of the steel plate.

<実施例>
上述した本実施形態に係る方向性電磁鋼板の有効性を確認するための実施例について説明する。
<Example>
Examples for confirming the effectiveness of the grain-oriented electrical steel sheet according to the present embodiment described above will be described.

本実施例に係る方向性電磁鋼板は、以下のように製造されている。
まず、Si;3.0質量%、C;0.05質量%、Mn;0.1質量%、酸可溶性Al;0.02質量%、N;0.01質量%、S;0.01質量%、P;0.02質量%、残部がFe及び不可避不純物、といった組成のスラブを準備した。このスラブに対して、1280℃で熱間圧延を実施し、厚さ2.3mmの熱間圧延材を製出した。次に、熱間圧延材に対して、1000℃×1分の条件で熱処理を行った。熱処理後に酸洗処理を施した上で冷間圧延を実施し、厚さ0.23mmの冷間圧延材を製出した。この冷間圧延材に対して、800℃×2分の条件で脱炭焼鈍を実施した。次に、脱炭焼鈍後の冷間圧延材の両面に、マグネシアを主成分とする焼鈍分離材を塗布した。そして、焼鈍分離材を塗布した冷間圧延材をコイル状に巻き取った状態で、バッチ式炉に装入し、1200℃×20時間の条件で仕上げ焼鈍を実施した。これにより、表面にグラス被膜が形成された鋼板地鉄(鋼板本体12)を製出した。次に、グラス被膜14の上に、リン酸アルミニウムからなる絶縁材を塗布、焼き付け(850℃×1分)し、1回目の絶縁被膜を形成した。
The grain-oriented electrical steel sheet according to this example is manufactured as follows.
First, Si: 3.0% by mass, C: 0.05% by mass, Mn: 0.1% by mass, acid-soluble Al: 0.02% by mass, N: 0.01% by mass, S: 0.01% by mass %, P; 0.02 mass%, and a slab having a composition of the balance being Fe and inevitable impurities was prepared. The slab was hot rolled at 1280 ° C. to produce a hot rolled material having a thickness of 2.3 mm. Next, heat treatment was performed on the hot-rolled material under conditions of 1000 ° C. × 1 minute. After the heat treatment, the steel sheet was pickled and then cold rolled to produce a cold rolled material having a thickness of 0.23 mm. The cold-rolled material was decarburized and annealed under conditions of 800 ° C. × 2 minutes. Next, the annealing separation material which has a magnesia as a main component was apply | coated to both surfaces of the cold-rolled material after decarburization annealing. And the cold rolled material which apply | coated the annealing separation material was charged in the batch type furnace in the state wound up in the shape of a coil, and finish annealing was implemented on the conditions of 1200 degreeC x 20 hours. Thereby, the steel plate base iron (steel plate main body 12) in which the glass film was formed on the surface was produced. Next, an insulating material made of aluminum phosphate was applied onto the glass coating 14 and baked (850 ° C. × 1 minute) to form a first insulating coating.

次に、グラス被膜14及び絶縁被膜が形成された鋼板本体12に対して、レーザビームを照射し、鋼板本体12の表面に溝を形成した。例えば、図6に示すように、平行溝D1と傾斜溝D2が、板幅方向において混在するように形成される。   Next, the steel plate body 12 on which the glass coating 14 and the insulating coating were formed was irradiated with a laser beam to form grooves on the surface of the steel plate body 12. For example, as shown in FIG. 6, the parallel grooves D1 and the inclined grooves D2 are formed so as to be mixed in the plate width direction.

ここで、レーザ照射装置としては、図4に示すレーザ照射装置106A、106Bを用いた。照射条件としては、レーザビーム強度を1000W、ビーム走査速度を30m/s、照射ピッチを3mmとした。また、レーザビームの形状は楕円形状であり、ビーム径の圧延方向は0.1mmであり、ビーム径の走査方向は0.3mmである。かかる照射条件により、幅が50μmで、深さが20μmの溝が形成された。   Here, laser irradiation apparatuses 106A and 106B shown in FIG. 4 were used as the laser irradiation apparatuses. As irradiation conditions, the laser beam intensity was 1000 W, the beam scanning speed was 30 m / s, and the irradiation pitch was 3 mm. The shape of the laser beam is elliptical, the rolling direction of the beam diameter is 0.1 mm, and the scanning direction of the beam diameter is 0.3 mm. Under such irradiation conditions, a groove having a width of 50 μm and a depth of 20 μm was formed.

次に、溝が形成された鋼板本体12に対して、2回目の絶縁被膜を形成した。これにより、図1に示すような方向性電磁鋼板10が製造される。   Next, a second insulating film was formed on the steel plate body 12 in which the grooves were formed. Thereby, the grain-oriented electrical steel sheet 10 as shown in FIG. 1 is manufactured.

そして、本実施例では、傾斜溝の傾斜角度と、傾斜溝の割合とが異なる方向性電磁鋼板10を製造し、製造した方向性電磁鋼板10を測定することで、図9〜図12に示すような測定結果を得た。   And in a present Example, it shows in FIGS. 9-12 by manufacturing the directional electromagnetic steel plate 10 from which the inclination angle of an inclination groove | channel, and the ratio of an inclination groove differ, and measuring the manufactured directional electromagnetic steel plate 10 The measurement result was obtained.

図9は、溝の傾斜角度と、鋼板の繰り返し曲げ平均回数との関係の一例を示すグラフである。グラフの横軸は溝の傾斜角度を示し、グラフの縦軸は鋼板の繰り返し曲げ平均回数を示す。ここで、繰り返し曲げ平均回数とは、鋼板の曲げ試験を行った際に鋼板が割れずに繰り返して曲げを行える平均回数を意味する。図9のグラフを見ると分かるように、溝の傾斜角度が0度の場合(すなわち、図5に示すように溝が板幅方向に平行な場合)には、繰り返し曲げ平均回数は0.5回であり、鋼板が割れやすい結果となった。一方で、溝の傾斜角度が大きくなるにつれて、繰り返し曲げ平均回数が多くなる傾向を示す。   FIG. 9 is a graph showing an example of the relationship between the groove inclination angle and the average number of repeated bending of the steel sheet. The horizontal axis of the graph shows the inclination angle of the groove, and the vertical axis of the graph shows the average number of repeated bending of the steel sheet. Here, the average number of repeated bending means the average number of times that the steel sheet can be repeatedly bent without cracking when the steel sheet is subjected to a bending test. As can be seen from the graph of FIG. 9, when the inclination angle of the groove is 0 degree (that is, when the groove is parallel to the plate width direction as shown in FIG. 5), the average number of repeated bendings is 0.5. The result was that the steel plate was easily broken. On the other hand, as the inclination angle of the groove increases, the average number of repeated bending tends to increase.

図9のグラフを見ると、溝の傾斜角度が15度以上の場合には、溝の傾斜角度が15度未満の場合に比べて、繰り返し曲げ平均回数の増加度合いが大きくなっている。なお、繰り返し曲げ平均回数が3回以上であれば、巻鉄芯の製造時の鋼板の割れを有効に抑制できるので、溝の傾斜角度は15度以上が望ましい。ただし、溝の傾斜角度は20度以上であることがより望ましく、かかる場合には繰り返し曲げ平均回数が7回となり、鋼板の割れをより確実に防止できる。   As can be seen from the graph of FIG. 9, when the groove inclination angle is 15 degrees or more, the degree of increase in the average number of repeated bendings is larger than when the groove inclination angle is less than 15 degrees. If the average number of repeated bendings is 3 times or more, it is possible to effectively suppress the cracking of the steel sheet during the production of the wound iron core, so the groove inclination angle is preferably 15 degrees or more. However, it is more desirable that the inclination angle of the groove is 20 degrees or more. In such a case, the average number of repeated bending is 7 times, and the cracking of the steel sheet can be more reliably prevented.

ところで、溝を板幅方向に対して交差する方向に形成した場合には、磁極の発生が減少するため、鉄損改善の効果が低下してしまう。   By the way, when the grooves are formed in a direction intersecting the plate width direction, the generation of magnetic poles is reduced, and the effect of improving the iron loss is reduced.

図10は、溝の傾斜角度と、鉄損改善率との関係の一例を示すグラフである。グラフの横軸は溝の傾斜角度を示し、グラフの縦軸は鉄損改善率を示す。図10のグラフを見ると分かるように、溝の傾斜角度が大きくなるにつれて、鉄損改善率が低下する傾向を示している。特に、溝の傾斜角度が20度より大きいと鉄損改善率が大きく低下するので、溝の傾斜角度は20度以下が望ましい。   FIG. 10 is a graph showing an example of the relationship between the groove inclination angle and the iron loss improvement rate. The horizontal axis of the graph indicates the groove inclination angle, and the vertical axis of the graph indicates the iron loss improvement rate. As can be seen from the graph of FIG. 10, the iron loss improvement rate tends to decrease as the groove inclination angle increases. In particular, if the groove inclination angle is greater than 20 degrees, the iron loss improvement rate is greatly reduced. Therefore, the groove inclination angle is desirably 20 degrees or less.

そこで、前述したように、方向性電磁鋼板10の曲げ加工の際の割れを防止しつつ、鉄損改善の効果の低下を抑制するために、傾斜溝だけを形成するのでは無く、板幅方向において平行溝D1と傾斜溝D2を混在するように形成することが望ましい。   Therefore, as described above, in order to suppress the reduction in the effect of iron loss improvement while preventing cracking during bending of the grain-oriented electrical steel sheet 10, not only the inclined grooves are formed, but in the plate width direction. It is desirable to form the parallel grooves D1 and the inclined grooves D2 in FIG.

図11は、傾斜溝の比率と、繰り返し曲げ平均回数との関係の一例を示すグラフである。グラフの横軸は傾斜溝の比率を示し、グラフの縦軸は繰り返し曲げ平均回数を示す。図11の測定で用いられた傾斜溝の傾斜角度は、20度である。図11のグラフを見ると分かるように、鋼板の割れを有効に抑制できる繰り返し曲げ平均回数の3回を超えるためには、傾斜角度が20度の傾斜溝の比率を約50%以上にすることが望ましい。すなわち、平行溝D1と傾斜溝D2を同じ割合だけ板幅方向に混在させる必要がある。   FIG. 11 is a graph showing an example of the relationship between the ratio of the inclined grooves and the average number of repeated bendings. The horizontal axis of the graph indicates the ratio of the inclined grooves, and the vertical axis of the graph indicates the average number of repeated bending. The inclination angle of the inclined groove used in the measurement of FIG. 11 is 20 degrees. As can be seen from the graph of FIG. 11, in order to exceed the average number of repeated bendings that can effectively suppress cracks in the steel sheet, the ratio of the inclined grooves with an inclination angle of 20 degrees should be about 50% or more. Is desirable. That is, it is necessary to mix the parallel grooves D1 and the inclined grooves D2 in the plate width direction by the same ratio.

図11では、傾斜角度が20度の傾斜溝について説明したが、他の傾斜角度の場合において、繰り返し曲げ平均回数が3回以上となるためには、図12に示すような傾斜溝の比率にする必要がある。   In FIG. 11, an inclined groove having an inclination angle of 20 degrees has been described. However, in the case of other inclination angles, in order for the average number of repeated bendings to be three or more, the ratio of the inclined grooves as shown in FIG. There is a need to.

図12は、傾斜溝の傾斜角度と、傾斜溝の比率との関係の一例を示すグラフである。グラフの横軸は傾斜溝の傾斜角度を示し、グラフの縦軸は傾斜溝の比率を示す。グラフを見ると分かるように、傾斜角度が大きくなるにつれて、傾斜溝の比率が小さくなる傾向を示す。図12の測定結果から、傾斜溝の傾斜角度θと割合Aとの関係を示す下記の近似式(1)が求められる。
割合A=−3.22×傾斜角度θ+110 ・・・(1)
FIG. 12 is a graph showing an example of the relationship between the inclination angle of the inclined grooves and the ratio of the inclined grooves. The horizontal axis of the graph indicates the inclination angle of the inclined groove, and the vertical axis of the graph indicates the ratio of the inclined groove. As can be seen from the graph, the ratio of the inclined grooves tends to decrease as the inclination angle increases. From the measurement result of FIG. 12, the following approximate expression (1) showing the relationship between the inclination angle θ of the inclined groove and the ratio A is obtained.
Ratio A = −3.22 × tilt angle θ + 110 (1)

なお、図9に測定結果が示される測定では、各傾斜角度について、溝を、板幅方向において繋がった一本の線状に、形成した。一方、図11及び図12に測定結果が示される測定では、平行溝D1及び傾斜溝Dを、互いに離れるように、板幅方向に沿って断続的に、形成した。溝の傾斜角度及び傾斜溝の比率が一致する場合であっても、板幅方向において繋がった一本の線状に溝を形成したときと、板幅方向に沿って断続的に溝を形成したときとで、繰り返し曲げ平均回数は異なり得る。ここで、図9に測定結果が示される測定は、傾斜溝の比率が100%の場合に相当する。例えば、このような測定結果である図9によれば、溝の傾斜角度が5度や10度の場合における繰り返し曲げ平均回数は、3回を下回っている。一方、図12によれば、溝の傾斜角度が5度や10度の場合における繰り返し曲げ平均回数は、傾斜溝の比率が所定の値以上のときに、3回を上回り得る。このように、板幅方向に沿って断続的に溝を形成することにより、板幅方向において繋がった一本の線状に溝を形成したときと比較して、繰り返し曲げ平均回数が多くなる場合がある。   In the measurement in which the measurement results are shown in FIG. 9, the grooves are formed in a single line connected in the plate width direction for each inclination angle. On the other hand, in the measurement whose measurement results are shown in FIGS. 11 and 12, the parallel grooves D1 and the inclined grooves D are formed intermittently along the plate width direction so as to be separated from each other. Even when the inclination angle of the groove and the ratio of the inclined groove coincide, when the groove is formed in a single line connected in the plate width direction, the groove is intermittently formed along the plate width direction. Sometimes the average number of repeated bends can be different. Here, the measurement whose measurement result is shown in FIG. 9 corresponds to the case where the ratio of the inclined grooves is 100%. For example, according to FIG. 9 which is such a measurement result, the average number of repeated bendings when the groove inclination angle is 5 degrees or 10 degrees is less than 3. On the other hand, according to FIG. 12, the average number of repeated bendings when the inclination angle of the grooves is 5 degrees or 10 degrees can exceed 3 times when the ratio of the inclined grooves is a predetermined value or more. In this way, when the groove is formed intermittently along the plate width direction, the average number of repeated bendings is increased compared to when the groove is formed in a single line connected in the plate width direction. There is.

<まとめ>
上述したように、本実施形態に係る方向性電磁鋼板10において、図6に示すように、延在方向が鋼板の板幅方向と平行に形成された平行溝D1と、延在方向が板幅方向と交差するように形成された傾斜溝D2とが、板幅方向において混在するように形成されている。
<Summary>
As described above, in the grain-oriented electrical steel sheet 10 according to this embodiment, as shown in FIG. 6, the extending direction is parallel to the sheet width direction of the steel sheet, and the extending direction is the sheet width. The inclined grooves D2 formed so as to intersect the direction are formed so as to be mixed in the plate width direction.

溝の延在方向が鋼板の曲げ加工時の曲げ方向と垂直な板幅方向と交差する傾斜溝D2を形成することで、方向性電磁鋼板の曲げ加工時の割れの発生を抑制できるが、鉄損改善の効果が低下する恐れがある。一方で、平行溝D1は、傾斜溝D2に比べて鉄損改善の効果が有利である。そこで、板幅方向において平行溝D1と傾斜溝D2を混在するように形成することで、方向性電磁鋼板10の曲げ加工の際の割れを防止しつつ、鉄損改善の効果の低下を抑制可能となる。   By forming the inclined groove D2 in which the groove extending direction intersects the sheet width direction perpendicular to the bending direction at the time of bending the steel sheet, it is possible to suppress the occurrence of cracks during bending of the grain-oriented electrical steel sheet. There is a risk that the effect of loss improvement will be reduced. On the other hand, the parallel groove D1 is more advantageous in improving the iron loss than the inclined groove D2. Therefore, by forming the parallel grooves D1 and the inclined grooves D2 together in the plate width direction, it is possible to prevent a reduction in the iron loss improvement effect while preventing cracking during the bending of the grain-oriented electrical steel sheet 10. It becomes.

特に、本実施形態では、溝の深さの大きさが溝の幅の大きさの0.2倍以上となるように、深く形成されている。溝が深いと曲げ加工の際に割れの発生が生じやすくなるが、上述したように平行溝D1と傾斜溝D2を板幅方向において混在するように形成することで、曲げ加工の際の鋼板の割れの発生を抑制できる効果が一層有効に発揮される。   In particular, in the present embodiment, the groove is formed deep so that the depth of the groove is 0.2 or more times the width of the groove. If the groove is deep, cracks are likely to occur during bending, but as described above, the parallel grooves D1 and the inclined grooves D2 are formed so as to be mixed in the plate width direction, so that The effect of suppressing the occurrence of cracks is more effectively exhibited.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10 方向性電磁鋼板
12 鋼板本体
14 グラス被膜
16 絶縁被膜
100 レーザ加工装置
102 レーザ発振器
104 伝送ファイバ
106A、106B レーザ照射装置
D1 平行溝
D2、D3 傾斜溝
DESCRIPTION OF SYMBOLS 10 Directional electrical steel sheet 12 Steel plate main body 14 Glass coating 16 Insulation coating 100 Laser processing apparatus 102 Laser oscillator 104 Transmission fiber 106A, 106B Laser irradiation apparatus D1 Parallel groove D2, D3 Inclined groove

Claims (7)

鋼板の搬送方向と交差する方向にレーザビームを照射して、前記搬送方向に所定間隔で溝を形成する工程を含む方向性電磁鋼板の製造方法であって、
延在方向が前記鋼板の板幅方向と平行に形成された第1溝と、延在方向が前記板幅方向と交差するように形成された第2溝とを、前記板幅方向において混在するように形成することを特徴とする、方向性電磁鋼板の製造方法。
A method for producing a grain-oriented electrical steel sheet comprising a step of irradiating a laser beam in a direction intersecting a conveying direction of a steel sheet and forming grooves at a predetermined interval in the conveying direction,
A first groove formed so that the extending direction is parallel to the plate width direction of the steel sheet and a second groove formed so that the extending direction intersects the plate width direction are mixed in the plate width direction. A method for producing a grain-oriented electrical steel sheet, characterized in that it is formed as described above.
請求項1に記載の方向性電磁鋼板の製造方法において、
前記板幅方向に沿って、レーザビームを照射する第1照射部及び第2照射部が配置されており、
前記第1照射部によって前記第1溝を形成し、前記第2照射部によって前記第2溝を形成することを特徴とする、方向性電磁鋼板の製造方法。
In the manufacturing method of the grain-oriented electrical steel sheet according to claim 1,
A first irradiation unit and a second irradiation unit for irradiating a laser beam are arranged along the plate width direction,
The method for producing a grain-oriented electrical steel sheet, wherein the first groove is formed by the first irradiation unit, and the second groove is formed by the second irradiation unit.
請求項1又は2に記載の方向性電磁鋼板の製造方法において、
前記第1溝と前記第2溝を、前記板幅方向において交互に形成することを特徴とする、方向性電磁鋼板の製造方法。
In the manufacturing method of the grain-oriented electrical steel sheet according to claim 1 or 2,
The method for producing a grain-oriented electrical steel sheet, wherein the first groove and the second groove are alternately formed in the plate width direction.
請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法において、
前記第1溝と前記第2溝のうちの前記第2溝の割合Aは、前記第2溝と前記板幅方向との成す角度を角度θとした場合に、下記の式(1)を満たすことを特徴とする、方向性電磁鋼板の製造方法。
割合A=−3.22×角度θ+110 ・・・(1)
In the manufacturing method of the grain-oriented electrical steel sheet according to any one of claims 1 to 3,
The ratio A of the second groove of the first groove and the second groove satisfies the following formula (1) when the angle formed between the second groove and the plate width direction is an angle θ. A method for producing a grain-oriented electrical steel sheet, comprising:
Ratio A = −3.22 × angle θ + 110 (1)
請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法において、
前記レーザビームを照射する工程より前に、前記鋼板の前記板幅方向についての鉄損の分布を測定する工程をさらに含み、
前記板幅方向において前記鉄損が比較的大きい部分に前記第1溝を優先的に形成し、前記板幅方向において前記鉄損が比較的小さい部分に前記第2溝を優先的に形成する、
方向性電磁鋼板の製造方法。
In the manufacturing method of the grain-oriented electrical steel sheet according to any one of claims 1 to 4,
Before the step of irradiating the laser beam, further comprising the step of measuring the distribution of iron loss in the plate width direction of the steel plate,
Preferentially forming the first groove in a portion where the iron loss is relatively large in the plate width direction, and preferentially forming the second groove in a portion where the iron loss is relatively small in the plate width direction;
A method for producing grain-oriented electrical steel sheets.
請求項1〜5のいずれか1項に記載の方向性電磁鋼板の製造方法において、
前記溝の深さの大きさは、前記溝の幅の大きさの0.2倍以上であることを特徴とする、方向性電磁鋼板の製造方法。
In the manufacturing method of the grain-oriented electrical steel sheet according to any one of claims 1 to 5,
The method for producing a grain-oriented electrical steel sheet, wherein the depth of the groove is 0.2 times or more the width of the groove.
鋼板の搬送方向と交差する方向にレーザビームが照射されて、前記搬送方向に所定間隔で形成された溝を有する方向性電磁鋼板であって、
延在方向が前記鋼板の板幅方向と平行に形成された第1溝と、延在方向が前記板幅方向と交差するように形成された第2溝とが、前記板幅方向において混在するように形成されていることを特徴とする、方向性電磁鋼板。
A grain-oriented electrical steel sheet having grooves formed at predetermined intervals in the transport direction by being irradiated with a laser beam in a direction intersecting the transport direction of the steel sheet,
A first groove formed so that the extending direction is parallel to the plate width direction of the steel sheet and a second groove formed so that the extending direction intersects the plate width direction are mixed in the plate width direction. A grain-oriented electrical steel sheet characterized by being formed as described above.
JP2016170874A 2016-09-01 2016-09-01 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet Active JP6838321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016170874A JP6838321B2 (en) 2016-09-01 2016-09-01 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016170874A JP6838321B2 (en) 2016-09-01 2016-09-01 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2018035412A true JP2018035412A (en) 2018-03-08
JP6838321B2 JP6838321B2 (en) 2021-03-03

Family

ID=61565434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016170874A Active JP6838321B2 (en) 2016-09-01 2016-09-01 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6838321B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760745A4 (en) * 2018-03-30 2021-01-06 Baoshan Iron & Steel Co., Ltd. Heat-resistant magnetic domain refined grain-oriented silicon steel and manufacturing method therefor
JP2021025072A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP2021025073A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819440A (en) * 1981-07-24 1983-02-04 Nippon Steel Corp Method for improving watt loss characteristic of electromagnetic steel pipe
JPH06136449A (en) * 1992-10-23 1994-05-17 Kawasaki Steel Corp Production of low iron loss grain-oriented silicon steel sheet
JPH06299244A (en) * 1993-04-12 1994-10-25 Kawasaki Steel Corp Manufacture of silicon steel sheet having excellent magnetic characteristic
JP2012057232A (en) * 2010-09-10 2012-03-22 Jfe Steel Corp Grain oriented magnetic steel sheet and production method therefor
JP2013036121A (en) * 2010-09-09 2013-02-21 Nippon Steel & Sumitomo Metal Corp Method for manufacturing grain-oriented electromagnetic steel sheet
WO2014073599A1 (en) * 2012-11-08 2014-05-15 新日鐵住金株式会社 Laser processing device and laser radiation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819440A (en) * 1981-07-24 1983-02-04 Nippon Steel Corp Method for improving watt loss characteristic of electromagnetic steel pipe
JPH06136449A (en) * 1992-10-23 1994-05-17 Kawasaki Steel Corp Production of low iron loss grain-oriented silicon steel sheet
JPH06299244A (en) * 1993-04-12 1994-10-25 Kawasaki Steel Corp Manufacture of silicon steel sheet having excellent magnetic characteristic
JP2013036121A (en) * 2010-09-09 2013-02-21 Nippon Steel & Sumitomo Metal Corp Method for manufacturing grain-oriented electromagnetic steel sheet
JP2012057232A (en) * 2010-09-10 2012-03-22 Jfe Steel Corp Grain oriented magnetic steel sheet and production method therefor
WO2014073599A1 (en) * 2012-11-08 2014-05-15 新日鐵住金株式会社 Laser processing device and laser radiation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760745A4 (en) * 2018-03-30 2021-01-06 Baoshan Iron & Steel Co., Ltd. Heat-resistant magnetic domain refined grain-oriented silicon steel and manufacturing method therefor
JP2021516725A (en) * 2018-03-30 2021-07-08 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. Heat-resistant magnetic domain subdivision type directional silicon steel and its manufacturing method
JP7231642B2 (en) 2018-03-30 2023-03-01 宝山鋼鉄股▲ふん▼有限公司 Heat-resistant magnetic domain refining type grain-oriented electrical steel and its manufacturing method
US11633809B2 (en) 2018-03-30 2023-04-25 Baoshan Iron & Steel Co., Ltd. Grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
JP2021025072A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP2021025073A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP7277755B2 (en) 2019-08-01 2023-05-19 日本製鉄株式会社 Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for producing wound iron core
JP7372520B2 (en) 2019-08-01 2023-11-01 日本製鉄株式会社 Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for manufacturing wound iron core

Also Published As

Publication number Publication date
JP6838321B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6455593B2 (en) Oriented electrical steel sheet
US9659693B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5234222B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2016171129A1 (en) Oriented electromagnetic steel sheet
JP6638599B2 (en) Wound iron core and method of manufacturing the wound iron core
US9607744B2 (en) Laser processing apparatus and laser irradiation method
JP7010311B2 (en) Directional electrical steel sheet
WO2016171117A1 (en) Oriented electromagnetic steel sheet
JP6838321B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
RU2547377C2 (en) Fabrication of textured steel sheet
CN111742068B (en) Grain-oriented electromagnetic steel sheet
JP7027923B2 (en) Manufacturing method of grain-oriented electrical steel sheet, rolled iron core, grain-oriented electrical steel sheet, and manufacturing method of rolled iron core
JP7277755B2 (en) Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for producing wound iron core
JP7406064B2 (en) Method for manufacturing grain-oriented electrical steel sheet and method for manufacturing wound iron core
JPS61248507A (en) Method for improvement in magnetic properties of amorphous alloy stacked core

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R151 Written notification of patent or utility model registration

Ref document number: 6838321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151