JPH05247538A - Manufacture of low iron loss grain-oriented electrical steel sheet - Google Patents

Manufacture of low iron loss grain-oriented electrical steel sheet

Info

Publication number
JPH05247538A
JPH05247538A JP31701391A JP31701391A JPH05247538A JP H05247538 A JPH05247538 A JP H05247538A JP 31701391 A JP31701391 A JP 31701391A JP 31701391 A JP31701391 A JP 31701391A JP H05247538 A JPH05247538 A JP H05247538A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
iron loss
subjected
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31701391A
Other languages
Japanese (ja)
Inventor
Kazuo Hirase
和雄 平世
Kishio Mochinaga
季志雄 持永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31701391A priority Critical patent/JPH05247538A/en
Publication of JPH05247538A publication Critical patent/JPH05247538A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a low iron loss grain-oriented electrical steel sheet by forming grooves to be imparted to the surface of a steel sheet in such a manner it is not executed after finish annealing, but it is directly formed on a cold rolled sheet by a simple method. CONSTITUTION:This method is characterized in that a grain oriented silicon steel sheet in which a slab contg., by weight, 2.0 to 4.5% Si is subjected to hot rolling, is annealed according to necessary and is subjected to cold rolling for one or two times including process annealing to regulate its sheet thickness into a final one, which is then subjected to decarburizing treatment including primary recrystallization annealing and is subjected to finish annealing, on the cold rolled steel sheet after the final cold rolling, by forming grooves which are not disappeared even after the following final treating stage in a direction cross to the rolling direction preferably at a depth of 5 to 50% of the sheet thickness in a linear or dotted shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高磁束密度で、しかも鉄
損値が極めて低い一方向性電磁鋼板の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having a high magnetic flux density and an extremely low iron loss value.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は変圧器やその他の電
気機器の鉄心として用いられ、磁束密度を高くすること
は勿論であるが、最近の資源、環境問題から派生する省
エネルギー化の情勢からも鉄損値を一層低くすることが
要請される。磁束密度や鉄損を向上させるには、よく知
られているように、二次再結晶粒の(110)[00
1]方位の集合組織、即ち所謂ゴス方位の集積度を高め
ればよいのであるが、集積度が高くなる程結晶粒も大き
くなり、その結果磁区幅も大きくなって、鉄損とくに渦
電流損が増大することになる。従って、これだけで相対
的に鉄損特性の向上を図ることはそれ程期待されなかっ
た。
2. Description of the Related Art Unidirectional electrical steel sheets are used as iron cores for transformers and other electric equipment to increase the magnetic flux density, but due to the recent trend of energy saving resulting from resource and environmental problems. Is required to further lower the iron loss value. As is well known, in order to improve magnetic flux density and iron loss, secondary recrystallized grains (110) [00
1] The texture of the orientation, that is, the so-called Goss orientation, should be increased in the degree of integration. The higher the degree of integration, the larger the crystal grains, and the larger the magnetic domain width. Will increase. Therefore, it has not been so much expected to improve the iron loss characteristics relatively.

【0003】そのため、高磁束密度一方向性電磁鋼板の
鉄損を向上させるために磁区を細分化する方法が開発さ
れ、多くの提案が見られる。例えば特公昭58−59
68号公報では仕上焼鈍済みの鋼板表面に冷間圧延方向
とクロスする方向に線状微小歪みを罫書き法で導入する
方法や、特公昭57−2252号公報には同鋼板面上
にレーザを照射して線状歪みを導入する方法、および
特公昭62−53579号公報では仕上げ焼鈍後絶縁被
膜処理した鋼板の地鉄部分に深さ5μm超の溝を形成
し、その後熱処理することが開示されている。さらに最
近では、特開昭63−76819号公報には、フォル
ステライトを有する仕上焼鈍済み鋼板の表面に線状溝
を、その周囲に歪取り焼鈍時微細再結晶粒群を生成させ
る歪みを存在させないで導入すること、そしてこの線状
溝は、フォルステライト被膜をレーザ或いはナイフ等の
機械的手段で線状に除去するか、予め局所的にフォルス
テライト被覆を生成させないようにし、電解または化学
エッチングを施して地鉄に形成することを開示してい
る。また特開平2−50918号公報では、フォルス
テライト被膜を有する仕上焼鈍済み鋼板を曲げ応力を加
えた状態で突起付きロールに巻回して鋼板表面の被膜を
局所的に除去し、電解エッチングして線状溝を形成する
方法が提案されている。
Therefore, a method for subdividing magnetic domains has been developed and many proposals have been made in order to improve the iron loss of a high magnetic flux density unidirectional electrical steel sheet. For example, Japanese Patent Publication Sho 58-59
In Japanese Patent No. 68, a method of introducing a linear microstrain on the surface of a steel sheet that has been subjected to finish annealing in a direction crossing the cold rolling direction by a scoring method, and in Japanese Patent Publication No. 57-2252, a laser is applied to the surface of the steel sheet. A method of irradiating to introduce a linear strain, and Japanese Patent Publication No. 62-53579 discloses that a groove having a depth of more than 5 μm is formed in a base metal portion of a steel sheet subjected to an insulating film treatment after finish annealing and then heat treatment. ing. More recently, in Japanese Patent Laid-Open No. 63-76819, linear grooves are formed on the surface of a finish-annealed steel sheet having forsterite, and there is no strain around the grooves to generate fine recrystallized grains during strain relief annealing. And the linear grooves remove the forsterite coating linearly by a mechanical means such as a laser or a knife, or prevent the forsterite coating from being locally generated beforehand, and electrolytic or chemical etching is performed. It is disclosed that this is applied to form a base steel. Further, in Japanese Patent Application Laid-Open No. 2-50918, a finish-annealed steel sheet having a forsterite coating film is wound around a roll with protrusions in a state where bending stress is applied to locally remove the coating film on the surface of the steel sheet, and electrolytically etched to form a wire. A method of forming a groove is proposed.

【0004】なお、前記特開昭63−76819号公報
には、前述した公報,記載の罫書き法やレーザ法
では歪み導入後の歪み取り焼鈍で鉄損が劣化すると指摘
する。また、前記公報のように仕上げ焼鈍済み鋼板に
局部的に歪みを導入して焼鈍時に生成する微細再結晶群
を利用する方法では、高温焼鈍時その微細再結晶粒が成
長し鉄損劣化を招くため、これを解決することを目的に
することが記述されている。また、特開平2−5091
8号公報には前記公報の方法では工業生産の安定性
に乏しく、コスト増になり、鉄損値も安定して得られな
いことを明らかにしている。
In the above-mentioned Japanese Patent Laid-Open No. 63-76819, it is pointed out that in the scoring method and the laser method described above, the iron loss is deteriorated by the strain relief annealing after introducing the strain. Further, in the method of utilizing the fine recrystallized group generated at the time of annealing by locally introducing strain to the finish annealed steel sheet as in the above publication, the fine recrystallized grains grow at the time of high temperature annealing to cause iron loss deterioration. Therefore, it is described that the purpose is to solve this. In addition, JP-A-2-5091
No. 8 discloses that the method of the above publication has poor stability in industrial production, increases cost, and cannot obtain a stable iron loss value.

【0005】[0005]

【発明が解決しようとする課題】上記各公報特に,
には従来法の問題点が指摘され、それらの解決手法が説
明されているが、いずれの公報記載の発明も仕上げ焼鈍
済みの鋼板面に線状の歪み或いは溝を形成するものであ
り、特に,公報記載の発明では、フォルステライト
被膜の局部的な除去或いは不生成と、この部分にエッチ
ングによる溝形成という複雑な手段工程が必要であるた
め、生産コストの増大を招来する。また、これらの手段
が安定して溝を形成できるとは限らず、さらに被膜に影
響を与えないで安定したエッチング方法とするには充分
な管理が必要であり、これも処理工程を複雑にする。本
発明はこのような従来の問題点を解消するものであっ
て、鋼板表面に付与する溝を仕上げ焼鈍後に行うのでな
く、冷延板に直接、簡易な方法で形成することにより、
低鉄損一方向性電磁鋼板の製造方法を提供することを目
的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In, the problems of the conventional method are pointed out, and their solution methods are explained, but the invention described in any of the publications forms a linear strain or groove on the steel sheet surface after finish annealing, In the invention described in the gazette, since a complicated means step of locally removing or not forming the forsterite coating and forming a groove in this portion by etching is required, the production cost is increased. Further, these means are not always capable of stably forming a groove, and further, sufficient control is required for a stable etching method without affecting the coating film, which also complicates the treatment process. .. The present invention is to eliminate such conventional problems, rather than performing the grooves to be applied to the steel sheet surface after finish annealing, directly on the cold rolled sheet, by forming by a simple method,
An object is to provide a method for manufacturing a low iron loss unidirectional electrical steel sheet.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために以下の構成を要旨とする。すなわち、2.0
〜4.5重量%のSiを含有するスラブを熱間圧延し、
得られた熱延板に、必要に応じ焼鈍を施してから一回ま
たは中間焼鈍を挟んだ2回以上の冷間圧延を行って最終
板厚とし、次いで一次再結晶焼鈍を含む脱炭処理をして
から仕上げ焼鈍を施し、これらの工程を含む一連の一方
向性電磁鋼板の製造方法において、最終冷間圧延後の冷
延鋼板に、その圧延方向と交差する方向に以降の最終処
理工程後においても消去しない溝を形成したことを特徴
とする低鉄損一方向性電磁鋼板の製造方法である。ま
た、前記溝の形状は連続或いは非連続の線状または点状
であり、その深さが板厚の2〜30%であることが好ま
しい。
In order to achieve the above object, the present invention has the following structures. That is, 2.0
Hot rolling a slab containing ~ 4.5 wt% Si,
The hot-rolled sheet thus obtained is annealed if necessary, and then cold-rolled once or twice or more with intermediate annealing to obtain a final sheet thickness, and then subjected to decarburizing treatment including primary recrystallization annealing. After that, finish annealing is performed, and in a series of unidirectional electrical steel sheet manufacturing methods including these steps, in the cold rolled steel sheet after the final cold rolling, after the final treatment step in the direction intersecting the rolling direction. In the method of manufacturing a low iron loss unidirectional electrical steel sheet, the groove is formed so as not to be erased. Further, it is preferable that the groove has a continuous or discontinuous linear or dot shape, and the depth thereof is 2 to 30% of the plate thickness.

【0007】以下に本発明を詳細に説明する。本発明は
通常の方法で鋳造した4.5%以下のSiを含有するス
ラブを熱間圧延して熱延板とし、この熱延板には必要に
より焼鈍を施した後冷間圧延を行う。冷間圧延は一回ま
たは中間焼鈍を挟んだ二回法で実施して最終板厚とす
る。最終板厚にした鋼板には湿水素中での脱炭および一
次再結晶焼鈍を施し、焼鈍分離剤を塗布後、仕上げ高温
焼鈍を行う。
The present invention will be described in detail below. In the present invention, a slab containing 4.5% or less of Si cast by a usual method is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet is annealed if necessary and then cold-rolled. Cold rolling is carried out once or by a double rolling method with intermediate annealing to obtain the final plate thickness. The steel sheet having the final thickness is subjected to decarburization in wet hydrogen and primary recrystallization annealing, and after applying an annealing separator, finishing high temperature annealing is performed.

【0008】本発明はこの様な主要工程を含む通常の一
方向性電磁鋼板の製造法を採用するが、この冷間圧延に
よって製品板厚とした冷延板の表面に、圧延方向と交差
する方向、即ち直交方向が好ましいがこれを基準にして
±45度までの許容範囲内に溝を形成する。
The present invention adopts a conventional method for producing a grain-oriented electrical steel sheet including such main steps. The cold-rolled sheet having a product sheet thickness obtained by this cold rolling intersects the rolling direction. The direction, that is, the orthogonal direction is preferable, but the groove is formed within an allowable range of ± 45 degrees with reference to this direction.

【0009】図1は溝Gを形成した冷延鋼板Sの断面を
示したものであり、図2に示すようにその溝深さdは板
厚tの1/3以下にするこことが好ましく、形成された
溝はそれ以降の工程で消去されない。
FIG. 1 shows a cross section of a cold rolled steel sheet S having a groove G formed therein. As shown in FIG. 2, the groove depth d is preferably 1/3 or less of the plate thickness t. The formed groove is not erased in the subsequent steps.

【0010】図2は溝深さと鉄損との関係を示す。すな
わち、Si:3.25%含有するスラブを、1340℃
に加熱後熱間圧延して2.5mmの熱延板とし、この熱延
板を焼鈍後冷間圧延し、0.23mmの製品厚みとした冷
延鋼板に、溝深さdが板厚比で0%(溝なし),1%,
2%,5%,30%,および40%となるようにV形溝
を溝付きロールで加工成形した。各溝深さのサンプルを
5コイルづつ作成し、湿水素中800℃で60秒の脱炭
焼鈍と、ひき続き一次再結晶処理を行った後、MgOを
主成分焼鈍分離剤を塗布してから乾燥させた。つづく高
温仕上げ焼鈍を1200℃で20時間行ってから、絶縁
被覆処理後800℃×2時間の歪取り焼鈍を行い、その
後の鉄損値を測定したものである。図から明らかのよう
に、溝なし(0%)の従来材に比較して深さ2%の溝付
き材は極めて優れた鉄損値を示すと共に30%材も良好
である。しかし40%材になると顕著な効果は見られな
い。それは溝深さが30%を超えると溝形成箇所で局部
的に磁束密度が向上することによる鉄損値の異常が生
じ、全体の鉄損値を悪化するものと考えられる。この結
果から本発明の冷延板に導入する溝深さが30%以下で
あれば、歪取り焼鈍後も磁区を細分化しており低鉄損に
できることが分かる。しかし、あまり浅い溝では磁区細
分効果が少ない。すなわち2%未満では鉄損値の顕著な
向上代が見られず、0.8w/kg超となることから、少な
くとも2%以上は必要となる。
FIG. 2 shows the relationship between groove depth and iron loss. That is, the slab containing Si: 3.25% is 1340 ° C.
After hot-rolling, the product is hot-rolled into a hot-rolled sheet of 2.5 mm, and the hot-rolled sheet is annealed and cold-rolled to give a product thickness of 0.23 mm. 0% (without groove), 1%,
The V-shaped groove was processed and formed with a grooved roll so as to be 2%, 5%, 30%, and 40%. Samples of 5 grooves each for each groove depth were prepared, decarburization annealed in wet hydrogen at 800 ° C. for 60 seconds, and subsequently subjected to primary recrystallization treatment, and then MgO was applied as a main component annealing separating agent. Dried. The subsequent high temperature finish annealing was performed at 1200 ° C. for 20 hours, and after the insulation coating treatment, strain relief annealing was performed at 800 ° C. for 2 hours, and then the iron loss value was measured. As is apparent from the figure, the grooved material having a depth of 2% exhibits an extremely excellent iron loss value and the 30% material is also good as compared with the conventional material having no groove (0%). However, no significant effect can be seen at 40%. It is considered that when the groove depth exceeds 30%, the iron loss value becomes abnormal due to the local increase of the magnetic flux density at the groove forming portion, and the overall iron loss value is deteriorated. From these results, it is understood that if the groove depth introduced into the cold rolled sheet of the present invention is 30% or less, the magnetic domains are subdivided even after the strain relief annealing, and the iron loss can be reduced. However, if the groove is too shallow, the effect of domain division is small. That is, if it is less than 2%, no significant improvement in iron loss value is observed, and if it exceeds 0.8 w / kg, at least 2% or more is necessary.

【0011】溝の幅(図1のw)は、これをあまり広く
すると磁束密度の低下が見られるので300μm以下と
するのが好ましい。また、隣接する溝の間隔は1〜20
mmの範囲にあればよく、特に2.5〜10mmが好まし
い。この様な溝は鋼板面に圧延方向と垂直方向或いはこ
の垂直方向を中心として90度の範囲に設ければよく、
溝の形成方法としては、例えば鋭利な刃物による罫書
き、歯車、砥石或いはウオータージェット等の機械的手
段、超音波やレーザ、EB、プラズマ等の高密度エネル
ギー、更には電解エッチング等の化学的手段など何れで
もよい。これらの方法は、例えば脱炭焼鈍工程において
アンコイラより焼鈍炉入側間で実施でき、冷延鋼板に形
成した溝は、V或いはU字状になり、その後の工程を経
て得た最終製品に前記形状の溝がそのまま残留する。そ
の結果磁区の細分が効果的に行われ鉄損を顕著に向上す
ることができる。
The width of the groove (w in FIG. 1) is preferably 300 μm or less because if the width is made too wide, the magnetic flux density decreases. The distance between adjacent grooves is 1 to 20.
It may be in the range of mm, and particularly preferably 2.5 to 10 mm. Such a groove may be provided on the steel plate surface in a direction perpendicular to the rolling direction or in a range of 90 degrees centering on this vertical direction,
The groove may be formed by, for example, scoring with a sharp blade, mechanical means such as gears, grindstones or water jets, high-density energy such as ultrasonic waves, lasers, EB, plasma, or chemical means such as electrolytic etching. Etc. These methods can be performed, for example, between the uncoiler and the annealing furnace in the decarburizing annealing step, the groove formed in the cold rolled steel sheet becomes V-shaped or U-shaped, and the final product obtained through the subsequent steps is subjected to the above-mentioned process. The groove of the shape remains as it is. As a result, the magnetic domains are effectively subdivided, and the iron loss can be significantly improved.

【0012】[0012]

【実施例】重量でC:0.075%,Si:3.25
%,Mn:0.07%,S:0.025%,Al:0.
027%,N:0.008%,Sn:0.10%,C
u:0.05%,残部実質的にFeよりなるスラブを1
380℃に加熱後熱間圧延を行い、2.3mm厚の熱延鋼
帯5コイルを製造した。これらの各コイルを1.6mmに
圧延した後1120℃で短時間の焼鈍を行い800℃か
ら常温まで急冷した。次いでこの焼鈍済み鋼板に冷間圧
延を施して最終板厚0.23mmの冷延板とし、脱炭焼鈍
ラインに移送した。脱炭焼鈍ライン入側の焼鈍炉直前
で、前記コイルの内の3コイルA,B,Cについて、溝
幅80μm,溝間隔5mmとなるような溝付きロールで、
溝深さ(溝深さ/板厚×100)が夫々1%,7%およ
び25%となるように連続的に圧下加工し、一方コイル
Dについては同様に35%、コイルEについては0%
(圧下加工なし)としてから、これらの各コイルを脱炭
焼鈍に付し鋼板Cを30ppm 以下に処理した後、MgO
を主成分とする焼鈍分離剤を塗布した。その後、上記5
コイルには1200℃×20時間の仕上げ焼鈍をを行っ
てから、表面に絶縁被膜を塗布して製品とし、更に、8
00℃×2時間の歪取り焼鈍を施した後、得られた鋼板
の磁気特性を測定した。測定結果を表1に示す。
EXAMPLE C: 0.075% by weight, Si: 3.25 by weight
%, Mn: 0.07%, S: 0.025%, Al: 0.
027%, N: 0.008%, Sn: 0.10%, C
u: 0.05%, 1 slab consisting essentially of Fe
After heating to 380 ° C., hot rolling was performed to manufacture a hot rolled steel strip 5 coil having a thickness of 2.3 mm. After rolling each of these coils to 1.6 mm, they were annealed at 1120 ° C. for a short time and rapidly cooled from 800 ° C. to room temperature. Next, this annealed steel sheet was subjected to cold rolling to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm, and transferred to a decarburization annealing line. Immediately before the annealing furnace on the entry side of the decarburizing annealing line, a grooved roll having a groove width of 80 μm and a groove interval of 5 mm for the three coils A, B and C among the coils,
Continuous rolling was performed so that the groove depth (groove depth / plate thickness × 100) was 1%, 7%, and 25%, respectively, while the coil D was 35% and the coil E was 0%.
(No reduction), then each of these coils was subjected to decarburization annealing to treat the steel plate C to 30 ppm or less, and then MgO
Was applied as an annealing separator. Then, above 5
The coil is subjected to finish annealing at 1200 ° C for 20 hours, and then the surface is coated with an insulating film to obtain a product.
After performing stress relief annealing at 00 ° C. for 2 hours, the magnetic properties of the obtained steel sheet were measured. The measurement results are shown in Table 1.

【0013】[0013]

【表1】 表1から明らかのように、本発明範囲で溝付き処理を実
施したコイルB,Cは、他のコイルA,D,Eに比較し
て大幅な鉄損値の向上が見られた。
[Table 1] As is clear from Table 1, in the coils B and C which were subjected to the grooved treatment within the scope of the present invention, the iron loss value was significantly improved as compared with the other coils A, D and E.

【0014】[0014]

【発明の効果】以上のように本発明によれば冷間圧延後
に鋼板に溝を形成することにより、最終製品の磁区を細
分化でき、高磁束密度一方向性電磁鋼板の鉄損をより一
層向上することができる。
As described above, according to the present invention, by forming grooves in the steel sheet after cold rolling, the magnetic domains of the final product can be subdivided, and the core loss of the high magnetic flux density unidirectional electrical steel sheet can be further improved. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溝を形成した冷延鋼板の断面を示す。FIG. 1 shows a cross section of a grooved cold-rolled steel sheet of the present invention.

【図2】本発明製品に形成した溝深さと鉄損との関係を
示す。
FIG. 2 shows the relationship between the groove depth formed in the product of the present invention and iron loss.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2.0〜4.5重量%のSiを含有する
スラブを熱間圧延し、得られた熱延板に、必要に応じ焼
鈍を施してから一回または中間焼鈍を挟んだ2回以上の
冷間圧延を行って最終板厚とし、次いで一次再結晶焼鈍
を含む脱炭処理をしてから仕上げ焼鈍を施し、これらの
工程を含む一連の一方向性電磁鋼板の製造方法におい
て、最終冷間圧延後の冷延鋼板に、その圧延方向と交差
する方向に溝を形成したことを特徴とする低鉄損一方向
性電磁鋼板の製造方法。
1. A slab containing Si in an amount of 2.0 to 4.5% by weight is hot-rolled, and the obtained hot-rolled sheet is annealed as required and then sandwiched once or by intermediate annealing. In a manufacturing method of a series of unidirectional electrical steel sheets including these steps, cold rolling is performed twice or more to obtain a final thickness, decarburization treatment including primary recrystallization annealing is performed, and then finish annealing is performed. A method for producing a low iron loss unidirectional electrical steel sheet, comprising forming grooves in a direction intersecting the rolling direction on the cold rolled steel sheet after the final cold rolling.
【請求項2】 溝の形状が連続或いは非連続の線状また
は点状であり、深さが板厚の2〜30%であることを特
徴とする請求項1記載の低鉄損一方向性電磁鋼板の製造
方法。
2. The low iron loss unidirectionality according to claim 1, wherein the shape of the groove is continuous or discontinuous linear or dot-like, and the depth is 2 to 30% of the plate thickness. Manufacturing method of electrical steel sheet.
JP31701391A 1991-11-29 1991-11-29 Manufacture of low iron loss grain-oriented electrical steel sheet Pending JPH05247538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31701391A JPH05247538A (en) 1991-11-29 1991-11-29 Manufacture of low iron loss grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31701391A JPH05247538A (en) 1991-11-29 1991-11-29 Manufacture of low iron loss grain-oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPH05247538A true JPH05247538A (en) 1993-09-24

Family

ID=18083443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31701391A Pending JPH05247538A (en) 1991-11-29 1991-11-29 Manufacture of low iron loss grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH05247538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369712C (en) * 2005-07-06 2008-02-20 东北大学 Method for manufacturing low-iron-loss cold-rolled orientation free silicon steel plate
WO2019151397A1 (en) 2018-01-31 2019-08-08 日本製鉄株式会社 Oriented electromagnetic steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197520A (en) * 1983-04-20 1984-11-09 Kawasaki Steel Corp Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JPS61149433A (en) * 1984-12-19 1986-07-08 アリゲニ− ラドラム ステイ−ル コ−ポレ−シヨン Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel
JPS62179105A (en) * 1986-02-03 1987-08-06 Nippon Steel Corp Manufacture of low iron loss unidirectional electromagnetic steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197520A (en) * 1983-04-20 1984-11-09 Kawasaki Steel Corp Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JPS61149433A (en) * 1984-12-19 1986-07-08 アリゲニ− ラドラム ステイ−ル コ−ポレ−シヨン Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel
JPS62179105A (en) * 1986-02-03 1987-08-06 Nippon Steel Corp Manufacture of low iron loss unidirectional electromagnetic steel plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369712C (en) * 2005-07-06 2008-02-20 东北大学 Method for manufacturing low-iron-loss cold-rolled orientation free silicon steel plate
WO2019151397A1 (en) 2018-01-31 2019-08-08 日本製鉄株式会社 Oriented electromagnetic steel sheet
KR20200092395A (en) 2018-01-31 2020-08-03 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
US11651878B2 (en) 2018-01-31 2023-05-16 Nippon Steel Corporation Grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
EP0202339B1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4120121B2 (en) Method for producing grain-oriented electrical steel sheet
WO2011162086A1 (en) Method for producing unidirectional electromagnetic steel sheet
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JPS60255926A (en) Manufacture of grain oriented electrical steel sheet low in iron loss
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JP2942074B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
US11459633B2 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JP3393218B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3541419B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH09268322A (en) Production of grain oriented silicon steel sheet with ultralow iron loss
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0432127B2 (en)
JPH04214819A (en) Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH0641640A (en) Manufacture of grain-oriented silicon steel with low core loss
JPH07268470A (en) Production of grain oriented silicon steel sheet with low iron loss
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960723