JPH0432127B2 - - Google Patents

Info

Publication number
JPH0432127B2
JPH0432127B2 JP61244053A JP24405386A JPH0432127B2 JP H0432127 B2 JPH0432127 B2 JP H0432127B2 JP 61244053 A JP61244053 A JP 61244053A JP 24405386 A JP24405386 A JP 24405386A JP H0432127 B2 JPH0432127 B2 JP H0432127B2
Authority
JP
Japan
Prior art keywords
cold rolling
annealing
hot
rolled
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61244053A
Other languages
Japanese (ja)
Other versions
JPS63100127A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61244053A priority Critical patent/JPS63100127A/en
Publication of JPS63100127A publication Critical patent/JPS63100127A/en
Publication of JPH0432127B2 publication Critical patent/JPH0432127B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、トランス等の鉄芯に用いられる鉄損
特性の優れた高磁束密度一方向性電磁鋼板の製造
方法に関するものである。 〔従来の技術〕 一方向性電磁鋼板は軟磁性材料として主にトラ
ンスその他の電気機器の鉄芯材料に使用されてい
るもので、励磁特性と鉄損特性が良好でなくては
ならない。励磁特性を表わす数値として通常B8
(磁場の強さ800A/mにおける磁束密度)を用
い、鉄損特性を表わす数値としてW17/50(50Hzで
1.7Tまで磁化させた時の1Kg当りの鉄損)を用
いている。 この一方向性電磁鋼板は通常二次再結晶現象を
利用して鋼板面に{110}面、圧延方向に〈001〉
軸をもつた組織を発達させることによつて得られ
ている。良好な磁気特性を得るためには磁化容易
軸である〈001〉軸を圧延方向に高度に揃えるこ
とが重要である。又板厚、固有抵抗、鋼板の純度
等も磁気特性に大きな影響を及ぼす。 一方近年のエネルギー価格の高騰を背景として
トランスメーカーは低鉄損トランス用素材への指
向を一段と強めている。低鉄損化の方策として近
年レーザー等を用いた磁区制御技術が開発され、
それに依つて鉄損特性が大幅に向上した。また製
品の板厚が薄いほど、磁束密度が高いほど磁区制
御技術の効果が大きい等の理由で、板厚が薄く高
磁束密度を有する製品を開発する必要性が高まつ
てきた。 高磁束密度化を計る有効な手段としてAlNを
インヒビターとして用い、圧下率80%超の最終強
圧下冷間圧延を行なう方法があるが、この方法
は、板厚を薄くすると二次再結晶が不安定化する
という問題がある。この問題を解決する方法とし
て、熱延板焼鈍を施し、次いで冷間圧延と中間焼
鈍を順次施した後80%超の最終強圧下冷間圧延を
施す方法が提案されている(米国特許第3632456
号明細書)。確かにこの方法を行なうと、板厚が
薄くなつた場合の二次再結晶の不安定化は緩和さ
れるが、磁束密度が低下するなどの原因で充分満
足できる鉄損特性は得られ難い。 鉄損特性の優れた高磁束密度を有する製品を板
厚の薄いものまで製造するにはこのように解決す
べき課題が残つている。またAlNをインヒビタ
ーとして利用する圧下率81〜95%の1回強圧下冷
間圧延による高磁束密度一方向性電磁鋼板の製造
に於て上記強圧下冷間圧延のパス間に時効処理を
施すことにより磁気特性が向上することが報告さ
れているが(特公昭54−13846号公報)、この技術
では鉄損特性が優れ高磁束密度を有する製品を、
例えば0.20mm以下の板厚の薄いものまで製造する
には十分でない。 〔発明が解決しようとする問題点〕 本発明はAlNを主インヒビターとして一方向
性電磁鋼板を製造する場合、特に薄手製品におい
て高い磁束密度を得ることが出来ず従つて良好な
鉄損特性を得難いという問題点を解決する方法を
提供するものである。 〔問題点を解決するための手段〕 本発明は、AlNを主インヒビターとし、珪素
鋼熱延板に熱延板焼鈍を施し、圧下率80%超〜95
%の強圧下最終冷間圧延を含む2回以上の冷間圧
延とその間に行なう中間焼鈍と最終冷間圧延後の
脱炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼
板を製造する方法において、上記熱延板焼鈍の急
冷と1回目の冷間圧延の間に鋼板を50〜300℃の
温度範囲で1分以上の時間保持することによつて
磁気特性の優れた一方向性電磁鋼板を製造する方
法を提供するものである。さらに上記方法に加え
て1回目の冷間圧延における複数パスのパス間の
少くとも1回に鋼板を50〜400℃の温度範囲で1
分以上の時間保持することによつて一層磁気特性
の優れた一方向性電磁鋼板を製造する方法を提供
するものである。 即ち、本発明者らは、AlNを主インヒビター
とし、珪素鋼熱延板に熱延板焼鈍、圧下率80%超
〜95%の強圧下最終冷間圧延を含む2回以上の冷
間圧延とその間に行なう中間焼鈍と最終冷間圧延
後の脱炭焼鈍、最終仕上焼鈍を順次施す製造法に
おいて、製品板厚が薄くなるに従つて高い磁束密
度が得難くなるという問題点を解決する方法を検
討した結果、熱延板焼鈍の急冷と1回目の冷間圧
延の間に鋼板を50〜300℃の温度範囲で1分以上
の時間保持することによつて例えば0.170mmのよ
うに板厚の薄いものでも高磁束密度が得られ、従
つて鉄損特性が一段と向上することを見い出し
た。また、さらに上記知見に加えて、1回目の冷
間圧延における複数パスのパス間の少くとも1回
に鋼板を50〜400℃の温度範囲で1分以上の時間
保持することによつて一層磁気特性が向上するこ
とを見い出した。この2つの知見は、従来の方法
の中に見いだすことができないまつたく新規なも
のである。 以下本発明を詳細に説明する。 本発明の出発素材である熱延板の成分について
は、Si:2.5〜4.0%、C:0.03〜0.10%、酸可溶性
Al:0.010〜0.065%、N:0.0010〜0.0150%、
Mn:0.02〜0.30%、S:0.005〜0.040%を含有す
る必要がある。 Siは4.0%を超すと脆化が激しくなるため冷間
圧延が困難となり好ましくない。一方2.5%未満
では電気抵抗が低く、良好な鉄損特性が得難い。 Cは0.03%未満では脱炭焼鈍以前でのγ量が極
めて少なくなつてしまい脱炭焼鈍後の金属組織が
不適切なものとなる。一方0.10%を超えると脱炭
不良となり好ましくない。 酸可溶性Al,Nは本発明において高磁束密度
を得るために必須の主インヒビターAlNを得る
ための基本成分であり、上記範囲を外れると二次
再結晶が不安定となるので酸可溶性Alは0.010〜
0.065%、Nは0.0010〜0.0150%とする。 Mn,SはインヒビターMnSを形成するために
必要な元素であり、上記範囲を外れると二次再結
晶が不安定となるのでMnは0.02〜0.30%、Sは
0.005〜0.040%と定める。 また他のインヒビター構成元素として公知であ
るSn,Sb,Cu,Cr,Se,As,Bi等を含有して
もよいことは勿論である。 本発明は上記成分を含有する珪素鋼熱延板を出
発材として、これに熱延板焼鈍、圧下率80%超〜
95%の強圧下最終冷間圧延を含む2回以上の冷間
圧延とその間に行なう中間焼鈍と最終冷間圧延後
の脱炭焼鈍、最終仕上焼鈍を順次施す工程を前提
としている。 以下、本発明の製造方法について説明する。ま
ず上記成分を有する熱延板に熱延板焼鈍を施す。
この焼鈍で熱延板は700〜1200℃に30秒〜30分間
保定され、しかる後300℃までは1℃/sec以上で
冷却される。 次に本発明の特徴である熱延板焼鈍の急冷と1
回目の冷間圧延の間の熱処理条件、及びその限定
理由を述べる。 熱延板焼鈍の急冷と1回目の冷間圧延の間に、
鋼板を50〜300℃の温度範囲で1分以上の時間保
持することが必要である。 1回目の冷間圧延時の変形組織を制御すること
によつて製品の磁気特性を向上させる目的で種々
の実験を行なつた結果、C,Nの状態を制御する
ことが極めて重要であることが推察された。そこ
で、この知見にもとずき熱延板焼鈍の急冷と1回
目の冷間圧延の間に種々の条件で熱処理を行な
い、製品の磁気特性に与える影響を調査した。そ
の結果を以下に示す。 第1図に熱延板焼鈍の急冷と1回目の冷間圧延
の間に行なつた熱処理温度と磁気特性との関係を
示す。この場合、出発素材としてSi:3.27%、
C:0.079%、酸可溶性Al:0.025%、N:0.0078
%、Mn:0.073%、S:0.024%を含有する2.3mm
厚の熱延板を用い、かかる熱延板を1000℃に3分
間保持した後急冷した。しかる後酸洗し、各温度
に2時間保持する熱処理を行なつた。しかる後圧
下率約46%で1.25mm厚としひき続き公知の方法で
中間焼鈍、0.170mmに仕上げる最終冷間圧延、脱
炭焼鈍、MgOを主成分とする焼付分離剤の塗布、
最終仕上焼鈍、張力コーテイングを行なつた。第
1図から明らかなように、磁気特性を向上させる
熱処理温度の範囲は50〜300℃である。 第2図に熱延板焼鈍の急冷と1回目の冷間圧延
の間に行なつた熱処理の保定時間と磁気特性との
関係を示す。ただし熱処理温度は100℃であり、
出発素材、熱延板焼鈍の急冷と1回目の冷間圧延
の間の熱処理以外の工程条件は第1図を説明した
実験と同じである。第2図から明らかなように熱
処理の時間は1分以上で磁気特性向上効果があ
る。 第1図、第2図から熱延板焼鈍の急冷と1回目
の冷間圧延の間の熱処理条件を規定した。つまり
熱延板焼鈍の急冷と1回目の冷間圧延の間に、鋼
板を50〜300℃の温度範囲で1分以上の時間保持
する。熱処理時間の上限は特に規定しないが、生
産性を考えると50時間以下で時効が終るように温
度を選ぶことが望ましい。熱処理温度が低い場合
には熱処理時間を長めにすることが好ましく、50
〜100℃の場合5分間以上の時間熱処理すること
が好ましい。熱処理の方法については特に限定し
ない、熱延板焼鈍での急冷を50〜300℃まで行な
つてコイル状とし緩冷却する方法、1回目の冷間
圧延に先立ち焼鈍炉、油又は湯槽で熱処理する方
法、冷間圧延機のコイル巻戻しスタンドにあるコ
イルを加熱する方法、等を利用してよい。 上記熱処理後に1回目の冷間圧延を行なう。こ
の1回目の冷間圧延の複数パスのパス間の少くと
も1回に鋼板を50〜400℃の温度範囲で1分以上
の時間保持すると一段と磁気特性が向上する。 第3図に1回目の冷間圧延でのパス間時効温度
と磁気特性との関係を示す。この場合出発素材と
してSi:3.22%、C:0.076%、酸可溶性Al:
0.025%、N:0.0086%、Mn:0.075%、S:
0.025%を含有する2.3mm厚の熱延板を用い、かか
る熱延板を1000℃に3分間保持した後急冷した。
しかる後酸洗し、ひき続き100℃に2時間保持し、
圧下率約46%で1.25mm厚とする1回目の冷間圧延
のパス間に2回各温度に5分間保持する時効処理
を行なつた。しかる後公知の方法で中間焼鈍、
0.170mmに仕上げる最終強圧下冷間圧延、脱炭焼
鈍、MgOを主成分とする焼付分離剤の塗布、最
終仕上焼鈍、張力コーテイングを行なつた。第3
図から明らかなように、磁気特性を向上させる時
効温度の範囲は50〜400℃である。 第4図に1回目の冷間圧延でのパス間時効の保
持時間と磁気特性との関係を示す。ただし、1回
目の冷間圧延によつて板厚を2.3mmから1.25mmと
し途中板厚1.6mmの段階で鋼板を100℃に種々の時
間保持した。出発素材、1回目の冷間圧延以外の
工程条件は第3図を説明した実験と同じである。
第4図から明らかなように時効処理の時間は1分
以上で磁気特性向上効果がある。 第3図、第4図から1回目の冷間圧延のパス間
時効の条件を規定した。つまり、1回目の冷間圧
延における複数パスのパス間の少くとも1回に鋼
板を50〜400℃の温度範囲で1分以上の時間保持
する。時効時間の上限は特に規定しないが、生産
性を考慮すると5時間以下で時効が終るように温
度を選ぶことが望ましい。時効温度が低いと時効
時間を長くする必要がある。時効処理は1回でも
効果があるが、圧延と時効処理を交互に繰返すと
磁気特性が一層向上する。時効温度は冷間圧延で
の加工熱を利用しても得られるが、温度が不十分
な場合には加熱設備、焼鈍設備を利用してもよ
い。 1回目の冷間圧延の圧下率は限定しないが、10
〜80%の範囲が磁性の安定性の点では適当であ
る。 本発明の特徴である熱延板焼鈍の急冷と1回目
の冷間圧延の間の熱処理の効果のメカニズムにつ
いて必ずしも明らかではないが、本発明者らは以
下のように考えている。第5図に上記熱処理条件
と1回目の冷間圧延後のビツカス硬度(加重1Kg
板厚中心部板巾方向断面で測定)との関係図を示
す。この場合出発材は第3図を説明したものと同
一成分の2.3mm厚熱延板である。かかる熱延板を
1000℃に3分間保持した後急冷した。しかる後酸
洗し、処理なし、鋼板を100℃に2時間保持、
鋼板を400℃に1時間保持の熱処理を行なつた。
しかる後1.25mmまで冷間圧延した。第5図からわ
かるように本発明の条件であるの履歴の場合、
冷間圧延後の硬度が高くなつている。本発明の熱
処理を行なうことによつて固溶C,Nが転位に固
着する又は微細炭化物、微細窒化物が形成され
て、冷間圧延時の転位運動の妨げとなることによ
つて変形機構に影響を与えたものと考えられる。
その結果第5図に示すように1回目の冷間圧延後
の硬度が増加していると考えられる。このように
変形機構が変化した影響がひき続く中間焼鈍、80
%超の最終強圧下冷間圧延、最終的には、仕上焼
鈍中の二次再結晶現象にまで継承され、製品の磁
気特性を向上させるものと考えられる。 本発明のもう1つの特徴である1回目の冷間圧
延でのパス間時効の効果のメカニズムについて必
ずしも明らかではないが、本発明者らは以下のよ
うに考えている。第6図に1回目の冷間圧延での
パス間時効条件と冷間圧延後のビツカス硬度(加
重1Kg、板厚中心、板巾方向断面で測定)との関
係図を示す。この場合出発材は第3図を説明した
ものと同一成分の2.3mm厚熱延板である。かかる
熱延板を1000℃に3分間保持した後急冷した。し
かる後酸洗し、100℃に2時間保持した後1.25mm
まで冷間圧延した。かかる冷間圧延において1.84
mm、1.47mmなる各途中板厚段階で処理なし、
鋼板を100℃に5分間保持、鋼板を500℃に5分
間保持の時効処理を行なつた。第6図からわかる
ように本発明の条件であるの履歴の場合冷間圧
延後の硬度が高くなつている。本発明の時効処理
を行なうことによつて固溶C,Nが冷間圧延によ
つて形成された転位に固着する又は微細炭化物、
微細窒化物が形成され転位運動の妨げとなること
によつて変形機構に影響を与えたものと考えられ
る。その結果第6図に示すように1回目の冷間圧
延後の硬度が増加したものと考えられる。このよ
うに変形機構が変化した影響が最終的には仕上焼
鈍中の二次再結晶現象にまで継承され製品の磁気
特性を向上させるものと考えられる。 中間焼鈍は公知の方法で行なわれる。昇温速度
を高めること、冷却において急冷を行なうことに
よつて磁気特性は一層向上する。 最終強圧下冷間圧延の圧下率は80%超〜95%に
する必要がある。80%以下では高磁束密度が得難
く、95%を超えると二次再結晶が不安定となるの
で好ましくない。この冷間圧延のパス間に時効処
理を行なうと磁気特性は一層向上する。 最終強圧下冷間圧延後公知の方法で脱炭焼鈍、
MgOを主成分とした焼鈍分離剤塗布、最終仕上
焼鈍を行ない製品とする。最終仕上焼鈍後に鋼板
に張力を付与するコーテイングを行なうと磁気特
性が一層向上する。 以下実施例について述べる。 〔実施例〕 実施例 1 Si:3.22%、C:0.076%、酸可溶性Al:0.026
%、N:0.0086%、Mn:0.073%、S:0.025%、
Sn:0.12%、Cu:0.07%を含有する2.3mm厚の熱
延板に1000℃×3分(均熱)後急冷する熱延板焼
鈍を施した後酸洗し、ひき続き処理なし、
100℃×1時間(均熱)、400℃×1時間(均熱)
の3通りの熱処理を施した。しかる後1.25mmまで
冷間圧延した。ひき続き公知の方法で中間焼鈍、
圧下率約86%の最終強圧下圧延を行なつて0.170
mmとした。得られた冷延板を公知の方法で脱炭焼
鈍、焼鈍分離剤塗布、最終仕上焼鈍、張力コーテ
イングを施して一方向性電磁鋼板を得た。材料の
履歴と製品の磁気特性との関係を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for producing a high magnetic flux density unidirectional electrical steel sheet with excellent core loss properties for use in iron cores of transformers and the like. [Prior Art] Unidirectional electrical steel sheets are soft magnetic materials that are mainly used as iron core materials for transformers and other electrical equipment, and must have good excitation characteristics and iron loss characteristics. Usually B 8 is used as a numerical value representing excitation characteristics.
(magnetic flux density at a magnetic field strength of 800 A/m), W 17/50 (at 50 Hz) is used as a value representing iron loss characteristics.
The iron loss per 1 kg when magnetized to 1.7 T is used. This unidirectional electrical steel sheet usually uses the secondary recrystallization phenomenon to form a {110} surface on the steel sheet surface and a <001> surface in the rolling direction.
It is obtained by developing a tissue with an axis. In order to obtain good magnetic properties, it is important that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction. Also, the plate thickness, specific resistance, purity of the steel plate, etc. have a large effect on the magnetic properties. On the other hand, due to the rise in energy prices in recent years, transformer manufacturers are increasingly focusing on materials for low core loss transformers. In recent years, magnetic domain control technology using lasers has been developed as a measure to reduce iron loss.
As a result, the iron loss characteristics were significantly improved. In addition, the need to develop products with thinner plates and high magnetic flux densities has increased because the thinner the product plate is and the higher the magnetic flux density, the greater the effect of magnetic domain control technology. An effective method for increasing magnetic flux density is to use AlN as an inhibitor and perform final heavy reduction cold rolling with a rolling reduction of more than 80%. There is a problem of stabilization. As a method to solve this problem, a method has been proposed in which hot-rolled sheet annealing is performed, followed by cold rolling and intermediate annealing in sequence, followed by cold rolling with a final heavy reduction of more than 80% (U.S. Pat. No. 3,632,456).
No. Specification). It is true that this method alleviates the instability of secondary recrystallization when the plate thickness becomes thinner, but it is difficult to obtain sufficiently satisfactory iron loss characteristics due to factors such as a decrease in magnetic flux density. These problems remain to be solved in order to manufacture products with high magnetic flux density and excellent iron loss characteristics, even in thin plates. In addition, in the production of high magnetic flux density unidirectional electrical steel sheets by one-time strong reduction cold rolling at a reduction rate of 81 to 95% using AlN as an inhibitor, aging treatment is performed between passes of the above-mentioned strong reduction cold rolling. It has been reported that the magnetic properties are improved by this technology (Japanese Patent Publication No. 13846/1983), but with this technology, products with excellent iron loss properties and high magnetic flux density,
For example, it is not sufficient to manufacture thin plates with a thickness of 0.20 mm or less. [Problems to be solved by the invention] According to the present invention, when producing unidirectional electrical steel sheets using AlN as the main inhibitor, it is impossible to obtain high magnetic flux density, especially in thin products, and therefore it is difficult to obtain good iron loss characteristics. This provides a method to solve this problem. [Means for solving the problem] The present invention uses AlN as the main inhibitor, and hot-rolled silicon steel sheet is subjected to hot-rolled sheet annealing to achieve a rolling reduction of more than 80% to 95%.
In a method for producing a grain-oriented electrical steel sheet by performing two or more cold rollings including final cold rolling with a heavy reduction of %, intermediate annealing performed in between, decarburization annealing after the final cold rolling, and final finishing annealing. A unidirectional electrical steel sheet with excellent magnetic properties can be obtained by holding the steel sheet at a temperature range of 50 to 300°C for 1 minute or more between the rapid cooling of the hot-rolled sheet annealing and the first cold rolling. The present invention provides a method for manufacturing. Furthermore, in addition to the above method, at least once between multiple passes in the first cold rolling, the steel plate is
The object of the present invention is to provide a method for manufacturing a unidirectional electrical steel sheet with even better magnetic properties by holding the magnetic material for a time of at least 1 minute. That is, the present inventors applied AlN as the main inhibitor to a hot-rolled silicon steel sheet through two or more cold rolling steps, including hot-rolled sheet annealing and final cold rolling with a reduction rate of more than 80% to 95%. In a manufacturing method that sequentially performs intermediate annealing, decarburization annealing after final cold rolling, and final finish annealing, we have developed a method to solve the problem that it becomes difficult to obtain high magnetic flux density as the product plate thickness becomes thinner. As a result of our investigation, we found that by holding the steel plate at a temperature range of 50 to 300°C for more than 1 minute between the rapid cooling of hot-rolled plate annealing and the first cold rolling, we could reduce the thickness to, for example, 0.170 mm. It has been found that high magnetic flux density can be obtained even with a thin material, and therefore the iron loss characteristics are further improved. Furthermore, in addition to the above findings, it is possible to further improve the magnetic properties by holding the steel plate in a temperature range of 50 to 400°C for at least one minute at least once between multiple passes in the first cold rolling. It was found that the characteristics were improved. These two findings are completely new and cannot be found in conventional methods. The present invention will be explained in detail below. The components of the hot-rolled sheet, which is the starting material of the present invention, are: Si: 2.5-4.0%, C: 0.03-0.10%, acid-soluble
Al: 0.010~0.065%, N: 0.0010~0.0150%,
It is necessary to contain Mn: 0.02 to 0.30% and S: 0.005 to 0.040%. If Si exceeds 4.0%, embrittlement becomes severe and cold rolling becomes difficult, which is not preferable. On the other hand, if it is less than 2.5%, the electrical resistance is low and it is difficult to obtain good iron loss characteristics. If C is less than 0.03%, the amount of γ before decarburization annealing becomes extremely small, resulting in an inappropriate metal structure after decarburization annealing. On the other hand, if it exceeds 0.10%, decarburization will be poor, which is not preferable. Acid-soluble Al and N are basic components for obtaining the main inhibitor AlN, which is essential for obtaining a high magnetic flux density in the present invention. If outside the above range, secondary recrystallization becomes unstable, so the acid-soluble Al is 0.010. ~
0.065%, and N is 0.0010 to 0.0150%. Mn and S are elements necessary to form the inhibitor MnS. If outside the above range, secondary recrystallization becomes unstable, so Mn is 0.02 to 0.30% and S is
Set at 0.005-0.040%. Of course, other known inhibitor constituent elements such as Sn, Sb, Cu, Cr, Se, As, and Bi may also be contained. The present invention uses a hot-rolled silicon steel sheet containing the above components as a starting material, and anneales the hot-rolled sheet to a rolling reduction of more than 80%.
The premise is a process in which cold rolling is performed two or more times including final cold rolling with a strong reduction of 95%, intermediate annealing performed in between, decarburization annealing after the final cold rolling, and final finish annealing in sequence. The manufacturing method of the present invention will be explained below. First, a hot-rolled sheet having the above components is subjected to hot-rolled sheet annealing.
During this annealing, the hot rolled sheet is held at 700 to 1200°C for 30 seconds to 30 minutes, and then cooled to 300°C at a rate of 1°C/sec or more. Next, the rapid cooling of hot rolled sheet annealing, which is a feature of the present invention, and 1
The heat treatment conditions during the second cold rolling and the reasons for their limitations will be described. Between the rapid cooling of hot-rolled sheet annealing and the first cold rolling,
It is necessary to hold the steel plate in a temperature range of 50 to 300°C for a period of one minute or more. As a result of conducting various experiments with the aim of improving the magnetic properties of products by controlling the deformation structure during the first cold rolling, we found that controlling the state of C and N is extremely important. was inferred. Therefore, based on this knowledge, heat treatment was performed under various conditions between the rapid cooling of hot-rolled sheet annealing and the first cold rolling, and the influence on the magnetic properties of the product was investigated. The results are shown below. FIG. 1 shows the relationship between the magnetic properties and the heat treatment temperature performed between the rapid cooling of hot-rolled sheet annealing and the first cold rolling. In this case, Si: 3.27% as the starting material,
C: 0.079%, acid-soluble Al: 0.025%, N: 0.0078
%, Mn: 0.073%, S: 0.024% 2.3mm
A thick hot-rolled plate was used, and the hot-rolled plate was held at 1000°C for 3 minutes and then rapidly cooled. Thereafter, it was pickled and heat treated by holding it at each temperature for 2 hours. After that, it is made into a thickness of 1.25 mm with a reduction rate of about 46%, followed by intermediate annealing by a known method, final cold rolling to finish to 0.170 mm, decarburization annealing, application of a baking separation agent mainly composed of MgO,
Final annealing and tension coating were performed. As is clear from FIG. 1, the heat treatment temperature range for improving magnetic properties is 50 to 300°C. FIG. 2 shows the relationship between the retention time of the heat treatment performed between the rapid cooling of the hot-rolled sheet annealing and the first cold rolling, and the magnetic properties. However, the heat treatment temperature is 100℃,
The process conditions other than the starting material, the heat treatment during the quenching of the hot-rolled plate annealing and the first cold rolling were the same as in the experiment described in FIG. 1. As is clear from FIG. 2, heat treatment for 1 minute or longer has the effect of improving magnetic properties. From FIG. 1 and FIG. 2, the heat treatment conditions between the rapid cooling of hot-rolled sheet annealing and the first cold rolling were defined. That is, between the rapid cooling of the hot-rolled sheet annealing and the first cold rolling, the steel sheet is held in a temperature range of 50 to 300° C. for a period of one minute or more. Although there is no particular upper limit to the heat treatment time, considering productivity, it is desirable to select a temperature so that aging ends in 50 hours or less. When the heat treatment temperature is low, it is preferable to make the heat treatment time longer;
When the temperature is 100°C, it is preferable to perform the heat treatment for 5 minutes or more. There are no particular restrictions on the heat treatment method, such as hot-rolled plate annealing to rapidly cool the sheet to 50 to 300°C, then forming it into a coil and slowly cooling it, or heat treatment in an annealing furnace, oil or hot water tank prior to the first cold rolling. A method of heating a coil in a coil unwinding stand of a cold rolling mill, etc. may be utilized. After the heat treatment, the first cold rolling is performed. If the steel sheet is held in a temperature range of 50 to 400° C. for a period of 1 minute or more at least once between the multiple passes of this first cold rolling, the magnetic properties are further improved. FIG. 3 shows the relationship between interpass aging temperature and magnetic properties in the first cold rolling. In this case, the starting materials are Si: 3.22%, C: 0.076%, acid-soluble Al:
0.025%, N: 0.0086%, Mn: 0.075%, S:
A 2.3 mm thick hot rolled sheet containing 0.025% was used, and the hot rolled sheet was held at 1000° C. for 3 minutes and then rapidly cooled.
After that, it was pickled and kept at 100℃ for 2 hours.
Aging treatment was carried out by holding each temperature for 5 minutes twice between passes of the first cold rolling to obtain a thickness of 1.25 mm at a reduction rate of about 46%. After that, intermediate annealing is performed using a known method.
A final cold rolling under heavy pressure to finish to 0.170mm, decarburization annealing, application of a seizing separation agent mainly composed of MgO, final finishing annealing, and tension coating were performed. Third
As is clear from the figure, the aging temperature range for improving magnetic properties is 50 to 400°C. FIG. 4 shows the relationship between the holding time of the interpass aging in the first cold rolling and the magnetic properties. However, the thickness of the steel plate was changed from 2.3 mm to 1.25 mm by the first cold rolling, and the steel plate was held at 100° C. for various times at a stage where the thickness reached 1.6 mm. The starting material and process conditions other than the first cold rolling were the same as in the experiment described in FIG.
As is clear from FIG. 4, aging treatment for 1 minute or longer has the effect of improving magnetic properties. The interpass aging conditions of the first cold rolling were defined from FIGS. 3 and 4. That is, the steel plate is held in a temperature range of 50 to 400° C. for a period of 1 minute or more at least once between multiple passes in the first cold rolling. Although there is no particular upper limit to the aging time, in consideration of productivity it is desirable to select a temperature so that the aging ends in 5 hours or less. If the aging temperature is low, it is necessary to lengthen the aging time. A single aging treatment is effective, but magnetic properties are further improved by alternately repeating rolling and aging treatments. The aging temperature can also be obtained by using processing heat during cold rolling, but if the temperature is insufficient, heating equipment or annealing equipment may be used. The reduction rate of the first cold rolling is not limited, but it is 10
A range of ~80% is appropriate in terms of magnetic stability. Although the mechanism of the effect of the heat treatment between the rapid cooling of hot-rolled sheet annealing and the first cold rolling, which is a feature of the present invention, is not necessarily clear, the inventors of the present invention think as follows. Figure 5 shows the above heat treatment conditions and the Bitukas hardness after the first cold rolling (loading: 1 kg).
(measured in the cross section in the width direction at the center of the plate thickness) is shown. In this case, the starting material is a 2.3 mm thick hot rolled sheet having the same composition as that described in FIG. Such a hot-rolled plate
It was held at 1000°C for 3 minutes and then rapidly cooled. After that, the steel plate was pickled, no treatment was carried out, and the steel plate was kept at 100℃ for 2 hours.
The steel plate was heat treated at 400°C for 1 hour.
Thereafter, it was cold rolled to a thickness of 1.25 mm. As can be seen from FIG. 5, in the case of the history, which is the condition of the present invention,
Hardness increases after cold rolling. By performing the heat treatment of the present invention, solid solution C and N stick to dislocations, or fine carbides and fine nitrides are formed, which impede the movement of dislocations during cold rolling, thereby affecting the deformation mechanism. It is thought that this may have had an impact.
As a result, as shown in FIG. 5, it is thought that the hardness after the first cold rolling increases. Intermediate annealing, where the effects of this change in deformation mechanism continue, 80
It is thought that the cold rolling with a final strong reduction of more than % and eventually the secondary recrystallization phenomenon during final annealing improves the magnetic properties of the product. Although the mechanism of the effect of interpass aging in the first cold rolling, which is another feature of the present invention, is not necessarily clear, the inventors of the present invention think as follows. Figure 6 shows a relationship diagram between the interpass aging conditions in the first cold rolling and the Bitukas hardness after cold rolling (measured under a load of 1 kg, at the center of the plate thickness, in a section in the width direction). In this case, the starting material is a 2.3 mm thick hot rolled sheet having the same composition as that described in FIG. The hot rolled sheet was held at 1000°C for 3 minutes and then rapidly cooled. After that, it was pickled, kept at 100℃ for 2 hours, and then 1.25mm.
Cold rolled to 1.84 in such cold rolling
mm, no treatment at each intermediate board thickness stage of 1.47 mm,
Aging treatment was carried out by holding the steel plate at 100°C for 5 minutes and the steel plate at 500°C for 5 minutes. As can be seen from FIG. 6, the hardness after cold rolling is high under the conditions of the present invention. By performing the aging treatment of the present invention, solid solution C and N are fixed to dislocations formed by cold rolling, or fine carbides are formed.
It is thought that the formation of fine nitrides interferes with dislocation motion, thereby affecting the deformation mechanism. As a result, as shown in FIG. 6, it is thought that the hardness after the first cold rolling increased. It is thought that the effect of this change in the deformation mechanism is ultimately carried over to the secondary recrystallization phenomenon during final annealing, improving the magnetic properties of the product. Intermediate annealing is performed by a known method. The magnetic properties are further improved by increasing the heating rate and performing rapid cooling. The reduction ratio of the final strong reduction cold rolling must be more than 80% to 95%. If it is less than 80%, it is difficult to obtain a high magnetic flux density, and if it exceeds 95%, secondary recrystallization becomes unstable, which is not preferable. When aging treatment is performed between passes of this cold rolling, the magnetic properties are further improved. After final cold rolling under heavy reduction, decarburization annealing is carried out by a known method.
The product is made by applying an annealing separator mainly containing MgO and performing final annealing. If the steel plate is coated with tension after final annealing, the magnetic properties will be further improved. Examples will be described below. [Example] Example 1 Si: 3.22%, C: 0.076%, acid-soluble Al: 0.026
%, N: 0.0086%, Mn: 0.073%, S: 0.025%,
A 2.3 mm thick hot rolled sheet containing Sn: 0.12% and Cu: 0.07% was annealed at 1000°C for 3 minutes (soaking) and then rapidly cooled, followed by pickling and no subsequent treatment.
100℃ x 1 hour (soaking), 400℃ x 1 hour (soaking)
Three types of heat treatment were performed. Thereafter, it was cold rolled to a thickness of 1.25 mm. Subsequently, intermediate annealing is performed using a known method.
0.170 by performing final strong reduction rolling with a reduction ratio of approximately 86%.
mm. The obtained cold-rolled sheet was subjected to decarburization annealing, application of an annealing separator, final annealing, and tension coating by known methods to obtain a unidirectional electrical steel sheet. Table 1 shows the relationship between the history of the material and the magnetic properties of the product.

【表】 実施例 2 Si:3.15%、C:0.073%、酸可溶性Al:0.025
%、N:0.0082%、Mn:0.075%、S:0.025%を
含有する2.3mm厚の熱延板1100℃×3分(均熱)
後急冷する熱延板焼鈍を施した後酸洗し、ひき続
き処理なし、100℃×30分(均熱)の2通り
の熱処理を施した。しかる後1回目の冷間圧延を
行ない、1.35mm厚とした。ひき続き公知の方法で
中間焼鈍、圧下率約86%の最終強圧下圧延を行な
つて0.195mmとした。得られた冷延板を公知の方
法で脱炭焼鈍、焼鈍分離剤塗布、最終仕上焼鈍、
張力コーテイングを施して、一方向性電磁鋼板を
得た。材料の履歴と製品の磁気特性との関係を第
2表に示す。
[Table] Example 2 Si: 3.15%, C: 0.073%, acid-soluble Al: 0.025
%, N: 0.0082%, Mn: 0.075%, S: 0.025%. 2.3 mm thick hot rolled plate 1100℃ x 3 minutes (soaking)
The hot-rolled sheet was annealed and then rapidly cooled, followed by pickling, followed by two types of heat treatment: no treatment and 100°C for 30 minutes (soaking). Thereafter, the first cold rolling was performed to obtain a thickness of 1.35 mm. Subsequently, intermediate annealing and final heavy reduction rolling with a reduction ratio of about 86% were performed using a known method to obtain a thickness of 0.195 mm. The obtained cold-rolled sheet is subjected to decarburization annealing, application of an annealing separator, final finish annealing, and
A unidirectional electrical steel sheet was obtained by applying tension coating. Table 2 shows the relationship between the history of the material and the magnetic properties of the product.

【表】 実施例 3 Si:3.27%、C:0.079%、酸可溶性Al:0.025
%、N:0.0078%、Mn:0.073%、S:0.024%、
Sn:0.13%、Cu:0.06%を含有する2.3mm厚の熱
延板に1000℃×3分(均熱)後急冷する熱延板焼
鈍を施した後酸洗し、ひき続き100℃×10分(均
熱)の熱処理を施した。しかる後酸洗し、1回目
の冷間圧延を行ない1.25mm厚とした。かかる1回
目の冷間圧延の途中板厚段階である1.84、1.47mm
厚の時処理なし、100℃×5分(均熱)、
200℃×5分(均熱)、500℃×5分(均熱)、
50℃×30秒(均熱)の5通りの処理を行なつた。
ひき続き公知の方法で中間焼鈍、圧下率約86%の
最終強圧下圧延を行なつて0.170mmとした。得ら
れた冷延板を公知の方法で脱炭焼鈍、焼鈍分離剤
塗布、最終仕上焼鈍、張力コーテイングを施して
一方向性電磁鋼板を得た。材料の履歴と製品の磁
気特性との関係を第3表に示す。
[Table] Example 3 Si: 3.27%, C: 0.079%, acid-soluble Al: 0.025
%, N: 0.0078%, Mn: 0.073%, S: 0.024%,
A 2.3 mm thick hot rolled sheet containing Sn: 0.13% and Cu: 0.06% was annealed at 1000°C for 3 minutes (soaking) and then rapidly cooled, followed by pickling, followed by 100°C x 10 A heat treatment was performed for 30 minutes (soaking). After that, it was pickled and cold rolled for the first time to a thickness of 1.25 mm. The intermediate thickness stage of the first cold rolling is 1.84 and 1.47 mm.
No treatment when thick, 100℃ x 5 minutes (soaking),
200℃ x 5 minutes (soaking), 500℃ x 5 minutes (soaking),
Five treatments were performed at 50°C for 30 seconds (soaking).
Subsequently, intermediate annealing and final heavy reduction rolling with a reduction ratio of approximately 86% were performed using a known method to obtain a thickness of 0.170 mm. The obtained cold-rolled sheet was subjected to decarburization annealing, application of an annealing separator, final finish annealing, and tension coating by known methods to obtain a unidirectional electrical steel sheet. Table 3 shows the relationship between the history of the material and the magnetic properties of the product.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば熱延板焼鈍の急
冷と1回目の冷間圧延の間に熱処理を施すことに
よつて磁気特性の良好な一方向性電磁鋼板を安定
して得ることができるので、その工業的効果は大
きい。上記熱処理に加えて、1回目の冷間圧延に
おけるパス間時効を施すことによつてさらに磁気
特性が向上するので、その工業的効果は一層大き
い。
As described above, according to the present invention, a unidirectional electrical steel sheet with good magnetic properties can be stably obtained by performing heat treatment between the rapid cooling of hot-rolled sheet annealing and the first cold rolling. Therefore, its industrial effects are large. In addition to the above heat treatment, interpass aging in the first cold rolling further improves the magnetic properties, so the industrial effect is even greater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、熱延板焼鈍の急冷と1回目の冷間圧
延の間に行なつた熱処理温度と磁気特性との関係
図、第2図は上記熱処理の保定時間と磁気特性と
の関係図、第3図は1回目の冷間圧延でのパス間
時効温度と磁気特性との関係図、第4図は上記時
効処理の保定時間と磁気特性との関係図、第5図
は上記熱処理条件と1回目の冷間圧延後のビツカ
ス硬度との関係図、第6図は上記時効処理条件と
1回目の冷間圧延後のビツカス硬度との関係図で
ある。
Figure 1 is a diagram of the relationship between the heat treatment temperature and magnetic properties performed between the rapid cooling of hot-rolled sheet annealing and the first cold rolling, and Figure 2 is a diagram of the relationship between the retention time of the heat treatment and magnetic properties. , Figure 3 is a diagram showing the relationship between the interpass aging temperature and magnetic properties in the first cold rolling, Figure 4 is a diagram showing the relationship between the retention time of the above aging treatment and magnetic properties, and Figure 5 is the relationship between the above heat treatment conditions. FIG. 6 is a diagram showing the relationship between the aging treatment conditions and the Bitchus hardness after the first cold rolling.

Claims (1)

【特許請求の範囲】 1 重量%でSi:2.5〜4.0%、C:0.03〜0.10%、
酸可溶性Al:0.010〜0.065%、N:0.0010〜
0.0150%、Mn:0.02〜0.30%、S:0.005〜0.040
%を含有する珪素鋼熱延板に熱延板焼鈍を施し、
圧下率80%超〜95%の強圧下最終冷間圧延を含む
2回以上の冷間圧延とその間に行なう中間焼鈍と
最終冷間圧延後の脱炭焼鈍、最終仕上焼鈍を施し
て一方向性電磁鋼板を製造する方法において上記
熱延板焼鈍の急冷と1回目の冷間圧延の間に、鋼
板を50〜300℃の温度範囲に1分間以上の時間保
持することを特徴とする磁気特性の優れた一方向
性電磁鋼板の製造方法。 2 重量%でSi:2.5〜4.0%、C:0.03〜0.10%、
酸可溶性Al:0.010〜0.065%、N:0.0010〜
0.0150%、Mn:0.02〜0.30%、S:0.005〜0.040
%を含有する珪素鋼熱延板に熱延板焼鈍を施し、
圧下率80%超〜95%の強圧下最終冷間圧延を含む
2回以上の冷間圧延とその間に行なう中間焼鈍と
最終冷間圧延後の脱炭焼鈍、最終仕上焼鈍を施し
て一方向性電磁鋼板を製造する方法において、上
記熱延板焼鈍の急冷と1回目の冷間圧延の間に、
鋼板を50〜300℃の温度範囲に1分間以上の時間
保持するとともに、1回目の冷間圧延における複
数パスのパス間で少くとも1回、鋼板を50〜400
℃の温度範囲に1分間以上の時間保持することを
特徴とする磁気特性の優れた一方向性電磁鋼板の
製造方法。
[Claims] 1% by weight: Si: 2.5 to 4.0%, C: 0.03 to 0.10%,
Acid soluble Al: 0.010~0.065%, N: 0.0010~
0.0150%, Mn: 0.02~0.30%, S: 0.005~0.040
A hot-rolled silicon steel plate containing % is subjected to hot-rolled plate annealing,
Unidirectional properties are obtained by cold rolling two or more times, including final cold rolling with a reduction ratio of more than 80% to 95%, intermediate annealing in between, decarburization annealing after the final cold rolling, and final finish annealing. In the method for manufacturing an electrical steel sheet, the steel sheet is held in a temperature range of 50 to 300°C for a period of 1 minute or more between the rapid cooling of the hot-rolled sheet annealing and the first cold rolling. A method for manufacturing excellent unidirectional electrical steel sheets. 2 Si: 2.5 to 4.0%, C: 0.03 to 0.10%, by weight%
Acid soluble Al: 0.010~0.065%, N: 0.0010~
0.0150%, Mn: 0.02~0.30%, S: 0.005~0.040
A hot-rolled silicon steel plate containing % is subjected to hot-rolled plate annealing,
Unidirectional properties are obtained by cold rolling two or more times, including final cold rolling with a reduction ratio of more than 80% to 95%, intermediate annealing in between, decarburization annealing after the final cold rolling, and final finish annealing. In the method for manufacturing an electrical steel sheet, between the rapid cooling of the hot rolled sheet annealing and the first cold rolling,
The steel plate is held in a temperature range of 50 to 300°C for at least 1 minute, and the steel plate is heated at 50 to 400°C at least once between multiple passes in the first cold rolling.
1. A method for producing a unidirectional electrical steel sheet with excellent magnetic properties, characterized by holding the sheet in a temperature range of 1 minute or more.
JP61244053A 1986-10-16 1986-10-16 Manufacture of grain-oriented electrical steel sheet having superior magnetic characteristic Granted JPS63100127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244053A JPS63100127A (en) 1986-10-16 1986-10-16 Manufacture of grain-oriented electrical steel sheet having superior magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244053A JPS63100127A (en) 1986-10-16 1986-10-16 Manufacture of grain-oriented electrical steel sheet having superior magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS63100127A JPS63100127A (en) 1988-05-02
JPH0432127B2 true JPH0432127B2 (en) 1992-05-28

Family

ID=17113026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244053A Granted JPS63100127A (en) 1986-10-16 1986-10-16 Manufacture of grain-oriented electrical steel sheet having superior magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS63100127A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753885B2 (en) * 1989-04-17 1995-06-07 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
CA2033059C (en) * 1989-05-15 1998-07-14 Michiro Komatsubara Process for producing grain oriented silicon steel sheets having excellent magnetic properties
JP3160281B2 (en) * 1990-09-10 2001-04-25 川崎製鉄株式会社 Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
US5858126A (en) * 1992-09-17 1999-01-12 Nippon Steel Corporation Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same

Also Published As

Publication number Publication date
JPS63100127A (en) 1988-05-02

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US4824493A (en) Process for producing a grain-oriented electrical steel sheet having improved magnetic properties
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS6250529B2 (en)
US4888066A (en) Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
JPH0432127B2 (en)
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0351770B2 (en)
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
US6858095B2 (en) Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
JPH06145802A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
CN117062921A (en) Method for producing oriented electrical steel sheet
JPH04324A (en) Production of grain-oriented silicon steel sheet having large sheet thickness and excellent in magnetic property
JPH04289121A (en) Production of thin grain-oriented silicon steel sheet having stable magnetic property
JPH0617512B2 (en) Method for producing unidirectional electrical steel sheet with extremely high magnetic flux density
JPH0781166B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JPH02274814A (en) Production of grain-orientated silicon steel sheet excellent in magnetic property