JP2012035288A - Electron beam irradiation method - Google Patents

Electron beam irradiation method Download PDF

Info

Publication number
JP2012035288A
JP2012035288A JP2010176176A JP2010176176A JP2012035288A JP 2012035288 A JP2012035288 A JP 2012035288A JP 2010176176 A JP2010176176 A JP 2010176176A JP 2010176176 A JP2010176176 A JP 2010176176A JP 2012035288 A JP2012035288 A JP 2012035288A
Authority
JP
Japan
Prior art keywords
electron beam
irradiation
metal strip
steel sheet
beam irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010176176A
Other languages
Japanese (ja)
Other versions
JP5621392B2 (en
Inventor
Seiji Okabe
誠司 岡部
Hiroshi Yamaguchi
山口  広
Takeshi Omura
大村  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010176176A priority Critical patent/JP5621392B2/en
Publication of JP2012035288A publication Critical patent/JP2012035288A/en
Application granted granted Critical
Publication of JP5621392B2 publication Critical patent/JP5621392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method that enables electron beam irradiation to be surely detected in real time.SOLUTION: When an electron beam is applied to a traveling metal strip, an electron beam irradiation state is grasped by detecting an X-ray generated on a surface of the metal strip along with the electron beam irradiation.

Description

本発明は、方向性電磁鋼板等の金属ストリップに電子ビームを連続的に照射し、金属ストリップの特性を改善する電子ビーム照射方法に関する。   The present invention relates to an electron beam irradiation method for continuously irradiating a metal strip such as a grain-oriented electrical steel sheet with an electron beam to improve the properties of the metal strip.

方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要である。しかしながら、結晶方位を制御することや、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性(歪)を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。   The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss. For this purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet. However, controlling the crystal orientation and reducing impurities are limited in view of the manufacturing cost. Therefore, a technique for reducing the iron loss by introducing non-uniformity (strain) to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain has been developed, that is, a magnetic domain subdivision technique.

例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に高転位密度領域を導入することにより、磁区幅を狭くし鉄損を低減する技術が提案されている。また、特許文献2には、電子ビームの照射により磁区幅を制御する技術が提案されている。この電子ビーム照射による鉄損低減方法では、電磁鋼板表面での絶縁被膜の損傷が極めて小さいため、照射後に絶縁被膜を再度形成する必要がなく、工業生産に有利である。   For example, Patent Document 1 proposes a technique for narrowing the magnetic domain width and reducing iron loss by irradiating the final product plate with laser and introducing a high dislocation density region into the steel sheet surface layer. Patent Document 2 proposes a technique for controlling the magnetic domain width by electron beam irradiation. In this iron loss reducing method by electron beam irradiation, since the damage of the insulating coating on the surface of the magnetic steel sheet is extremely small, it is not necessary to form the insulating coating again after irradiation, which is advantageous for industrial production.

ところで、電子ビームは真空下で照射されるため真空槽内で金属ストリップへの照射が正常に行われているかを検査するのが難しいという問題がある。ここで、鋼板表面が局所的に加熱されたのをテレビカメラや光学センサーで検出する方法もあるが、鋼板表面で生じる発光は鋼板表面の被膜の厚みや性状に左右されるため正確な検査は困難である。この点、特許文献3に開示の、鋼板表面にフィルムを被覆して照射痕を確認する方法は有利である。   However, since the electron beam is irradiated under vacuum, there is a problem that it is difficult to inspect whether the metal strip is normally irradiated in the vacuum chamber. Here, there is a method to detect that the steel plate surface is locally heated with a TV camera or an optical sensor, but the light emission generated on the steel plate surface depends on the thickness and properties of the coating on the steel plate surface. Have difficulty. In this respect, the method disclosed in Patent Document 3 is advantageous in that the surface of the steel sheet is covered with a film to check the irradiation trace.

特公昭57−2252号公報Japanese Patent Publication No.57-2252 特公平6−72266号公報Japanese Examined Patent Publication No. 6-72266 特開平5−84583号公報JP-A-5-84583

しかしながら、特許文献3に開示の手法では、電子ビームの照射をリアルタイムで検出することが難しいため、長時間の連続運転の間に照射位置や強度が変動した場合への対応も希求されていた。   However, in the method disclosed in Patent Document 3, since it is difficult to detect the irradiation of the electron beam in real time, it has been desired to cope with the case where the irradiation position and intensity fluctuate during a long continuous operation.

そこで、本発明は、電子ビームの照射をリアルタイムで確実に検出することが可能な手法について提案することを目的とする。   Therefore, an object of the present invention is to propose a method capable of reliably detecting electron beam irradiation in real time.

発明者らは、電子ビームが照射された痕跡や光を検出するのではなく、金属ストリップに電子ビームが当たることによって発生するX線を検出することによって、照射状態をリアルタイムにて検査可能であるとの新規知見を得た。
すなわち、本発明の要旨構成は、次のとおりである。
Inventors can inspect the irradiation state in real time by detecting X-rays generated by the electron beam hitting the metal strip rather than detecting the trace or light irradiated by the electron beam. And gained new knowledge.
That is, the gist configuration of the present invention is as follows.

(1)走行する金属ストリップに向けて電子ビームの照射を行うに当たり、該電子ビームの照射に伴って前記金属ストリップの表面に発生する、X線を検出することによって電子ビームの照射状態を把握することを特徴とする電子ビームの照射方法。 (1) When irradiating an electron beam toward a traveling metal strip, the irradiation state of the electron beam is grasped by detecting X-rays generated on the surface of the metal strip as the electron beam is irradiated. An electron beam irradiation method characterized by the above.

(2)前記金属ストリップの表面に発生するX線の発生位置および強度のいずれか少なくとも一方を検出して、該電子ビームの照射が正常であるかを判断することを特徴とする前記(1)記載の電子ビームの照射方法。 (2) The method according to (1), wherein at least one of the generation position and intensity of X-rays generated on the surface of the metal strip is detected to determine whether the electron beam irradiation is normal. The electron beam irradiation method described.

本発明により、真空槽内で電子ビームの照射が行なわれる場合であっても、電子ビームの照射状態をリアルタイムで把握することができる。従って、電子ビームが正常に照射されているかの判断を容易に行うことが可能になった。   According to the present invention, even when the electron beam is irradiated in the vacuum chamber, the irradiation state of the electron beam can be grasped in real time. Therefore, it is possible to easily determine whether the electron beam is normally irradiated.

電子ビーム照射装置を示す図である。It is a figure which shows an electron beam irradiation apparatus. 本発明に従う電子ビーム照射の検出要領を示す図である。It is a figure which shows the detection point of the electron beam irradiation according to this invention. 電子ビームの検出例を示す図である。It is a figure which shows the example of detection of an electron beam. 本発明に従う別の電子ビーム照射の検出要領を示す図である。It is a figure which shows the detection point of another electron beam irradiation according to this invention. 本発明に従うX線検出装置の走査軌跡を示す図である。It is a figure which shows the scanning locus | trajectory of the X-ray detection apparatus according to this invention.

本発明の方法は、金属ストリップに対して連続的に電子ビームを照射する装置において有利に適合するものである。例えば、図1に示す装置を用いる際に好適である。すなわち、図1に示す装置は、
大気圧中の金属ストリップSを導入する真空槽1を備え、この真空槽1の金属ストリップSの入側および出側にはそれぞれ差圧室2aおよび2bを有し、これらを差圧室2aおよび2bを介在させて真空槽1内を低圧に保持している。真空槽1には、複数、図示例で4台の電子銃3a〜3d、金属ストリップSの搬送経路に向けて設置し、各電子銃3a〜3dから金属ストリップSに向けて電子ビームを照射可能にしている。
The method of the invention is advantageously adapted in an apparatus for continuously irradiating an electron beam onto a metal strip. For example, it is suitable when using the apparatus shown in FIG. That is, the apparatus shown in FIG.
A vacuum chamber 1 for introducing a metal strip S in atmospheric pressure is provided, and differential pressure chambers 2a and 2b are provided on the inlet side and the outlet side of the metal strip S of the vacuum chamber 1, respectively. The inside of the vacuum chamber 1 is held at a low pressure by interposing 2b. In the vacuum chamber 1, a plurality of, in the illustrated example, four electron guns 3a to 3d and a metal strip S are installed toward the transport path, and an electron beam can be irradiated from each electron gun 3a to 3d toward the metal strip S. I have to.

ここで、電子ビームを照射する真空槽1内の圧力は10Pa以下とすることが、電子ビームの散乱防止に有効である。一方、圧力の下限は特に必要はないが、真空ポンプや差圧室の能力から、一般的には0.01Pa以上とされる。差圧室を用いず、コイルを含む全設備を真空状態にする方法も取り得るが、図1に示す差圧方式の方が真空設備の規模を小さくすることができて有利である。   Here, it is effective for preventing the scattering of the electron beam that the pressure in the vacuum chamber 1 for irradiating the electron beam is 10 Pa or less. On the other hand, the lower limit of the pressure is not particularly required, but is generally set to 0.01 Pa or more because of the capability of the vacuum pump and the differential pressure chamber. Although a method can be used in which the entire equipment including the coil is evacuated without using the differential pressure chamber, the differential pressure method shown in FIG. 1 is advantageous in that the size of the vacuum equipment can be reduced.

この電子ビーム照射装置を用いて、例えば方向性電磁鋼板に対して磁区細分化処理を施すには、方向性電磁鋼板(金属ストリップ)に対して、図1に示すように、複数の電子銃で電子ビームを照射する。すなわち、方向性電磁鋼板の鉄損低減のためには、照射位置でのビーム径を0.05〜1mmに収束させた電子ビームを、鋼板の幅方向(圧延方向と交差する方向)に走査して、線状に熱歪みを導入する。電子ビームの出力は10〜2000W、走査速度は1〜100m/sとして、さらに単位長さ当たりの出力が1〜50J/mになるように調整し、線状に1〜20mm間隔で照射するのが好適である。   For example, in order to perform magnetic domain subdivision processing on a directional electromagnetic steel sheet using this electron beam irradiation apparatus, a plurality of electron guns are used on the directional electromagnetic steel sheet (metal strip) as shown in FIG. Irradiate an electron beam. That is, in order to reduce the iron loss of the grain-oriented electrical steel sheet, an electron beam whose beam diameter at the irradiation position is converged to 0.05 to 1 mm is scanned in the width direction of the steel sheet (direction intersecting the rolling direction). Introduce thermal strain linearly. The output of the electron beam is 10 to 2000 W, the scanning speed is 1 to 100 m / s, and the output per unit length is adjusted to 1 to 50 J / m, and irradiation is performed linearly at intervals of 1 to 20 mm. Is preferred.

なお、電子ビーム照射時に真空槽1外部へのX線漏洩を抑制することが安全上重要であり、そのために、真空槽1の内側(または外側)にX線吸収能をもつ鉛板をシールド層4として設けることが通例である。   It is important for safety to suppress leakage of X-rays to the outside of the vacuum chamber 1 during electron beam irradiation. For this purpose, a lead plate having X-ray absorption capability is provided on the inner side (or outer side) of the vacuum chamber 1 as a shield layer. It is usual to provide as 4.

かような電子ビーム照射装置において、図2に示すように、電子ビーム5の通過位置を遮らない位置に、X線検出装置、図示例で3台のX線検出装置6A〜6Cを配置してX線の測定を行うことにより、金属ストリップSに電子ビームが正常に照射されているかをモニターリングできるようになる。このX線検出では、例えば磁区細分化処理後の方向性電磁鋼板の照射痕を確認するよりも早期にかつ簡便に検査できる。   In such an electron beam irradiation apparatus, as shown in FIG. 2, an X-ray detection device, in the illustrated example, three X-ray detection devices 6 </ b> A to 6 </ b> C are arranged at a position that does not block the passage position of the electron beam 5. By performing the X-ray measurement, it is possible to monitor whether the metal strip S is normally irradiated with the electron beam. In this X-ray detection, for example, the inspection can be performed earlier and more simply than when the irradiation trace of the grain-oriented electrical steel sheet after the magnetic domain subdivision processing is confirmed.

具体的には、X線の強度を測定することにより、金属ストリップの特性改善に適した出力での電子ビーム照射が行われているか否かを確認することができる。例えば、図2に示すように、ストリップSの圧延方向(送り方向)と直交する方向に同図の手前から奥に向かって電子ビーム5を照射する場合、ストリップSの送り速度に同期させて電子ビームを走査する必要があるため、電子ビームの軌跡は、ストリップの通板方向と直交する方向に対して角度を持った直線となる(図2の太破線で示す矢印:以下、照射線という)。従って、この照射線の始点、中間点および終点にてそれぞれX線を検出できるように、3個のX線検出装置6A〜6Cを配置しておき、それぞれの検出装置から、例えば図3に示すような、順次の出力が得られれば、照射が正常に行われていることになる。   Specifically, by measuring the intensity of the X-ray, it can be confirmed whether or not the electron beam irradiation is performed at an output suitable for improving the characteristics of the metal strip. For example, as shown in FIG. 2, when the electron beam 5 is irradiated from the front side to the back side in the direction orthogonal to the rolling direction (feeding direction) of the strip S, the electrons are synchronized with the feeding speed of the strip S. Since it is necessary to scan the beam, the trajectory of the electron beam is a straight line having an angle with respect to the direction orthogonal to the strip passing direction (arrows indicated by bold broken lines in FIG. 2; hereinafter referred to as irradiation lines). . Accordingly, three X-ray detection devices 6A to 6C are arranged so that X-rays can be detected at the start point, the intermediate point, and the end point of the irradiation beam, respectively, and each detection device shows, for example, FIG. If such sequential outputs are obtained, irradiation is normally performed.

また、図4に示すように、二点鎖線で示すように、X線検出装置6の走査を、ストリップSの電子ビーム5照射領域に対して二次元的(同図における二点鎖線で走査軌跡である走査線60を示す)に行うために、該X線検出装置6の角度を調整する機構を追加し、高速で走査される電子ビームの走査速度に対して、十分に遅い速度でX線検出装置の検出位置を移動させれば、図5に示すように、電子ビーム5が照射された位置(電子ビームの軌跡50)がX線検出装置6の走査線60を介して検出できる。   Further, as shown in FIG. 4, as indicated by a two-dot chain line, the scanning of the X-ray detection device 6 is performed two-dimensionally with respect to the electron beam 5 irradiation region of the strip S (a scanning locus along the two-dot chain line in FIG. 4). (A scanning line 60 is shown) is added, a mechanism for adjusting the angle of the X-ray detector 6 is added, and the X-ray is sufficiently slow with respect to the scanning speed of the electron beam scanned at a high speed. If the detection position of the detection device is moved, the position irradiated with the electron beam 5 (electron beam trajectory 50) can be detected via the scanning line 60 of the X-ray detection device 6, as shown in FIG.

ここで、X線検出装置にはシンチレーション検出器、ガス検出器および半導体検出器等が用いられるが、特に半導体検出器が整備面で好適である。X線検出装置の先端にピンホールやスリットを設けて照射点から直線的に検出装置に到達するX線のみを検出できるようにすることにより、外乱を防ぎ、検出位置を正確に求めることができる。   Here, a scintillation detector, a gas detector, a semiconductor detector, and the like are used for the X-ray detection device, and the semiconductor detector is particularly preferable in terms of maintenance. By providing a pinhole or slit at the tip of the X-ray detection device so that only X-rays that reach the detection device linearly from the irradiation point can be detected, disturbance can be prevented and the detection position can be obtained accurately. .

そして、上述したように、この検出装置を、図2に示した異なる照射点を監視するために複数配置したり、監視点を一次元的、または図4に示した二次元的に変えられるように走査することによって、電子ビームが所望のパターンで照射されているかを確認できる。   As described above, a plurality of detection devices can be arranged to monitor different irradiation points shown in FIG. 2, or the monitoring points can be changed one-dimensionally or two-dimensionally as shown in FIG. It is possible to confirm whether or not the electron beam is irradiated in a desired pattern.

また、電子ビームが照射された位置は電子ビームの照射で生じるストリップ上の発光をTVカメラやCCDカメラで二次元的に検出し、電子ビームの照射強度のみをX線検出装置で測定し、両者の組み合わせで照射パターンとビーム強度を確認することも可能である。   In addition, the position on which the electron beam is irradiated is detected two-dimensionally with a TV camera or CCD camera, and the light emission on the strip caused by the electron beam irradiation is measured, and only the irradiation intensity of the electron beam is measured with an X-ray detector. It is also possible to confirm the irradiation pattern and the beam intensity by a combination of the above.

さらに、X線検出装置としてX線用CCDを用いて、機械的走査をせずに照射パターンとビーム強度とを同時に確認する方法も可能である。
以上の各態様については、その目的や要求される検出精度に応じて、適宜選択すればよい。
Furthermore, it is also possible to use an X-ray CCD as an X-ray detection device to simultaneously check the irradiation pattern and beam intensity without mechanical scanning.
Each of the above aspects may be appropriately selected depending on the purpose and required detection accuracy.

図1に示した装置を用いて、電磁鋼板(ストリップS)に連続的に電子ビームの照射を行った。電磁鋼板の幅は1mであり、電子銃はストリップの搬送方向に4台設置し、1台の電子銃で鋼板の幅方向1/4幅の範囲に照射を行い、電子銃を4台通過後に電磁鋼板全幅に電子ビームが照射されるように走査を行った。   Using the apparatus shown in FIG. 1, the electromagnetic steel sheet (strip S) was irradiated with an electron beam continuously. The width of the electromagnetic steel sheet is 1 m, and four electron guns are installed in the strip transport direction, and one electron gun irradiates the range of 1/4 width in the width direction of the steel sheet, and after passing four electron guns Scanning was performed so that the entire width of the electromagnetic steel sheet was irradiated with an electron beam.

また、電磁鋼板は、3.4質量%Siを含有する、厚さ0.23mmの方向性電磁鋼板である。
電子銃は、加速電圧150kVで、照射点におけるビーム径を直径0.2mmに絞り、ビーム電流:5mAおよび走査速度:20m/sにて、鋼板の幅方向に線状に走査し、これを圧延方向に6mm間隔で繰り返して照射した。
The electrical steel sheet is a grain oriented electrical steel sheet having a thickness of 0.23 mm containing 3.4 mass% Si.
The electron gun has an accelerating voltage of 150 kV, a beam diameter at the irradiation point of 0.2 mm, a beam current of 5 mA and a scanning speed of 20 m / s, linearly scanned in the width direction of the steel sheet, and this is the rolling direction. Were repeatedly irradiated at intervals of 6 mm.

さらに、図2に示すように、電子銃1台につき3個のX線検出装置を電子ビーム走査の始点、中間点および終点に相当する位置を検出できるように、ピンホールを介して入ったX線をシンチレーション検出器で強度測定できる検出装置を設けた。ピンホールは直径1mmで検出器と同軸のX線発生源からのX線のみを検出できるようにした。   Further, as shown in FIG. 2, three X-ray detectors per electron gun can detect the positions corresponding to the start point, the intermediate point, and the end point of the electron beam scanning through the pinhole. A detector was provided that could measure the intensity of the line with a scintillation detector. The pinhole has a diameter of 1 mm so that only X-rays from an X-ray generation source coaxial with the detector can be detected.

ここで、従来は電子ビームが正常に照射されているかについて、照射後の鋼板を調査することにより検査していたが、被膜に電子ビームによる照射痕が生じていない場合、鋼板の磁区パターンを観察することにより調査する必要があったため、多大な時間を要し、多くは部分的な検査にとどまっていた。   Here, in the past, whether or not the electron beam was normally irradiated was inspected by investigating the steel plate after irradiation, but when the film was not irradiated with an electron beam, the magnetic domain pattern of the steel plate was observed. Because it was necessary to investigate by doing so, it took a lot of time, and many were limited to partial inspection.

これに対して、本発明の方法によれば、図3に示したように、鋼板上の電子線の照射位置と強度が設定通りになされているかをリアルタイムに監視できるようになった。また、予め測定しておいたビーム電流や加速電圧等の照射条件と、それにより発生するX線との関係を求めておき、その関係と比較することによって、電子ビームの出力が正常範囲にあるかを精度よく管理することも可能になった。   On the other hand, according to the method of the present invention, as shown in FIG. 3, it is possible to monitor in real time whether the irradiation position and intensity of the electron beam on the steel sheet are set as set. In addition, the relationship between the irradiation conditions such as the beam current and the acceleration voltage measured in advance and the X-rays generated thereby is obtained, and by comparing with the relationship, the output of the electron beam is in the normal range. It has become possible to manage these with high accuracy.

本発明の電子ビーム照射方法は、上記した方向性電磁鋼板に対する磁区細分化処理のほか、凹凸の除去、梨地加工、筋加工等の表面加工や、溶接、表面焼き入れ、合金化、アモルファス化、マーキングなどの処理に有利に適合する。   The electron beam irradiation method of the present invention, in addition to magnetic domain subdivision treatment for the above-mentioned grain-oriented electrical steel sheet, surface processing such as removal of irregularities, matte processing, muscle processing, welding, surface quenching, alloying, amorphization, It is suitable for processing such as marking.

1 真空槽
2a、2b 差圧室
3a〜3d 電子銃
4 シ−ルド層
5 電子ビーム
6、6A〜6C X線検出装置
S 金属ストリップ
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2a, 2b Differential pressure chamber 3a-3d Electron gun 4 Shield layer 5 Electron beam 6, 6A-6C X-ray detection apparatus S Metal strip

Claims (2)

走行する金属ストリップに向けて電子ビームの照射を行うに当たり、該電子ビームの照射に伴って前記金属ストリップの表面に発生する、X線を検出することによって電子ビームの照射状態を把握することを特徴とする電子ビームの照射方法。   When irradiating an electron beam toward a traveling metal strip, the irradiation state of the electron beam is grasped by detecting X-rays generated on the surface of the metal strip as the electron beam is irradiated. An electron beam irradiation method. 前記金属ストリップの表面に発生するX線の発生位置および強度のいずれか少なくとも一方を検出して、該電子ビームの照射が正常であるかを判断することを特徴とする請求項1記載の電子ビームの照射方法。








2. The electron beam according to claim 1, wherein at least one of the generation position and intensity of X-rays generated on the surface of the metal strip is detected to determine whether the irradiation of the electron beam is normal. Irradiation method.








JP2010176176A 2010-08-05 2010-08-05 Electron beam irradiation method Active JP5621392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176176A JP5621392B2 (en) 2010-08-05 2010-08-05 Electron beam irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176176A JP5621392B2 (en) 2010-08-05 2010-08-05 Electron beam irradiation method

Publications (2)

Publication Number Publication Date
JP2012035288A true JP2012035288A (en) 2012-02-23
JP5621392B2 JP5621392B2 (en) 2014-11-12

Family

ID=45847875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176176A Active JP5621392B2 (en) 2010-08-05 2010-08-05 Electron beam irradiation method

Country Status (1)

Country Link
JP (1) JP5621392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050906A1 (en) * 2012-09-28 2014-04-03 Jfeスチール株式会社 Electron gun abnormality detector and electron gun abnormality detection method
WO2020149330A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492745A (en) * 1972-04-26 1974-01-11
JPS61153580A (en) * 1984-11-19 1986-07-12 ライボルト アクチェンゲゼルシャフト Device for detecting incident position of charged particle beam on target
JPS63186826A (en) * 1987-01-28 1988-08-02 Kawasaki Steel Corp Production of grain-orientated silicon steel plate having super low iron loss
JPS63186825A (en) * 1987-01-28 1988-08-02 Kawasaki Steel Corp Production of grain-orientated silicon steel plate having high magnetic flux density and low iron loss
JPH02284089A (en) * 1989-01-26 1990-11-21 Leybold Ag Equipment for confirming charge carrier beam bombarding portion on target
JPH04165021A (en) * 1990-10-25 1992-06-10 Kawasaki Steel Corp Support roller device for holding pass line
JPH05335128A (en) * 1992-05-29 1993-12-17 Kawasaki Steel Corp Manufacturing method of low iron-loss unidirectional silicon steel plate having excellent noise characteristic
JPH06136449A (en) * 1992-10-23 1994-05-17 Kawasaki Steel Corp Production of low iron loss grain-oriented silicon steel sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492745A (en) * 1972-04-26 1974-01-11
JPS61153580A (en) * 1984-11-19 1986-07-12 ライボルト アクチェンゲゼルシャフト Device for detecting incident position of charged particle beam on target
JPS63186826A (en) * 1987-01-28 1988-08-02 Kawasaki Steel Corp Production of grain-orientated silicon steel plate having super low iron loss
JPS63186825A (en) * 1987-01-28 1988-08-02 Kawasaki Steel Corp Production of grain-orientated silicon steel plate having high magnetic flux density and low iron loss
JPH02284089A (en) * 1989-01-26 1990-11-21 Leybold Ag Equipment for confirming charge carrier beam bombarding portion on target
JPH04165021A (en) * 1990-10-25 1992-06-10 Kawasaki Steel Corp Support roller device for holding pass line
JPH05335128A (en) * 1992-05-29 1993-12-17 Kawasaki Steel Corp Manufacturing method of low iron-loss unidirectional silicon steel plate having excellent noise characteristic
JPH06136449A (en) * 1992-10-23 1994-05-17 Kawasaki Steel Corp Production of low iron loss grain-oriented silicon steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050906A1 (en) * 2012-09-28 2014-04-03 Jfeスチール株式会社 Electron gun abnormality detector and electron gun abnormality detection method
JP2014070974A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Apparatus and method for detecting abnormality in electron gun
CN104603610A (en) * 2012-09-28 2015-05-06 杰富意钢铁株式会社 Electron gun abnormality detector and electron gun abnormality detection method
US9304078B2 (en) 2012-09-28 2016-04-05 Jfe Steel Corporation Electron gun abnormality detecting device and electron gun abnormality detecting method
WO2020149330A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
JPWO2020149330A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7260798B2 (en) 2019-01-16 2023-04-19 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP5621392B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5307181B2 (en) Sample surface inspection method and inspection apparatus
CN105143867B (en) Forsterite confirmation method, forsterite evaluating apparatus and steel plate manufacturing line
JP6311786B2 (en) Directional electrical steel sheet, method for manufacturing directional electrical steel sheet, evaluation method for directionally oriented electrical steel sheet, and iron core
JP5621392B2 (en) Electron beam irradiation method
JP5396061B2 (en) Circuit pattern inspection apparatus, management system including circuit pattern inspection apparatus, and circuit pattern inspection method
JP7149906B2 (en) Scanning electron microscope and pattern measurement method
JP6468262B2 (en) Separation and visualization method of ferrite phase, martensite phase and austenite phase in duplex steel by observation with scanning electron microscope, and duplex steel slab for microstructure observation
JP2005098923A (en) Method of evaluating thickness and thickness distribution of thin film
JP5754172B2 (en) Iron loss improvement method for grain-oriented electrical steel sheets
WO2016084399A1 (en) Quantitative analysis device for trace carbon and quantitative analysis method for trace carbon
US20110198512A1 (en) Charged corpuscular beam apparatus
JP2006339405A (en) Electron-beam graphics drawing apparatus
JP5962677B2 (en) Evaluation method for adhesion of insulating coating on the surface of grain-oriented electrical steel sheet
JP5878960B2 (en) electronic microscope
JP5825284B2 (en) Steel material processing method and grain-oriented electrical steel sheet processing method
US20220260482A1 (en) Device and method for the contactless determination of at least one property of a metal product
CN116840885A (en) Scanning type profile measurement target head and device suitable for low-energy strong flow beam
JP2011108557A (en) Processing method using ion beam and processing device
JP2011043391A (en) Sample processing method and sample processor
JP5542275B2 (en) Inspection apparatus, inspection method, and battery manufacturing method
KR20200049327A (en) defective position indicator and indicating method of wire rod
JP2004253182A (en) Defect analyzing apparatus
JP2013074228A (en) Inspection tool of molding aperture, and method of manufacturing molding aperture using the same
JP2009205936A (en) Scanning electron microscope
JP2012160281A (en) Plasma potential measurement method, plasma potential measurement device and plasma processing apparatus using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250