KR920004949B1 - Making process for the electic steel plate - Google Patents

Making process for the electic steel plate Download PDF

Info

Publication number
KR920004949B1
KR920004949B1 KR1019890019989A KR890019989A KR920004949B1 KR 920004949 B1 KR920004949 B1 KR 920004949B1 KR 1019890019989 A KR1019890019989 A KR 1019890019989A KR 890019989 A KR890019989 A KR 890019989A KR 920004949 B1 KR920004949 B1 KR 920004949B1
Authority
KR
South Korea
Prior art keywords
annealing
sec
minutes
primary
oriented electrical
Prior art date
Application number
KR1019890019989A
Other languages
Korean (ko)
Other versions
KR910012283A (en
Inventor
이청산
우종수
Original Assignee
포항종합제철 주식회사
정명식
재단법인 산업과학기술연구소
박태준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식, 재단법인 산업과학기술연구소, 박태준 filed Critical 포항종합제철 주식회사
Priority to KR1019890019989A priority Critical patent/KR920004949B1/en
Publication of KR910012283A publication Critical patent/KR910012283A/en
Application granted granted Critical
Publication of KR920004949B1 publication Critical patent/KR920004949B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A fabrication method for electric steel plate, which composition is 0.02-0.08 C, 2.5-4.0 Si, 0.05-0.20 Mn, 0.02-0.04 S and the remainder of Fe, in wt.%, is characterized by, after hot-rolling slab: (1) pre-annealing it at 750-1000 deg.C for 1-30 min; (2) cooling it down to 500-550 deg.C at a speed of 30-120 deg.C/sec; (3) homogenization treating it at 500-550 deg.C for 30 sec-20 min; (4) forming it by cold rolling for two times till its final thickness is 0.200-0.285 mm including intermidate annealing. It prevents from 1st normal recrystallization grain growth by addition of MnS and it can be applied to magnetic core materials for transformer and generator.

Description

자기특성이 우수한 방향성 전기강판의 제조방법Manufacturing method of oriented electrical steel sheet with excellent magnetic properties

제 1 도는 예비 소둔시 냉각속도에 따른 1차 냉간압연판의 집합조직 변화와 고온소둔판의 철손 변화를 나타낸 그래프.1 is a graph showing the change in the texture of the primary cold rolled plate and the iron loss of the hot annealing plate according to the cooling rate during pre-annealing.

제 2 도는 예비 소둔시 냉각후 균열시간에 따른 1차 냉간압연판의 집합조직 변화를 나타낸 그래프.2 is a graph showing the change in texture of the primary cold rolled sheet according to the cracking time after cooling during pre-annealing.

제 3 도는 예비 소둔 방법에 따른 탈탄소둔판의 집합조직 변화를 나타낸 (110)극점도.3 is a (110) pole figure showing the change in texture of the decarbonized annealing plate according to the pre-annealing method.

본 발명은 MnS를 1차 재결정 정상성장 억제제로 이용하고 2회의 냉간 압연을 하는 방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는, 냉간압연에 앞서 행하는 예비 소둔조건을 적절히 제어하여 자기특성을 향상시키는 방향정전기 강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a grain-oriented electrical steel sheet using MnS as the primary recrystallization normal growth inhibitor and subjected to two cold rollings. More specifically, the magnetic properties are controlled by appropriately controlling preliminary annealing conditions prior to cold rolling. The manufacturing method of the grain-oriented electrostatic steel plate to improve.

방향성 전기강판은 변압기나 발전기 등의 전기기기의 철심재료로 사용되며 압연 방향으로의 자속밀도가 높고 철손이 적은 자기특성을 가진다.A grain-oriented electrical steel sheet is used as an iron core material for electrical equipment such as transformers and generators, and has a high magnetic flux density in the rolling direction and low magnetic loss.

방향성 전기강판은 변압기나 발전기 등의 전기기기의 철심재료로 사용되며 압연 방향으로의 자속밀도가 높고 철손이 적은 자기특성을 가진다.A grain-oriented electrical steel sheet is used as an iron core material for electrical equipment such as transformers and generators, and has a high magnetic flux density in the rolling direction and low magnetic loss.

자기특성이 우수한 방향성 전기강판을 제조하기 위해서는 제조공정중 고온 소둔시 압연 방향으로의 배향성이 우수한 (110)[001]방위의 2차재결정을 일으켜야 하며, 이를 위해 2차재결정이 완전히 일어나기 전까지 (110)[001]방위 이외의 1차재결정 입자들이 정상적으로 성장하지 않도록 억제제를 첨가하는 것과, 2차 재결정의 핵인 (110)[001] 방위의 1차 재결정 입자가 이와 다른 방위의 1차재결정 입자들을 용이하게 잠식하여 2차재결정으로 성장할 수 있는 1차재결정 집합조직을 형성시키는 것이 필요하다.In order to manufacture oriented electrical steel sheets with excellent magnetic properties, secondary recrystallization of the (110) [001] orientation with good orientation in the rolling direction during high temperature annealing during the manufacturing process must be performed. The addition of an inhibitor to prevent normal recrystallization grains other than the [001] orientation from growing normally, and the primary recrystallization grains of the (110) [001] orientation, which are the nuclei of the secondary recrystallization, facilitate the primary recrystallization grains of the other orientation. It is necessary to form a primary recrystallization aggregate that can be encroached and grow into secondary recrystallization.

예컨대, MnS를 이용하는 방향성 전기강판에 있어서는 약 60%의 2차냉간압연에 의해 1차재결정 집합조직을 주성분이 (111)[112](110)[001]이며, 부성분이, (110)[001]인 것으로 형성시킬때 자기특성이 우수하게 되며, 억제력이 더 큰 MnS + AlN을 이용하는 고자속밀도 방향성 전기강판에 있어서는 약 85% 이상의 1회 강 냉간압연에 의해 1차재결정 집합조직을 주성분이 (111)[112], (112)[011]이며, 부성분이 (110)[001], (100)[011]인 것으로 형성시킬때 자기특성이 우수하게 된다.For example, in a grain-oriented electrical steel sheet using MnS, the primary recrystallized texture is formed by (60) secondary cold rolling at about 60%, and the main component is (111) [112] (110) [001], and the subcomponent is (110) [001. ], The high magnetic flux density oriented electrical steel sheet using MnS + AlN, which has a higher suppression force, has a primary reinforcing structure of primary recrystallized texture by cold rolling of about 85% or more. 111) [112], (112) [011], and the magnetic properties are excellent when the subcomponents are formed as (110) [001], (100) [011].

최근 에너지 절감의 필요성이 급증함에 따라 전기력 손실을 줄이려는 욕구도 증가하며 철손이 더욱 적은 방향성 전기강판이 요구 되고 있다.Recently, as the necessity of energy saving increases rapidly, the desire to reduce electric power loss also increases, and directional electrical steel sheets with less iron loss are required.

철손은 이력손(Hysteresis Loss)과 와류손(Eddy Current Loss)으로 대별되는데, 방향성 전기강판에 있어서 철손의 약 70% 이상을 점유하는 와류손은 판두께의 제곱에 비례하므로 판두께를 얇게 할수록 철손을 낮출 수 있게 되는 것이다.Iron loss is roughly classified into hysteresis loss and eddy current loss. Vortex loss which occupies about 70% or more of iron loss in oriented electrical steel is proportional to the square of plate thickness. Will be lowered.

그러나, 판두께를 얇게 압연하게 되면 1차재결정의 성장 구동력이 증가하며, 냉간압연조직에서 압연 안정방위인 (100)[011]의 증가로 인해 바람직한 1차재결정 집합조직이 형성되지 않기 때문에 2차재결정이 불안정하게 일어날 뿐만 아니라 2차재결정이 일어난다 하더라도 (110)[001]방위의 배향성이 악화되어 자기특성이 악화되기 때문에 통상의 방법으로 안정하게 제조할 수 있는 판두께의 하한치는 0.30mm수준이다.However, when the plate thickness is rolled thinly, the growth driving force of the primary recrystallization increases, and the secondary primary because the preferred primary recrystallized texture is not formed due to the increase of the rolling stability direction (100) in the cold rolled structure. In addition to unstable recrystallization, even if secondary recrystallization occurs, the lower limit of the plate thickness, which can be stably manufactured by the conventional method, is 0.30 mm because the orientation of the (110) [001] orientation is deteriorated and the magnetic properties deteriorate. .

0.30mm보다 얇은 판두께로 방향성 전기강판을 제조하기 위한 종래의 기술로는 1차재결정 성장 구동력의 증가를 보상해주기 위한 억제력 보충 방법이 미국특허 제 3,333,993호에 제시되어 있는데, 이 방법은 소둔분리제인 MgO슬러리(Slurry)에 유화물(또는 S)을 첨가하여 판면에 도포함으로써 고온 소둔시 기지조직으로부터 S가 유실되는 것을 방지하거나 기지조직으로 S를 확산 침투시키는 방법이다.Conventional techniques for producing grain-oriented electrical steel sheet with a thickness of less than 0.30 mm have been proposed in US Pat. No. 3,333,993 to compensate for the increase in primary recrystallization growth driving force. By adding an emulsion (or S) to the MgO slurry (S Slurry) is applied to the plate surface to prevent the loss of S from the matrix structure during high temperature annealing or to spread the S into the matrix structure.

그러나, 이 방법에 의하면 유화물(또는 S)이 균일하게 분산될 수 있도록 소둔 분리제를 장시간 교반해야 하는 결과로 MgO 슬러리의 수화율이 증가하여 고온 소둔후 유리질 피막을 바람직하게 형성시키는데 불리하다.However, this method is disadvantageous in that the hydration rate of the MgO slurry is increased as a result of having to agitate the annealing separator for a long time so that the emulsion (or S) can be uniformly dispersed, thereby forming a glassy film after high temperature annealing.

또한, 최근에는 MnS+AlN을 억제제로 이용하는 고자속밀도 방향성 전기강판에 있어서 Cu,Sn을 용해시 추가로 첨가하므로서 억제력을 더 증가시켜서 얇은 두께의 방향성 전기강판을 제조하는 방법이 알려져 있으나, 이 방법에 의하면 Cu,Sn 등의 원소는 고가이므로 생산원가가 상승할 뿐만 아니라, 특히 Sn은 표면활성원소(Surface Active Element)로서 탈탄을 방해하기 때문에 탈탄소둔시간을 늘여야 하는 단점이 있다.In addition, recently, in the high magnetic flux density oriented electrical steel sheet using MnS + AlN as an inhibitor, a method of manufacturing a thin oriented electrical steel sheet by increasing the inhibitory power by further adding Cu and Sn upon melting is known, but this method is known. According to the present invention, Cu, Sn and other elements are expensive, and thus production costs are increased. In particular, Sn inhibits decarburization as a surface active element, which increases the decarbonization time.

상기 종래의 기술과 비교해 볼때 본 발명의 억제력을 보충지 않고 1차재결정 집합조직을 제어하는 방법만으로 판두께를 0.30mm 미만으로 얇게하여 자기적 특성이 우수한 방향성 전기강판을 제조하는데 있다.Compared with the conventional technology, the thin plate thickness is less than 0.30 mm only by controlling the primary recrystallized texture without supplementing the inhibitory force of the present invention to produce a grain-oriented electrical steel sheet having excellent magnetic properties.

따라서, 본 발명은 강 슬라브를 통상의 방법으로 열간압연한 다음, 예비 소둔조건을 적절히 제어하므로서, 1차냉간압연판에서 (100)[011]방위의 강도가 감소된 집합조직을 형성시키고, 이로부터 1차재결정 소둔판에서 (111)[112]방위와 (110) [00 1]방위의 강도는 일정하지만 (100)[011]방위의 강도가 감소된 1차재결정 집합조직을 형성시켜 판두께를 0.200-0.285mm로 얇게 제조할 경우에는 2차 재결정이 안정하게 일어나고, 자기특성이 향상된 방향성 전기강판의 제조 방법에 관한 것이다.Therefore, the present invention hot rolled the steel slab in a conventional manner, and then, by appropriately controlling the pre-annealed conditions, thereby forming an aggregate structure in which the strength of the (100) orientation is reduced in the primary cold rolled plate. From the primary recrystallization annealing plate, the strength of the (111) [112] direction and the (110) direction is constant, but the thickness of the plate is formed by forming the primary recrystallization texture with reduced strength of the (100) [011] direction. When manufacturing a thin 0.200-0.285mm secondary recrystallization occurs stably, and relates to a method for producing a grain-oriented electrical steel sheet with improved magnetic properties.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은, 중량 %로, C : 0.02-0.08%, Si : 2.5-4.0%, Mn : 0.05-0.20%, S : 0.01-0.04%, 및 나머지 Fe로 조성되는 강 슬라브를 통상의 방법으로 열간압연 및 예비 소둔한 후 중간 소둔을 포함하는 2회 냉간압연, 탈탄, 고온 소둔하여 방향성 전기강판을 제조하는 방법에 있어서, 상기 예비 소둔이 750-1000℃에서 1-30분 동안 가열한 후 30℃/초-120℃/초의 냉각속도로 500-550℃까지 냉각하고 이 온도범위에서 30초-20분간 균열처리 하는 방식으로 행하여지고 예비 소둔후 최종 판두께가 0 . 200-0.285mm가 되도록 중간 소둔을 포함하는 2회 냉간압연을 행하는 자기특성이 우수한 방향성 전기강판의 제조방법에 관한 것이다.In the present invention, a steel slab composed of C: 0.02-0.08%, Si: 2.5-4.0%, Mn: 0.05-0.20%, S: 0.01-0.04%, and the remaining Fe is heated by a conventional method. In the method of manufacturing a grain-oriented electrical steel sheet by cold rolling, decarburization, high temperature annealing including intermediate annealing after rolling and preannealing, the preannealing is heated at 750-1000 ° C. for 1-30 minutes and then 30 ° C. Cooling down to 500-550 ℃ at a cooling rate of -120 ℃ / sec and cracking at this temperature range for 30 seconds-20 minutes, after which the final sheet thickness is 0. The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties of performing two cold rollings including intermediate annealing so as to be 200-0.285 mm.

왜 예비 소둔 방법에 따라 1차 냉간압연판 집합조직이 변화하게 되는가는 아직 확실히 규명할 수는 없지만 한가지 가능한 것은 고온에서 저온까지 임계 냉각 속도 이상으로 냉각시킬 때 기지조직내에 열응력(Thermal Stress)이 잔류하게 되는데 이러한 잔류 열응력은 조직의 방위에 따라 차이가 나게되고, 이후 일정온도에서의 균열에 의해 잔류 열응력이 선택적으로 제거되는 작용의 결과로 1차냉간압연 집합조직이 변화되는 것으로 생각된다.It is not yet clear why the primary cold-rolled plate structure changes according to the pre-annealing method, but one possibility is that the thermal stress in the matrix structure when cooling above the critical cooling rate from high temperature to low temperature is unknown. The residual thermal stress is different according to the orientation of the tissue, and it is thought that the primary cold rolled texture is changed as a result of the action of selectively removing residual thermal stress by cracking at a constant temperature. .

상기 예비 소둔 초기 온도가 최소한의 필요한 열응력을 얻기 위해 750℃ 이상으로 하여야 하나, 1000℃를 초과하는 경우에는 열간압연판 표면층의 결정입자가 조대 성장할 뿐만 아니라 중심부의 연신된 입자가 재결정되어 2차재결정이 불안정하게 일어나므로, 750-1000℃가 바람직하며, 보다 바람직한 예비 소둔초기 온도는 775-930℃이다.The pre-annealed initial temperature should be at least 750 ° C. in order to obtain the minimum necessary thermal stress. However, if the initial annealing temperature exceeds 1000 ° C., not only the crystal grains of the hot rolled sheet surface layer grow coarsely but also the re-crystallized particles in the center are recrystallized. Since recrystallization occurs unstable, 750-1000 ° C. is preferred, and the more preferred pre-anneal initial temperature is 775-930 ° C.

상기 초기온도에서의 유지시간은 강판의 온도를 균일하게 하기 위해 최소한 1분 이상으로 행해야 하나, 30분을 초과할 경우에는 열간압연판 조직변화로 2차재결정이 불안정하게 일어나므로, 1분-30분이 바람직하다. 750-1000℃ 온도에서 500-550℃까지의 냉각속도가 30℃/초 미만인 경우에는 열응력이 미약하게 발생되어 좋지 않으며, 120℃/초를 초과하는 경우에는 냉각후의 판형상이 매우 불균일해져서 냉간압연성이 악화될뿐만 아니라 냉간압연조직이 불균일해져서 2차 재결정이 불안정하게 일어나므로, 30℃/초-120℃/초가 바람직하다.The holding time at the initial temperature should be at least 1 minute in order to make the temperature of the steel sheet uniform, but if it exceeds 30 minutes, the secondary recrystallization will be unstable due to the change in the structure of the hot rolled steel sheet, and therefore 1 minute-30 Minutes are preferred. If the cooling rate from 750-1000 ℃ to 500-550 ℃ is less than 30 ℃ / sec, thermal stress is not generated weakly. If it exceeds 120 ℃ / sec, the plate shape after cooling becomes very uneven and cold rolled. In addition to deterioration of the properties, the cold-rolled structure becomes uneven and secondary recrystallization occurs unstable, so 30 ° C / sec-120 ° C / sec is preferable.

냉각후 균열온도가 500℃ 미만인 경우에는 열응력의 제거가 미흡하며 550℃를 초과하는 경우에는 열응력의 선택적 제거가 어려워 냉간 압연판에서 (100)[011] 조직 감소효과가 미약하므로 500℃-550℃가 바람직하다. 또한, 500-550℃에서의 균열시간이 30초 미만인 경우에는 열응력의 제거가 미흡하고, 20분을 초과하는 경우에는 열응력이 거의 제거되어 냉간압연판에서 (100)[011]조직 감소효과를 얻기가 어렵기 때문에 30초-20분간 행하는 것이 바람직하며, 보다 바람직한 균열처리시간은 1분-10분 정도이다.If the cracking temperature after cooling is less than 500 ℃ is insufficient removal of the thermal stress, if it exceeds 550 ℃ it is difficult to selectively remove the thermal stress (500) 550 degreeC is preferable. In addition, if the cracking time at 500-550 ℃ is less than 30 seconds, the thermal stress is insufficient to remove, if it exceeds 20 minutes, the thermal stress is almost removed to reduce the (100) structure in the cold rolled plate Since it is difficult to obtain, it is preferable to carry out for 30 seconds to 20 minutes, and more preferable cracking treatment time is about 1 minute to 10 minutes.

2차 냉간압하율은 통상의 방향성 전기강판의 압하율인 50-65%로 하며, 이범위밖의 압하율로 2차 냉간압연하게 되면 2차 재결정의 배향성이 악화된다.The secondary cold reduction rate is 50-65%, which is the rolling reduction rate of a conventional oriented electrical steel sheet, and when the secondary cold rolling is performed at a reduction rate outside this range, the orientation of the secondary recrystallization deteriorates.

최종판의 두께는 0.200-0.285mm로 한정되는데, 그 이유는 0.285mm를 초과하는 경우에는 자기특성의 개선이 미흡하며, 0.200mm보다 얇은 경우에는 2차재결정이 불안정하게 일어나기 때문이다.The thickness of the final plate is limited to 0.200-0.285mm, because the improvement of the magnetic properties is insufficient when it exceeds 0.285mm, the secondary recrystallization occurs unstable when thinner than 0.200mm.

상기 강슬라브의 성분중 탄소는 그 함량이 0.02 중량% 미만인 경우에는 조직의 불균일성은 물론 열간압연시 α-γ상 변태의 양이 적고, 0.08중량%를 초과하면 공업적인 측면에서 탈탄소둔시간이 많이 걸려 좋지 않으므로, 0.02-0.08중량%가 바람직하며, 가장 바람직한 탄소의 양은 0.04-0.06 중량%이다.When the content of the carbon of the steel slab is less than 0.02% by weight of the non-uniformity of the tissue as well as the amount of α-γ phase transformation during hot rolling, less than 0.08% by weight of the decarbonization time in the industrial aspect is much Since it is not brittle, 0.02-0.08% by weight is preferred, and the most preferred amount of carbon is 0.04-0.06% by weight.

Mn과 S는 1차재결정 성작억제제인 MnS 화합물을 형성하는데 필요한 원소로 Mn과 S의 양이 각각 0.05-0.20중량%, 0.01-0.04중량%의 범위를 벗어나는 경우에는 목적하고자 하는 2차재결정이 불안정하게 일어나므로 바람직하지 않다.Mn and S are elements necessary to form MnS compound, which is a primary recrystallization inhibitor, and when the amount of Mn and S is out of the range of 0.05-0.20 wt% and 0.01-0.04 wt%, respectively, the desired secondary recrystallization is unstable. It is undesirable because it happens.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

중량%로, C : 0.041%, Si : 3.17%, Mn : 0.062%, S : 0.025%, 및 나머지 Fe로 조성되는 강 슬라브를 2.0mm로 연간압연한 열연판을 900℃에서 2분정도 가열한 후 제 1 도에서와 같이 10℃/초-120℃/초의 냉각속도로 530℃까지 냉각하고 이 온도에서의 균열시간을 제 2 도에서와 같이 0초-20분간으로 변화하는 예비소둔을 행하였으며, 이때 냉각속도의 변화를 위해서는 대기중에서의 냉각(10℃/초), 압축공기에 의한 냉각(30℃/초), 중합체 퀘칭제(Polymer Quenchant)에 의한 유냉(50℃/초), 15℃물에 의한 수냉의 방법(120℃/초)을 사용 하였다.By weight, steel rolls composed of C: 0.041%, Si: 3.17%, Mn: 0.062%, S: 0.025%, and the remaining Fe to 2.0 mm were heated annually at 900 ° C. for 2 minutes. After cooling to 530 ℃ at a cooling rate of 10 ℃ / seconds -120 ℃ / second as shown in Figure 1 and pre-annealed to change the crack time at this temperature to 0 seconds-20 minutes as shown in Figure 2 In this case, in order to change the cooling rate, cooling in the air (10 ° C / sec), cooling by compressed air (30 ° C / sec), oil cooling by polymer quenching agent (Polymer Quenchant), 15 ° C The method of water cooling with water (120 ° C./sec) was used.

이 예비소둔판을 2.0mm 두께에서 0.575mm 두께로 1차 냉간압연한 후 930℃에서 3분동안 건 수소 분위기에서 중간소둔을 하였으며, 이어서 0.23mm두께로 2차 냉간압연한 후 820℃에서 3분동안 습한 수소 및 질소혼합 분위기에서 탈탄 및 1차재결정 소둔시켰다.The preannealed plate was first cold rolled from 2.0mm to 0.575mm thick and then annealed in dry hydrogen atmosphere for 3 minutes at 930 ℃, followed by secondary cold rolling to 0.23mm thickness for 3 minutes at 820 ℃. Decarburization and primary recrystallization annealing in a humid hydrogen and nitrogen mixed atmosphere.

이 탈탄 소둔판을 소둔분리제인 MgO 슬러리로(slurry) 로 도포한 후, 건 수소분위기에서 고온소둔시 800℃에서 950℃까지 15℃/초로 승온하여 2차재결정 열처리한 후 1200℃에서 10시간 순화열처리(Purification Heat Treatment)를 행하였다.The decarburized annealing plate was coated with MgO slurry, an annealing separator, and then heated to 15 ° C./sec from 800 ° C. to 950 ° C. at high temperature in an dry hydrogen atmosphere, followed by secondary recrystallization heat treatment, and then purified at 1200 ° C. for 10 hours. Treatment Heat Treatment was performed.

상기 제조공정중에서 예비소둔시 900℃에서 530℃까지 냉각속도를 10℃/초-120℃/초로 변화시켜 냉각하고 530℃에서 2분간 균열처리 하였을 때의 냉각속도에 따른 1차 냉간압연판에서의 각 면강도(Phk1)의 변화와 고온 소둔판에서의 철손변화를 측정하여 제 1 도에 나타냈으며, 900℃에서 530℃까지 50℃/초의 냉각속도로 냉각하고 530℃에서의 균열시간을 0초-20분으로 변화시켰을 때 균열시간에 따른 1차 냉간압연판에서의 각 면강도의 변화를 제 2 도에 나타내었다.During pre-annealing during the manufacturing process, the cooling rate was changed from 900 ° C. to 530 ° C. at 10 ° C./sec-120° C./sec. The change in the surface strength (P hk1 ) and the iron loss in the high temperature annealing plate were measured and shown in FIG. 1. Fig. 2 shows the change of the surface strength of the primary cold rolled plate with the crack time when it is changed to the second-20 minutes.

또한 상기 제조 공정중에서 예비소둔시 900℃에서 530℃까지의 냉각속도를 10℃/초로 하고 530℃에서의 균열처리를 10초동안 실시한 비교재와 900℃에서 530℃까지의 냉각속도를 50℃/초로 하고 530℃에서의 균열처리를 3분동안 실시한 발명재의 탈탄 소둔판에서의 1차재결정 집합조직을 나타내는 (110) 극점도를 제 3 도에 나타내었는데, 제 3a 도는 비교재의(110) 극점도이며, (b)는 본 발명재의 (110)극점도이다.In addition, the cooling rate from 900 ℃ to 530 ℃ 10 ℃ / second during the preliminary annealing in the manufacturing process and the comparative material subjected to the crack treatment at 530 ℃ for 10 seconds and the cooling rate from 900 ℃ to 530 ℃ 50 ℃ / The (110) pole figure showing the primary recrystallized texture in the decarburized annealing plate of the invention material which was subjected to cracking treatment at 530 ° C. for 3 minutes was shown in FIG. 3, and FIG. 3a is the (110) pole figure of the comparative material. (B) is the (110) pole viscosity of this invention material.

제 1 도에 나타난 바와같이, 예비 소둔시 900℃에서 530℃까지의 냉각속도가 30℃/초-120℃/초인 본 발명재의 경우 냉각속도가 10℃/초 이하인 비교재(10℃/초이하)에 비해 1차 냉간압연판의 (100) 면강도가 감소되고 자기특성(철손)이 개선된 것을 알 수 있으며, 제 2 도에 나타난 바와같이, 530℃에서의 균열시간이 30초-20분인 본 발명재의 경우 비교재(미실시, 10초 이하)에 비해(100)면 강도가 감소된 것을 알 수 있다.As shown in FIG. 1, the comparative material having a cooling rate of 10 ° C / sec or less for the present invention having a cooling rate from 900 ° C to 530 ° C of 30 ° C / sec-120 ° C / sec upon preliminary annealing (10 ° C / sec or less) It can be seen that the (100) surface strength of the primary cold rolled sheet is reduced and the magnetic properties (iron loss) are improved, as shown in FIG. 2, and the cracking time at 530 ° C is 30 seconds-20 minutes. In the case of the present invention it can be seen that the (100) surface strength is reduced compared to the comparative material (not implemented, 10 seconds or less).

여기서, (100) 면강도는 (100)[011]방위의 강도를 상대적으로 나타내는 수치이므로 1차 냉간압연판 집합 조직에서 (100)[011] 방위의 강도가 본 발명재의 경우 비교재에 비해 감소하였음을 알 수 있으며, 이러한 1차 냉간압연판 집합조직의 차이는 1차재결정 집합조직에서도 나타나게 된다.Here, the (100) face strength is a numerical value representing the strength of the (100) [011] orientation, so that the strength of the (100) [011] orientation in the primary cold rolled sheet aggregate is reduced compared to that of the comparative material in the present invention. It can be seen that the difference between the primary cold rolled sheet aggregates is also shown in the primary recrystallized aggregates.

제 3 도에 나타난 바와같이, 본 발명재의 경우 비교재에 비해 2차재결정에 유해한 방위인 (100)[011]방위가 감소된 조직을 얻을 수 있으며, 또한, 이로부터 (1 0 0 ) [011]방위가 감소된 1차 재결정 집합조직을 형성시킬 수 있게 되어 0.30mm 두께미만의 얇은 방향성 전기강판에서도 배향성이 우수한 (110)[001]방위의 2차재결정을 안정하게 일으킬 수 있게 되는 것이다.As shown in FIG. 3, in the case of the present invention, it is possible to obtain a tissue having a reduced orientation of (100) [011], which is a harmful orientation to secondary recrystallization, compared to the comparative material, and from this, (1 0 0) [011] The primary recrystallized texture with reduced orientation can be formed, and even in thin oriented electrical steel sheets less than 0.30 mm thick, it is possible to stably generate secondary recrystallization of the (110) [001] orientation having excellent orientation.

[실시예 2]Example 2

중량%로, C : 0.043%, Si : 3.22%, Mn : 0.068%, S : 0.022%, 및 나머지 Fe로 구성되는 2.0mm두께의 열간압연판을 출발소재로 사용하여 하기표 1과 같이 초기온도 700℃-1050℃에서 10초 -40분 가열한 후 즉시 10℃/초-150℃/초의 냉각속도로 450℃-600℃까지 냉각하고 이어서 이온도에서 10초-30분 균열시키는 예비소둔을 행하였다.By weight%, C: 0.043%, Si: 3.22%, Mn: 0.068%, S: 0.022%, and the initial temperature as shown in Table 1 using a 2.0mm thick hot rolled sheet composed of the remaining Fe as a starting material After heating for 10 seconds -40 minutes at 700 ° C-1050 ° C and immediately cooling to 450 ° C-600 ° C at a cooling rate of 10 ° C / second-150 ° C / second, and then pre-annealing to crack 10 seconds-30 minutes at ionicity. It was.

상기 처리재를 산세한 후 0.75mm, 0.72mm, 0.575mm, 0.5mm, 0.45mm 두께로 1차 냉간압연하고 930℃에서 3분간 건 수소 분위기중에서 중간 소둔한 후 약 60%의 압하율로 각각 0.3mm, 0.285mm, 0.23mm, 0.20mm, 0.18mm 두께로 2차 냉간압연하였다.After pickling the treated material, the first cold rolled to a thickness of 0.75mm, 0.72mm, 0.575mm, 0.5mm, 0.45mm, and after annealing in dry hydrogen atmosphere for 3 minutes at 930 ° C for 0.3 at a reduction ratio of about 60%, respectively. Secondary cold rolling was performed in mm, 0.285 mm, 0.23 mm, 0.20 mm, and 0.18 mm thicknesses.

상기 처리재를 820℃에서 3분간 습한 수소 및 질소 혼합분위기에서 탈탄 및 1차재결정 소둔한 후 소둔분리제인 MgO 슬러리를 도포하였으며, 이어서 건 수소 분위기에서 고온 소둔한 후 2차 재결정 발생율과 자기특성을 측정하고 그 결과를 하기표 1 에 나타내었다.After the treated material was decarburized and primary recrystallized annealed in a mixed atmosphere of hydrogen and nitrogen at 820 ° C. for 3 minutes, MgO slurry, an annealing separator, was applied, followed by secondary annealing incidence and magnetic properties after high temperature annealing in a dry hydrogen atmosphere. It measured and the result is shown in following Table 1.

[표 1a]TABLE 1a

Figure kpo00001
Figure kpo00001

[표 1b]TABLE 1b

Figure kpo00002
Figure kpo00002

상기 표 1에서 나타난 바와같이, 본 발명에 부합되는 예비 소둔조건으로 예비 소둔을 행하는 발명재(1-24)가 본 발명에서 벗어나는 예비 소둔조건으로 비교재(a-w)비하여 자기적 성질, 즉 자속밀도 및 철손이 우수함을 알 수 있다.As shown in Table 1, the invention material (1-24) to perform a pre-annealed in a pre-annealed condition in accordance with the present invention is magnetic properties, that is, magnetic flux density compared to the comparative material (aw) to a pre-annealed condition deviating from the present invention And it can be seen that iron loss is excellent.

상술한 바와같이, 본 발명은 강 슬라브를 통상의 방법으로 열간압연한 다음, 예비소둔조건을 적절히 제어하고 판두께가 0.200-0.285mm가 되도록 2회 냉간압연하므로서, 방향성 전기강판의 자기적 성질을 향상시킬 수 있는 효과가 있는 것이다.As described above, the present invention hot rolls the steel slab in a conventional manner, and then controls the pre-annealing conditions appropriately and cold rolls twice so that the plate thickness is 0.200-0.285mm, thereby improving the magnetic properties of the grain-oriented electrical steel sheet. There is an effect that can be improved.

Claims (1)

중량 %로, C : 0.02-0.08%, Si : 2.5-4.0%, Mn : 0.05-0.20%, S : 0.01-0.04%, 및 나머지 Fe로 조성되는 강 슬라브를 통상의 방법으로 열간압연 및 예비 소둔한 후 중간 소둔을 포함하는 2회 냉간압연, 탈탄, 고온 소둔하여 방향성 전기강판을 제조하는 방법에 있어서, 상기 예비 소둔이 750-1000℃에서 1-30분 동안 가열한 후 30℃/초-120℃/초의 냉각속도로 500-550℃까지 냉각하고 이 온도범위에서 30초-20분간 균열처리 하는 방식으로 행하여지고, 예비 소둔후 최종 판두께가 0.200-0.285mm가 되도록 중간 소둔을 포함하는 2회 냉간압연을 행하는 자기특성이 우수한 방향성 전기강판의 제조방법.The steel slab composed of C: 0.02-0.08%, Si: 2.5-4.0%, Mn: 0.05-0.20%, S: 0.01-0.04%, and the remaining Fe, by weight, hot rolled and preannealed in a conventional manner. In the method of producing a grain-oriented electrical steel sheet by cold rolling, decarburization, high temperature annealing, including the intermediate annealing, after the pre-annealing is heated for 1-30 minutes at 750-1000 ℃ 30 ℃ / sec-120 Cooled to 500-550 ° C at a cooling rate of ° C / sec and cracked at this temperature range for 30 seconds to 20 minutes, followed by two times of intermediate annealing so that the final sheet thickness is 0.200-0.285mm after preannealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties for cold rolling.
KR1019890019989A 1989-12-28 1989-12-28 Making process for the electic steel plate KR920004949B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890019989A KR920004949B1 (en) 1989-12-28 1989-12-28 Making process for the electic steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890019989A KR920004949B1 (en) 1989-12-28 1989-12-28 Making process for the electic steel plate

Publications (2)

Publication Number Publication Date
KR910012283A KR910012283A (en) 1991-08-07
KR920004949B1 true KR920004949B1 (en) 1992-06-22

Family

ID=19294046

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890019989A KR920004949B1 (en) 1989-12-28 1989-12-28 Making process for the electic steel plate

Country Status (1)

Country Link
KR (1) KR920004949B1 (en)

Also Published As

Publication number Publication date
KR910012283A (en) 1991-08-07

Similar Documents

Publication Publication Date Title
RU2610204C1 (en) Method of making plate of textured electrical steel
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
KR0182802B1 (en) Grain-oriented electrical steel sheet with very low core loss and method of producing the same
EP0307905B1 (en) Method for producing grainoriented electrical steel sheet with very high magnetic flux density
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JPH1143746A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP7197069B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3928275B2 (en) Electrical steel sheet
KR920004949B1 (en) Making process for the electic steel plate
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH11323438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP7239077B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
EP4353849A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
KR101318275B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
KR100701195B1 (en) A grain-oriented electrical steel sheet manufacturing method without hot band annealing
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH1017931A (en) Production of grain oriented silicon steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet
KR20230159875A (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000531

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee