JPH05320770A - Production of high magnetic flux density grain-oriented silicon steel sheet having no glass film - Google Patents

Production of high magnetic flux density grain-oriented silicon steel sheet having no glass film

Info

Publication number
JPH05320770A
JPH05320770A JP4131189A JP13118992A JPH05320770A JP H05320770 A JPH05320770 A JP H05320770A JP 4131189 A JP4131189 A JP 4131189A JP 13118992 A JP13118992 A JP 13118992A JP H05320770 A JPH05320770 A JP H05320770A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
magnetic flux
flux density
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4131189A
Other languages
Japanese (ja)
Inventor
Osamu Tanaka
収 田中
Hiroaki Masui
浩昭 増井
Tsutomu Haratani
勤 原谷
Masao Ono
正雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4131189A priority Critical patent/JPH05320770A/en
Publication of JPH05320770A publication Critical patent/JPH05320770A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To manufacture a high magnetic flux density grain-oriented silicon steel sheet excellent in the capacity of core loss improving effect by magnetic domain subdividing by coating a steel sheet with a separation agent for annealing contg. an S compound of Li or the like by specified wt.pts. to MgO and added with chloride or the like of the same and thereafter executing annealing under specified conditions. CONSTITUTION:A silicon steel slab contg., by weight, 0.03 to 0.12% C, 2.5 to 4.5% Si or the like, and the balance Fe is subjected to hot rolling, annealing, rapid cooling, cold rolling, decarburizing annealing, the coating of a separation agent for annealing and final finish annealing, and heat flattening is executed to manufacture the objective grain-oriented silicon steel sheet; where it is coated with a separation agent for annealing contg. one or more kinds among S compounds of Li, Ca, Zn or the like by 5 to 20 wt.pts. to 100 wt.pts. of MgO and furthermore added with one or more kinds among the chloride, carbonate and nitrate of the elements by 2 to 20 wt.pts. As for the subsequent final annealing conditions, it is annealed in an atmosphere contg. <=25% N2 at the time of temp. raising to 700 to 1200 deg.C. In this way, the silicon steel sheet excellent in workabilities of cuttability, blanking properties or the like can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はグラス皮膜(フォルステ
ライト)を有しない方向性電磁鋼板の製造方法に関わ
り、切断性、打抜性等の加工性が優れ、かつ磁区細分化
による鉄損改善効果能の著しく優れた高磁束密度方向性
電磁鋼板の製造方法に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having no glass coating (forsterite), which has excellent workability such as cutting property and punching property, and improves iron loss due to subdivision of magnetic domains. The present invention relates to a method of manufacturing a high magnetic flux density grain-oriented electrical steel sheet which is remarkably effective.

【0002】[0002]

【従来の技術】方向性電磁鋼板は一般に軟磁性材料とし
て、主としてトランスその他の電気機器の鉄心として使
用されるもので、磁気特性として、励磁特性と鉄損の良
好なものが要求される。良好な磁気特性を得るために
は、磁化容易軸である<001>軸を圧延方向に高度に
揃えることが重要である。また、板厚、結晶粒度、固有
抵抗、皮膜等も磁気特性に大きい影響を与えるため重要
である。結晶の方向性については、AlN、MnSをイ
ンヒビターとして利用した高圧下最終冷延を特徴とする
方法により大幅に向上し、現在では磁束密度がほぼ理論
値に近いものまで製造されるようになってきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are generally used as soft magnetic materials, mainly as iron cores for transformers and other electric equipment, and are required to have good magnetic characteristics such as excitation characteristics and iron loss. In order to obtain good magnetic characteristics, it is important to highly align the <001> axis, which is the easy magnetization axis, with the rolling direction. Further, the plate thickness, crystal grain size, specific resistance, film and the like are also important because they have a great influence on the magnetic properties. The crystal orientation has been greatly improved by a method characterized by final cold rolling under high pressure using AlN and MnS as inhibitors, and at present, magnetic flux densities approaching theoretical values are being manufactured. It was

【0003】一方、方向性電磁鋼板の需要家における使
用時に磁気特性と共に重要なのは皮膜特性と加工性であ
る。通常、方向性電磁鋼板は、最終仕上焼鈍時に形成す
るグラス皮膜と絶縁皮膜の二層皮膜によって表面処理が
なされている。グラス皮膜は焼鈍分離剤のMgOと脱炭
焼鈍時に形成するSiO2 の反応物であるフォルステラ
イト(Mg2 SiO 4 )が主成分の皮膜である。このフ
ォルステライト主成分のセラミック皮膜は、その張力効
果によって、鉄損、磁歪等の向上をもたらすが、形成状
態によっては磁束密度を低下させたり、鉄損改善効果に
も著しい影響を及ぼす。更に皮膜が硬質で工具等の摩耗
性が強く、電磁鋼板を鉄心加工する際のスリット、切
断、打抜き等の際の工具類の耐久性に著しい悪影響を及
ぼす。例えばグラス皮膜を有する方向性電磁鋼板の打抜
加工を行う場合には金型の摩耗が生じ、数千回程度の打
抜きにより、打抜いたシートの返りが使用時に問題を生
じる程大きくなる。このため、金型の研磨或いは新品と
の取替えが必要となる。これは鉄心加工時の作業能率を
低下させ、またコスト上昇を招く結果になる。
On the other hand, the use of grain-oriented electrical steel sheets in customers
When used, the coating properties and workability are important along with the magnetic properties.
It Normally, grain-oriented electrical steel sheets are formed during final finish annealing.
Surface treatment by a two-layer film consisting of a glass film and an insulating film
Has been done. Glass coating is decarburized with annealing separator MgO
SiO formed during annealing2Forstella, a reaction product of
Ito (Mg2SiO Four) Is the main film. This
The ceramic film mainly composed of olsterite has a tensile effect.
Depending on the result, iron loss, magnetostriction, etc. are improved.
Depending on the condition, it may reduce the magnetic flux density or improve the iron loss.
Also has a significant effect. Furthermore, the film is hard and wears tools
It has strong properties, and it has slits and cuts when processing the magnetic steel sheet iron core.
Significantly adversely affects the durability of tools such as cutting and punching.
I'm sorry. For example, punching of grain-oriented electrical steel sheet with glass coating
When machining is performed, the mold wears out and the tool is struck several thousand times.
Due to the punching, the return of the punched sheet causes problems during use.
The more you twist it, the bigger it gets. Therefore, the mold must be polished or new.
Will need to be replaced. This improves work efficiency during iron core processing
As a result, the cost is lowered and the cost is increased.

【0004】これらの問題から、絶縁コーティングで高
張力皮膜を付与する場合、他の手段で磁区細分化処理を
行う場合や、逆に板厚が厚く皮膜張力効果で鉄損特性の
改善が期待できないようなケースでは、むしろ前記問題
からグラス皮膜を有しない方向性電磁鋼板が望まれる。
とりわけ、近年では、磁区細分化による鉄損改善技術と
して光学的、機械的、化学的な手段により局所的な歪を
付与したり、線状或いは点状疵を鋼板面に付与する技術
が発達しており、グラス皮膜の様に皮膜の内部酸化層の
ない方が、磁化の際に磁壁のピンニング現象がなく、低
鉄損が得られることが判ってきた。
From these problems, when a high-strength coating is applied by an insulating coating, magnetic domain subdivision processing is performed by other means, or conversely, the plate thickness is large and the iron loss characteristics cannot be expected to be improved due to the coating tension effect. In such a case, a grain-oriented electrical steel sheet having no glass coating is desired due to the above problems.
In particular, in recent years, as a technique for improving iron loss by subdividing magnetic domains, a technique for imparting local strain by optical, mechanical, or chemical means, or imparting linear or punctiform flaws to a steel plate surface has been developed. It has been found that, without the internal oxide layer of the film, such as the glass film, there is no pinning phenomenon of the domain wall during magnetization, and low iron loss can be obtained.

【0005】このため、グラス皮膜を有しない高磁束密
度方向性電磁鋼板の開発は、超低鉄損材を得る目的や需
要家での種々の使用条件を考えると重要で、開発ニーズ
が高まっている。グラス皮膜を有しない方向性電磁鋼板
の製造法としては、例えば特開昭53−22113号公
報に開示のものがある。これは脱炭焼鈍において酸化膜
の厚みを3μm以下として、焼鈍分離剤として含水珪酸
塩鉱物粉末を5〜40%含有する微粒子のアルミナを用
い、これを鋼板に塗布し、仕上焼鈍すると酸化膜を薄く
し、さらに含水珪酸塩の配合によって剥離しやすいグラ
ス皮膜が形成され、金属光沢を有するものが得られると
されている。焼鈍分離剤によりグラス皮膜の形成を抑制
する方法としては、特開昭56−65983号公報に、
水酸化アルミニウムに不純物除去用添加物20重量部、
抑制物質10重量部を配合した焼鈍分離剤を鋼板に塗布
し、0.5μm以下の薄いグラス皮膜を形成する方法が
開示されているある。また、特開昭62−215225
号公報では、本発明者らの1人によってMgO100重
量部に対し、アルカリ金属またはアルカリ土類金属の1
種又は2種以上を2〜40重量部添加してなる方向性電
磁鋼板の焼鈍分離剤が提案されている。これによれば焼
鈍分離剤中の塩化物のSiO2 層へのエッチング作用に
よりグラス皮膜が形成されず、打抜性のよい方向性電磁
鋼板が得られるというものである。
Therefore, the development of a high magnetic flux density grain-oriented electrical steel sheet having no glass coating is important in view of the purpose of obtaining an ultra-low iron loss material and various conditions of use by customers, and the development needs are increasing. There is. A method for producing a grain-oriented electrical steel sheet having no glass coating is disclosed in, for example, JP-A-53-22113. This is because when decarburizing annealing, the thickness of the oxide film is 3 μm or less, fine particles of alumina containing 5 to 40% of hydrous silicate mineral powder are used as an annealing separating agent, and this is applied to a steel sheet and finish annealing is performed to form an oxide film. It is said that a thin glass film is formed by blending a hydrated silicate to form a glass film that is easy to peel off, and a glass film having a metallic luster can be obtained. A method for suppressing the formation of a glass film by an annealing separator is disclosed in JP-A-56-65983.
20 parts by weight of an additive for removing impurities in aluminum hydroxide,
There is disclosed a method in which an annealing separator containing 10 parts by weight of an inhibitor is applied to a steel sheet to form a thin glass film of 0.5 μm or less. Also, JP-A-62-215225
In the gazette, one of the inventors of the present invention added 1 part of alkali metal or alkaline earth metal to 100 parts by weight of MgO.
There has been proposed an annealing separator for grain-oriented electrical steel sheets, which is formed by adding 2 to 40 parts by weight of one or more kinds. According to this, the glass film is not formed by the etching action of the chloride in the annealing separator on the SiO 2 layer, and the grain-oriented electrical steel sheet having good punchability is obtained.

【0006】これらの従来技術は、方向性電磁鋼板の中
で、通常オリエントコアと呼ばれる磁束密度が1.88
以下の様な低級のものをベースとする技術であり、本発
明で意図するような高磁束密度の方向性電磁鋼板を安定
して得る技術を開発するまでに至っていない。
[0006] These conventional techniques have a magnetic flux density of 1.88, which is usually called an orient core, in a grain-oriented electrical steel sheet.
It is a technology based on the following low grade materials, and a technology for stably obtaining a grain-oriented electrical steel sheet having a high magnetic flux density as intended in the present invention has not yet been developed.

【0007】[0007]

【発明が解決しようとする課題】本発明は、打抜き性、
スリット性、切断性等の加工性が優れると共に磁区細分
化処理において鉄損特性の改善効果能の優れる均一にグ
ラス皮膜を有しない(グラスレス)かつ高磁束密度方向
性電磁鋼板の安価な製造方法を提供することを目的とし
てなされる。
DISCLOSURE OF THE INVENTION The present invention provides punchability,
It has excellent workability such as slitting and cutting properties, and also has an excellent effect of improving iron loss characteristics in magnetic domain refinement treatment. It is an inexpensive manufacturing method for a uniform magnetic film-less (glassless) and high magnetic flux density grain-oriented electrical steel sheet. Is made for the purpose of providing.

【0008】[0008]

【課題を解決するための手段】本発明における高磁束密
度方向性電磁鋼板は、鋼成分として、重量でC:0.0
30〜0.12%、Si:2.5〜4.5%、Mn:
0.03〜0.20%、S:0.01〜0.06%、酸
可溶Al:0.01〜0.05%、N:0.0030〜
0.012%を含み、残部Feと不可避の不純物からな
る珪素鋼スラブを公知の方法で熱延し、焼鈍し、急冷処
理の後、酸洗し、1回又は中間焼鈍を挟む2回以上の冷
延により最終板厚とし、次いで脱炭焼鈍し、焼鈍分離剤
を塗布し、仕上焼鈍することを基本工程とする。このよ
うな成分と工程における本発明のグラス皮膜を有しない
高磁束密度方向性電磁鋼板を得る方法においては、脱炭
焼鈍〜仕上焼鈍工程に特徴がある。
The high magnetic flux density grain-oriented electrical steel sheet according to the present invention has, as a steel component, C: 0.0 by weight.
30-0.12%, Si: 2.5-4.5%, Mn:
0.03 to 0.20%, S: 0.01 to 0.06%, acid-soluble Al: 0.01 to 0.05%, N: 0.0030 to
A silicon steel slab containing 0.012% and the balance of Fe and unavoidable impurities is hot-rolled by a known method, annealed, quenched, then pickled, and once or twice with an intermediate annealing. The basic steps are cold rolling to a final plate thickness, decarburization annealing, application of an annealing separator, and finish annealing. The method of obtaining the high magnetic flux density grain-oriented electrical steel sheet having no glass coating of the present invention in such components and steps is characterized by the decarburization annealing to finish annealing steps.

【0009】最終冷延された素材は連続焼鈍ラインにお
いて脱炭焼鈍される。この脱炭焼鈍により鋼中のCの除
去と一次再結晶が行われ、同時に鋼板表面にSiO2
主成分とする酸化膜の形成が行われる。その際の鋼板の
酸化量は〔O〕量で900ppm以下、かつFeO/S
iO2 (但しFeOはFe2 SiO4 中のFeO)≦
0.25とされる。脱炭焼鈍は800〜875℃でN2
+H2 雰囲気でPH2O /PH2をコントロールして行われ
る。この後、焼鈍分離剤として水和水分が0.5〜5.
0のMgO100重量部に対し、少なくともLi、K、
Na、Ca、Mg、Zn、Fe、Mn、Cu、Sn、S
r、AlのS化合物の1種又は2種以上0.5〜20重
量部と、更にこれらの元素の塩化物、炭酸塩、硝酸塩等
の1種又は2種以上を2〜20重量部添加した焼鈍分離
剤を塗布し、乾燥してコイルに巻取られる。
The final cold rolled material is decarburized and annealed in a continuous annealing line. By this decarburization annealing, C in the steel is removed and primary recrystallization is performed, and at the same time, an oxide film containing SiO 2 as a main component is formed on the surface of the steel sheet. The amount of oxidation of the steel sheet at that time is 900 ppm or less in [O] amount, and FeO / S
iO 2 (where FeO is FeO in Fe 2 SiO 4 ) ≦
It is set to 0.25. Decarburization annealing is N 2 at 800 to 875 ° C.
It is performed by controlling P H2O / P H2 in a + H 2 atmosphere. After that, the hydrated water content as an annealing separator is 0.5 to 5.
0, Mg, 100 parts by weight, at least Li, K,
Na, Ca, Mg, Zn, Fe, Mn, Cu, Sn, S
0.5 to 20 parts by weight of one or more S compounds of r and Al, and 2 to 20 parts by weight of one or more of chlorides, carbonates, nitrates and the like of these elements are added. It is coated with an annealing separator, dried and wound into a coil.

【0010】仕上焼鈍条件は本発明においては、焼鈍分
離剤に次いで重要な要素技術である。最終仕上焼鈍雰囲
気としては、本発明の成分条件ではN2 25%以下でN
2 +H2 あるいは他の不活性ガスを組合せた雰囲気中で
行われる。即ち、本発明のようにインヒビターとして、
AlN、MnSを使用する成分系を処理する工程におい
ては、二次再結晶開始温度が950〜1000℃であ
り、従来の低磁束密度のオリエントコアに比較して高い
ため、インヒビターの安定化がより高度に要求される。
In the present invention, the finish annealing condition is an important elemental technology next to the annealing separator. In the final finish annealing atmosphere, N 2 is 25% or less and N under the composition conditions of the present invention.
It is carried out in an atmosphere containing a combination of 2 + H 2 or other inert gas. That is, as an inhibitor as in the present invention,
In the process of treating the component system using AlN and MnS, the secondary recrystallization start temperature is 950 to 1000 ° C., which is higher than that of the conventional low magnetic flux density orient core, so that the inhibitor is more stable. Highly demanded.

【0011】このため、本発明のようにグラス皮膜の形
成を抑制あるいは分解する技術においては、従来の方向
性電磁鋼板のようにグラス皮膜によって雰囲気ガスによ
る析出物の変化を抑制したり、逆に鋼中からの脱インヒ
ビターを防止する効果が弱まるため、グラス皮膜を有し
ない高磁束密度の方向性電磁鋼板を得ることは非常に困
難である。
Therefore, in the technique of suppressing or decomposing the formation of the glass film as in the present invention, the change of the precipitate due to the atmospheric gas is suppressed by the glass film as in the conventional grain-oriented electrical steel sheet, or conversely. Since the effect of preventing deinhibitor from the steel is weakened, it is very difficult to obtain a grain-oriented electrical steel sheet having a high magnetic flux density without a glass film.

【0012】本発明者らは、従来の技術で解決できなか
った上記問題を膨大な研究と実験をかさねた結果、脱炭
焼鈍、焼鈍分離剤、仕上焼鈍における条件を新規に開発
することにより、解決するに至ったものである。このよ
うにして得られたグラス皮膜を有しない方向性電磁鋼板
は連続ラインにおいて、800〜900℃で絶縁皮膜処
理とヒートフラットニングが行われる。超低鉄損材を得
ようとする場合には、このヒートフラットニングの前ま
たは後に、レーザー、歯形ロール、プレスロール、ケガ
キ、局部エッチング等により深さ5〜30μm、間隔2
〜15mmで圧延方向に対し45〜90°の方向に線状
又は点状の歪又は溝が導入される。
The present inventors have conducted extensive research and experiments on the above problems that could not be solved by conventional techniques, and as a result, newly developed conditions for decarburization annealing, an annealing separator, and finish annealing. It was a solution. The grain-oriented electrical steel sheet having no glass coating thus obtained is subjected to insulation coating treatment and heat flattening at 800 to 900 ° C. in a continuous line. When an ultra-low iron loss material is to be obtained, a depth of 5 to 30 μm and an interval of 2 to 30 μm by laser, tooth profile roll, press roll, scribing, local etching, etc., before or after this heat flattening.
A linear or point-like strain or groove is introduced in a direction of 45 to 90 ° with respect to the rolling direction at -15 mm.

【0013】この後、需要家における使用目的に応じて
種々の絶縁皮膜剤が塗布され、焼付処理される。絶縁皮
膜剤として皮膜張力の付与を目的とする場合には、特公
昭53−28375号公報のような、リン酸−コロイダ
ルシリカ系の皮膜剤を塗布し、焼付処理される。又、良
加工性を必要とする場合にはヒートフラットニング後の
鋼板上に有機皮膜剤又は半有機皮膜剤を処理して使用し
ても良いし、無機皮膜剤を処理した後に有機皮膜剤を処
理して焼付処理される。
After that, various insulating coating agents are applied and baked according to the purpose of use in the consumer. For the purpose of imparting film tension as an insulating film agent, a phosphoric acid-colloidal silica type film agent as disclosed in JP-B-53-28375 is applied and baked. Also, when good workability is required, an organic coating agent or a semi-organic coating agent may be treated on the steel plate after heat flattening, or an organic coating agent may be applied after treating the inorganic coating agent. It is processed and baked.

【0014】次に本発明における構成技術の限定理由を
述べる。本発明における出発材としてはC:0.03〜
0.12%、Si:2.5〜4.5%、Mn:0.03
〜0.20%、S:0.01〜0.06%、酸可溶A
l:0.01〜0.05%、N:0.0030〜0.0
120%を含み、残部Feと不可避の不純物からなる珪
素鋼素材が用いられる。
Next, the reasons for limiting the construction technique in the present invention will be described. As the starting material in the present invention, C: 0.03 to
0.12%, Si: 2.5-4.5%, Mn: 0.03
~ 0.20%, S: 0.01 to 0.06%, acid-soluble A
1: 0.01 to 0.05%, N: 0.0030 to 0.0
A silicon steel material containing 120% and the balance Fe and unavoidable impurities is used.

【0015】Cは0.03%未満では高温巻取後の組織
が粗大化し、成品において線状細粒が発生するので好ま
しくない。一方、0.12%を超えると脱炭焼鈍で長時
間を必要とし、工業的には不利となる。Siは2.5%
未満では磁気特性として、特に鉄損が劣化し、又4.5
%超では冷延が困難になる。
When C is less than 0.03%, the structure after high temperature winding becomes coarse and linear fine grains are generated in the product, which is not preferable. On the other hand, if it exceeds 0.12%, decarburization annealing requires a long time, which is industrially disadvantageous. Si is 2.5%
If less than 4.5, iron loss is deteriorated as a magnetic property, and if it is 4.5 or less.
If it exceeds%, cold rolling becomes difficult.

【0016】Mn、Sは一次再結晶粒の正常粒成長を抑
えるためのインヒビター形成元素で、上記範囲を外れる
と成品特性の劣化が生じたり、二次再結晶が起らなくな
るので好ましくない。酸可溶Alは高磁束密度を得るた
めの基本元素で、上記範囲を外れると高磁束密度が得ら
れなくなる。
Mn and S are inhibitor-forming elements for suppressing the normal grain growth of primary recrystallized grains, and if they deviate from the above ranges, the product characteristics will be deteriorated and secondary recrystallization will not occur, which is not preferable. Acid-soluble Al is a basic element for obtaining a high magnetic flux density, and if it deviates from the above range, a high magnetic flux density cannot be obtained.

【0017】Nは0.0030%未満ではインヒビター
であるAlNの析出量が不足し、又0.012%超では
成品にブリスターが発生するので好ましくない。脱炭焼
鈍での鋼板の酸化と脱炭反応は通常800〜875℃
で、N2 +H2 雰囲気中でPH2O /PH2制御のため、
D.Pを変更して行われる。脱炭焼鈍では一次再結晶と
脱炭の他に鋼板の酸化が生じる。この酸化膜の量と質
は、従来のグラス皮膜形成技術では重要であるが、本発
明のグラス皮膜の形成を阻止する方法においても同様に
して重要な役割をもつ。
When N is less than 0.0030%, the precipitation amount of AlN which is an inhibitor is insufficient, and when it exceeds 0.012%, blister is generated in the product, which is not preferable. Oxidation and decarburization of the steel sheet during decarburization annealing are normally 800-875 ° C.
In order to control P H2O / P H2 in N 2 + H 2 atmosphere,
D. This is done by changing P. In decarburization annealing, in addition to primary recrystallization and decarburization, steel sheet oxidation occurs. Although the amount and quality of the oxide film are important in the conventional glass film forming technique, they also play an important role in the method for preventing the formation of the glass film of the present invention.

【0018】本発明では鋼板の〔O〕量は900ppm
以下で、かつFeO/SiO2 は0.25以下である
(但し、FeOはFe2 SiO4 中のFeO)。これは
グラス皮膜形成過程の微量皮膜の形成や、これによる雰
囲気ガスからのNの侵入や脱N、脱S等のインヒビター
の弱体化反応が、鋼板の〔O〕量(SiO2 量、Fe2
SiO4 量、FeO/SiO2 )により影響を受けるか
らである。〔O〕量が900ppm超では必然的に酸化
膜中のSiO2 、Fe2 SiO4 が多くなって酸化膜の
厚みが増大し、最終仕上焼鈍中にグラス皮膜抑制と分解
反応を行うのに不利になる。
In the present invention, the [O] content of the steel sheet is 900 ppm.
And FeO / SiO 2 is 0.25 or less (however, FeO is FeO in Fe 2 SiO 4 ). This is because the formation of a trace amount film in the glass film formation process and the weakening reaction of the inhibitor such as N invasion from the atmospheric gas, denitrification, deoxidation S, etc. caused the [O] content (SiO 2 content, Fe 2
This is because it is affected by the amount of SiO 4 and FeO / SiO 2 ). If the amount of [O] exceeds 900 ppm, the amount of SiO 2 and Fe 2 SiO 4 in the oxide film inevitably increases and the thickness of the oxide film increases, which is disadvantageous in suppressing the glass film and performing the decomposition reaction during the final finish annealing. become.

【0019】即ち、成品の表面直下にSiO2 が残留
し、加工性向上効果を弱めたり、均一に鏡面的なグラス
レス化状態が得られ難くなる。更に過剰のSiO2 膜の
形成は二次再結晶開始以前に鋼中のインヒビターのAl
N等の分解反応を促進するため、良好な方位の二次再結
晶粒が得られなくなる。しかし、極端に〔O〕量を抑制
しようとすると脱炭に長時間を要するという問題があ
る。好ましい範囲は〔O〕量で400〜700ppmで
ある。
That is, SiO 2 remains just below the surface of the product, which weakens the workability improving effect and makes it difficult to obtain a uniform mirrorless glassless state. Furthermore, the formation of an excessive SiO 2 film is caused by the inhibitor Al in the steel before the initiation of secondary recrystallization.
Since the decomposition reaction of N and the like is promoted, secondary recrystallized grains having a favorable orientation cannot be obtained. However, there is a problem that it takes a long time to decarburize if the amount of [O] is extremely suppressed. A preferred range is 400 to 700 ppm in [O] amount.

【0020】また酸化膜中のFeO/SiO2 は0.2
5以下と規定する。0.25超になると仕上焼鈍前半に
おけるMgOとSiO2 層の反応性が増加し、フォルス
テライト形成量を増すため、本発明の技術をもってして
も、均一なグラスレス化が困難になる。FeO/SiO
2 ≦0.25と規定することにより、本発明の焼鈍分離
剤と仕上焼鈍により、均一な鏡面状況が得られる。
FeO / SiO 2 in the oxide film is 0.2
It is defined as 5 or less. If it exceeds 0.25, the reactivity of the MgO and the SiO 2 layer in the first half of the finish annealing increases and the amount of forsterite formed increases, so that even with the technique of the present invention, it is difficult to achieve uniform glasslessness. FeO / SiO
By defining 2 ≦ 0.25, a uniform mirror surface condition can be obtained by the annealing separator of the present invention and finish annealing.

【0021】次に焼鈍分離剤に使用するMgOとしては
水和水分が0.5〜5.0%のものが適用される。本発
明のグラスレス化と高磁束密度化の両立技術では、仕上
焼鈍昇温過程での若干の皮膜形成によるインヒビター安
定化効果が重要なため、この範囲に限定される。水和水
分が0.5%未満ではMgO粒の反応性が極端に低下し
て、仕上焼鈍の昇温時前段で薄いフォルステライト層の
形成ができず、グラスレス化は実現できても、インヒビ
ターの不安定化のため、磁束密度が低下して高磁束密度
が得られない。逆に5.0%超では、仕上焼鈍昇温中に
鋼板間の露点を高め、昇温時前段で追加酸化を生じ、均
一なグラスレス化状態を作ることが困難になる。
Next, as MgO used for the annealing separator, one having a hydration water content of 0.5 to 5.0% is applied. In the technology for achieving both glasslessness and high magnetic flux density according to the present invention, the effect of stabilizing an inhibitor by forming a small amount of film during the finish annealing temperature rising process is important, so the range is limited to this range. If the water content of hydration is less than 0.5%, the reactivity of the MgO grains will be extremely reduced, and a thin forsterite layer cannot be formed in the previous stage during the temperature rise of the finish annealing. Due to the destabilization, the magnetic flux density is lowered and a high magnetic flux density cannot be obtained. On the other hand, if it exceeds 5.0%, the dew point between the steel sheets is increased during the finish annealing temperature rise, and additional oxidation occurs in the former stage during the temperature rise, making it difficult to form a uniform glassless state.

【0022】このMgOをベースとする焼鈍分離剤とし
ては、MgO100重量部に対し、少なくともLi、
K、Na、Ca、Mg、Zn、Fe、Mn、Cu、S
n、Cr、AlのS化合物の1種又は2種以上を0.5
〜20重量部含有し、更にこれらの元素の塩化物、炭酸
塩、硝酸塩を2〜20重量部添加したものからなるもの
が塗布される。本発明においては、少なくともこのS化
合物が一定量で共存することがポイントである。即ち、
図1に示す如くSnCl2 のみの添加ではNが鋼中へ侵
入するが、S化合物を添加するとSが仕上焼鈍の昇温過
程で鋼中に侵入し、これにより雰囲気ガスからのNの侵
入を抑制する効果を生じる。この結果、従来から提案さ
れているMgO中への塩化物等の添加によってグラスレ
ス化はできても高磁束密度材が得られなかった問題を後
述の仕上焼鈍条件との相乗効果によって一挙に解決し得
たものである。
The MgO-based annealing separator is at least Li, based on 100 parts by weight of MgO.
K, Na, Ca, Mg, Zn, Fe, Mn, Cu, S
0.5% of one or two or more S compounds of n, Cr and Al
.About.20 parts by weight, and 2 to 20 parts by weight of chlorides, carbonates, and nitrates of these elements are added. In the present invention, the point is that at least this S compound coexists in a certain amount. That is,
As shown in FIG. 1, when SnCl 2 alone is added, N penetrates into the steel, but when an S compound is added, S penetrates into the steel in the temperature rising process of the finish annealing, which causes the penetration of N from the atmospheric gas. Produces a suppressive effect. As a result, the problem that a high magnetic flux density material could not be obtained even if glassless was achieved by adding chloride etc. to MgO, which has been proposed hitherto, was solved all at once by the synergistic effect with the finish annealing condition described later. It was possible.

【0023】S化合物としては硫化物、多硫化物、硫酸
塩等の形態で0.5〜20重量部が添加される。0.5
重量部より少ないと鋼中へのSの拡散量が不充分で、N
2 含有雰囲気で焼鈍した場合の鋼中へのNの侵入による
AlNの析出状態への影響を抑制できない。逆に20重
量部超だと、過剰のSによる粒界のエッチングや、純化
に悪影響を与えるため好ましくない。
The S compound is added in an amount of 0.5 to 20 parts by weight in the form of sulfide, polysulfide, sulfate or the like. 0.5
If it is less than the weight part, the amount of S diffused into the steel is insufficient and N
2 It is not possible to suppress the influence on the precipitation state of AlN due to the penetration of N into the steel when annealed in a containing atmosphere. On the other hand, if it exceeds 20 parts by weight, it is not preferable because it adversely affects the etching of grain boundaries and the purification due to excessive S.

【0024】同時に添加される塩化物、炭酸塩、硝酸塩
は2〜20重量部である。これらの化合物はMgOの表
面、鋼板酸化膜上に存在してMgOとSiO2 の反応温
度を低下させ、次いで皮膜層中のFeをエッチングして
皮膜層を分解してグラスレス化する。2重量部より少な
いとこの前段の皮膜形成反応と後段のエッチング分解反
応が不充分で、グラスレス化が不充分になる。20重量
部超ではS化合物の場合と同様に粒界のエッチングや鋼
板の肌荒れが生じるため好ましくない。
The chloride, carbonate and nitrate added at the same time are 2 to 20 parts by weight. These compounds are present on the surface of MgO and on the steel sheet oxide film to lower the reaction temperature of MgO and SiO 2 , and then Fe in the film layer is etched to decompose the film layer and become glassless. If the amount is less than 2 parts by weight, the film forming reaction in the first stage and the etching decomposition reaction in the second stage are insufficient, and the glassless reaction becomes insufficient. If it exceeds 20 parts by weight, etching of grain boundaries and roughening of the steel sheet occur as in the case of the S compound, which is not preferable.

【0025】このように焼鈍分離剤のS化合物の存在と
塩化物、炭酸塩、硝酸塩等の共存が必須であり、どちら
が欠けてもグラスレスかつ高磁束密度の製品は得られな
い。仕上焼鈍条件は昇温過程700℃以後1200℃ま
でをN2 25%以下の雰囲気ガスに限定される。本発明
においては、主インヒビターとしてAlNが使用されて
いるため、グラスレス化反応過程でNの侵入が生じる
と、インヒビターAlNの析出状態に影響を及ぼした
り、磁束密度が低下する。昇温過程の700〜1200
℃間をN2 25%以下の雰囲気ガスと規定したのは、7
00℃までは鋼板へのNの侵入や追加酸化が生じないた
めである。N2 25%超ではこの影響が大きいため制限
される。最も好ましい条件はH2 雰囲気100%である
が、N2 10%以下では、極めて良好な磁性が安定して
得られる。
As described above, the presence of the S compound as the annealing separator and the coexistence of chloride, carbonate, nitrate and the like are indispensable, and a glassless product having a high magnetic flux density cannot be obtained regardless of which is missing. The finish annealing conditions are such that the temperature rising process from 700 ° C. to 1200 ° C. is limited to an atmospheric gas of N 2 25% or less. In the present invention, since AlN is used as the main inhibitor, when N invades in the glassless reaction process, the precipitation state of the inhibitor AlN is affected or the magnetic flux density is lowered. 700-1200 in the temperature rising process
It is 7 that the temperature range between ° C is defined as an atmosphere gas containing 25% or less of N 2.
This is because N does not penetrate into the steel sheet and additional oxidation does not occur up to 00 ° C. If the N 2 content exceeds 25%, this effect is large, so the content is limited. The most preferable condition is H 2 atmosphere 100%, but if N 2 is 10% or less, extremely good magnetism can be stably obtained.

【0026】仕上焼鈍後の鋼板は絶縁皮膜剤塗布焼付前
または後に、レーザー、歯形ロール、プレス、ケガキ、
局部エッチング等により、線状疵を付与する。線状疵の
条件は、需要家での使用条件によって異なる。大型の積
鉄心のように使用時に歪取焼鈍をしないものは、レーザ
ー等による局所的な歪付与処理が行われる。一方、巻鉄
心の様に使用時に歪取焼鈍工程が含まれる場合は線状疵
の状態が重要で、線状疵は深さ5〜30μm、間隔2〜
15μmで圧延方向に対して45〜90°の方向に付与
される。線状疵の幅は特定するものではないが、できる
だけ狭い方が良い。疵の深さが5μm未満では焼鈍後の
鉄損値の改善効果が小さく、30μm超では、磁束密度
の低下が生じるため、高磁場での特性を考えると不利で
ある。
The steel sheet after finish annealing is subjected to a laser, tooth profile roll, press, scribing, before or after coating with an insulating film agent and baking.
A linear flaw is provided by local etching or the like. The condition of linear flaw depends on the usage condition in the customer. A large strain iron core that is not subjected to strain relief annealing during use is subjected to local strain imparting treatment by a laser or the like. On the other hand, when a strain relief annealing step is used during use, such as a wound core, the state of linear flaws is important, and the linear flaws have a depth of 5 to 30 μm and an interval of 2 to 2 μm.
It is applied in a direction of 45 to 90 ° with respect to the rolling direction at 15 μm. The width of the linear flaw is not specified, but it is better to be as narrow as possible. If the flaw depth is less than 5 μm, the effect of improving the iron loss value after annealing is small, and if it exceeds 30 μm, the magnetic flux density decreases, which is disadvantageous when considering the characteristics in a high magnetic field.

【0027】この後、焼付処理される絶縁皮膜剤として
は無機皮膜材、有機皮膜材、半有機皮膜剤を用途に合せ
て処理される。張力効果と耐熱性を要求されるケースで
はコロイド状シリカとリン酸塩を主成分とする皮膜剤や
リン酸単独の処理剤が塗布焼付処理される。加工性を要
求されるケースでは、アクリル、スチレン、酢酸ビニ
ル、エポキシ、ポパール、メラミン等の樹脂やこれらの
架橋体、共重合体等の樹脂と、クロム酸塩、リン酸塩等
の無機物との混合物による半有機皮膜が1回又は2回以
上の焼付処理により施されて利用される。
After that, as the insulating film agent to be baked, an inorganic film material, an organic film material, or a semi-organic film agent is processed according to the application. In the case where a tension effect and heat resistance are required, a coating agent containing colloidal silica and phosphate as a main component or a treatment agent containing only phosphoric acid is applied and baked. In the case where processability is required, resins such as acrylic, styrene, vinyl acetate, epoxy, popal, melamine, etc. and their cross-linked products, copolymers, etc. and inorganic substances such as chromate, phosphate etc. The semi-organic film formed from the mixture is used by being subjected to one or more baking treatments.

【0028】本発明によりグラス皮膜を有しない高磁束
密度方向性電磁鋼板が得られるメカニズムとしては、次
のように考えられる。本発明では脱炭焼鈍時に形成した
適正量の酸化量及び成分を有する酸化膜と低水和MgO
に添加したS化合物と他のグラス皮膜形成抑制剤によ
り、まず仕上焼鈍昇温の前段領域でグラス皮膜の薄膜層
を生じ、脱インヒビターや雰囲気によるインヒビターの
弱体化防止のための皮膜層を形成する。次いで昇温後段
で皮膜層中のFeのケミカルエッチングによるグラス皮
膜の分解剥離が生じ、この後の高温均熱時にサーマルエ
ッチングが同時に生じてグラスレス化と鏡面化が得られ
る。この間のグラス薄膜形成及びS化合物の効果と雰囲
気ガスのN2 量制御による相乗的作用で鋼中へのNの侵
入が生じず、二次再結晶領域までインヒビターが安定に
保たれ、高磁束密度の二次再結晶粒が得られる。
The mechanism for obtaining the high magnetic flux density grain-oriented electrical steel sheet having no glass coating according to the present invention is considered as follows. In the present invention, an oxide film having an appropriate amount of oxidation and components formed during decarburization annealing and low hydrated MgO
First, a thin film layer of the glass film is formed by the S compound added to the above and another glass film formation inhibitor in the pre-heating region of the finish annealing temperature rise, and a film layer is formed to prevent weakening of the inhibitor by the deinhibitor or the atmosphere. .. Next, after the temperature is raised, the glass film is decomposed and peeled by the chemical etching of Fe in the film layer, and the thermal etching is simultaneously generated during the subsequent high temperature soaking, whereby glassless and mirror-finished are obtained. During this period, the glass thin film formation and the effect of the S compound and the synergistic effect of controlling the amount of N 2 in the atmospheric gas do not cause the intrusion of N into the steel, the inhibitor is kept stable up to the secondary recrystallization region, and the high magnetic flux density is obtained. The secondary recrystallized grains of are obtained.

【0029】仕上焼鈍過程でのグラスレス反応の完了に
より、表面の鏡面化がもたらされることにより鉄損が更
に向上するものと考えられる。また、次いで処理される
磁区細分化処理においては、本発明材はグラス皮膜の内
部酸化層を有しないため磁壁移動のピンニング現象がな
いため、高磁速密度、鏡面効果とあいまって超低鉄損が
得られるものと考えられる。
It is believed that the completion of the glassless reaction in the finish annealing process brings about a mirror-finished surface and further improves the iron loss. Further, in the magnetic domain refining process to be subsequently performed, since the material of the present invention does not have the pinning phenomenon of the domain wall movement because it does not have the internal oxide layer of the glass coating, it has an extremely low iron loss in combination with the high magnetic velocity density and the mirror effect. Is considered to be obtained.

【0030】[0030]

【実施例】実施例1 重量でC:0.070%、Si:3.22%、Mn:
0.060%、S:0.025%、Al:0.030
%、N:0.0080%を含み、残部Feと不可避の不
純物からなる高磁束密度方向性電磁鋼板用素材を熱延、
酸洗、冷延して最終板厚0.225mmとした。この鋼
板にN2 25%+H2 75%、D.P65℃中で850
℃×90秒間の脱炭焼鈍を施して供試材とした。この時
の鋼板の酸化量は〔O〕で800ppmであった。この
鋼板に表1に示す組成の焼鈍分離剤を塗布し、図2
(A)、(B)、(C)に示す雰囲気条件で最終仕上焼鈍
を行った。次いでこの鋼板に歯幅50μmのプレスによ
り、深さ15μm、間隔5mmで圧延直角方向に線状疵
を付与した後、絶縁皮膜剤として20%コロイダルシリ
カ100ml+50%Mg(H2 PO4 2 25ml+
50%Al(H2 PO4 325ml+CrO3 5gか
らなる溶液を焼付後の重量で6g/m2 になるように塗
布し、850℃で30秒間のヒートフラットニング処理
と焼付処理を行った。この時の鋼板表面の皮膜特性及び
磁気特性を表2に示す。
EXAMPLES Example 1 C: 0.070% by weight, Si: 3.22%, Mn:
0.060%, S: 0.025%, Al: 0.030
%, N: 0.0080%, hot-rolled material for high magnetic flux density grain-oriented electrical steel sheet consisting of balance Fe and unavoidable impurities,
It was pickled and cold rolled to a final plate thickness of 0.225 mm. This steel sheet was provided with N 2 25% + H 2 75%, D.I. 850 in P65 ℃
Decarburization annealing was performed at 90 ° C for 90 seconds to obtain a test material. The amount of oxidation of the steel sheet at this time was 800 ppm as [O]. The annealing separator having the composition shown in Table 1 was applied to this steel sheet, and
Final finishing annealing was performed under the atmosphere conditions shown in (A), (B), and (C). Then, a linear flaw is applied to this steel plate by a press having a tooth width of 50 μm at a depth of 15 μm and an interval of 5 mm in a direction perpendicular to the rolling direction, and then as an insulating film agent, 20% colloidal silica 100 ml + 50% Mg (H 2 PO 4 ) 2 25 ml +
A solution consisting of 25 ml of 50% Al (H 2 PO 4 ) 3 +5 g of CrO 3 was applied so that the weight after baking was 6 g / m 2 , and heat flattening treatment and baking treatment were performed at 850 ° C. for 30 seconds. Table 2 shows the film properties and magnetic properties of the steel sheet surface at this time.

【0031】この結果、本発明によるものは、いずれも
ほぼ全面的にグラス皮膜が形成せず、金属光沢を呈して
おり、打抜性が良好であった。また磁気特性は昇温雰囲
気のN2 分圧の低い(A)、(B)によるものは非常に
良好であった。しかしN2 分圧の高い(C)では、著し
く磁束密度が低下する結果となり、また焼鈍分離剤とし
てS化合物を含有しないケースでは、仕上焼鈍雰囲気
(A)、(B)でもかなり磁束密度が低い結果となっ
た。
As a result, all of the products according to the present invention did not form a glass film on almost the entire surface and exhibited metallic luster, and the punchability was good. Further, the magnetic characteristics were very good due to (A) and (B) having a low N 2 partial pressure in the temperature rising atmosphere. However, in the case where the N 2 partial pressure is high (C), the magnetic flux density is remarkably reduced, and in the case where the S compound is not contained as the annealing separator, the magnetic flux density is considerably low even in the finish annealing atmospheres (A) and (B). It was a result.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】実施例2 実施例1と同一の素材コイルを同様にして処理し、最終
板厚0.29mmの冷延板を得た。次いでN2 25%+
2 75%でD.Pを変更して、(1)酸素量450p
pm、(2)700ppm、(3)950ppmになる
ようにして脱炭焼鈍した。この後、この鋼板に表3に示
す組成の焼鈍分離剤を塗布し、最終焼鈍を図2(B)に
示すサイクルで行った。次いで20%コロイダルシリカ
100ml+50%Al(H2 PO4 3 50ml+C
rO3 5gからなるコーティング剤を焼付後の重量で6
g/m2 になるように塗布し、830℃×30秒間の焼
付処理を行った。この後、鋼板に圧延方向と直角方向に
間隔5mm、照射幅0.2mm、深さ2μmの歪付与処
理を行って製品とし、別ラインで耐食性用と加工性向上
用としてアクリル系樹脂をベースとする半有機皮膜を焼
付後の重量で0.3g/m2 塗布し、300℃で焼付処
理を行った。製品の皮膜特性及び磁気特性を表4に示
す。
Example 2 The same material coil as in Example 1 was treated in the same manner to obtain a cold rolled sheet having a final sheet thickness of 0.29 mm. Then N 2 25% +
H 2 at 75% D.I. Change P, (1) oxygen amount 450p
pm, (2) 700 ppm, (3) 950 ppm and decarburized and annealed. Thereafter, the annealing separator having the composition shown in Table 3 was applied to this steel sheet, and the final annealing was performed in the cycle shown in FIG. 2 (B). Next, 100 ml of 20% colloidal silica + 50 ml of Al (H 2 PO 4 ) 3 50 ml + C
A coating agent consisting of 5 g of rO 3 was used in a weight of 6 after baking.
The coating was applied so as to be g / m 2 , and baking treatment was performed at 830 ° C. for 30 seconds. After that, the steel sheet is subjected to distortion treatment in a direction perpendicular to the rolling direction with an interval of 5 mm, an irradiation width of 0.2 mm and a depth of 2 μm to obtain a product, and an acrylic resin base is used in another line for corrosion resistance and workability improvement. The semi-organic film was coated with 0.3 g / m 2 by weight after baking, and baked at 300 ° C. Table 4 shows the film properties and magnetic properties of the products.

【0035】この結果、本発明の焼鈍分離剤によるもの
は、〔O〕量400、700ppmの条件ではグラス皮
膜が均一に形成されず、打抜性、磁気特性ともに著しく
良好な結果となった。しかし焼鈍分離剤を本発明のもの
を使用しても、〔O〕量950ppmの条件ではややう
すいグラス皮膜が形成され、打抜性、磁気特性ともかな
り悪い結果であった。焼鈍分離剤が比較例の場合、グラ
ス皮膜が形成され、打抜性が著しく悪く、磁性とグラス
レス化が両立しなかった。
As a result, with the annealing separator of the present invention, the glass film was not uniformly formed under the conditions of [O] amounts of 400 and 700 ppm, and the punchability and magnetic properties were remarkably good. However, even when the annealing separator used in the present invention was used, a slightly thin glass film was formed under the condition that the amount of [O] was 950 ppm, and the punchability and magnetic properties were considerably poor. When the annealing separator was a comparative example, a glass film was formed and the punchability was remarkably poor, and both magnetism and glasslessness were not compatible.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】実施例3 実施例1と同一の素材コイルを同様に処理し、最終板厚
0.225mmの冷延板を得た。次いでN2 25%+H
2 75%、D.P62℃中で脱炭焼鈍した。この時の鋼
板〔O〕量は700ppmであった。この鋼板に表5に
示す組成の焼鈍分離剤を塗布し、最終焼鈍を図2(B)
に示す条件で行った。この鋼板に歯形ロールを用いて、
圧延方向と直角方向に間隔5mm、幅30μm、深さ1
5μmの線状疵を付与し、次いで絶縁皮膜剤として20
%コロイダルシリカ100ml+50%Al(H2 PO
4 3 60ml+CrO3 7gからなる溶液を焼付後の
重量で6g/m2 になるように塗布し、880℃×30
秒間の焼付と歪取り処理を行った。この実験における鋼
板の表面状況と磁気特性結果を表6に示す。
Example 3 The same material coil as in Example 1 was treated in the same manner to obtain a cold rolled sheet having a final sheet thickness of 0.225 mm. Then N 2 25% + H
2 75%, D. Decarburization annealing was performed at P62 ° C. The amount of steel plate [O] at this time was 700 ppm. The annealing separator having the composition shown in Table 5 was applied to this steel sheet, and the final annealing was performed as shown in FIG.
It carried out on the conditions shown in. Using a tooth profile roll on this steel plate,
Spacing 5 mm, width 30 μm, depth 1 in the direction perpendicular to the rolling direction
Apply a linear flaw of 5 μm, then apply 20
% Colloidal silica 100 ml + 50% Al (H 2 PO
4 ) A solution consisting of 60 ml of 3 + 7 g of CrO 3 was applied so that the weight after baking would be 6 g / m 2 , and the temperature was 880 ° C × 30.
Baking and distortion removal processing were performed for 2 seconds. Table 6 shows the surface condition and magnetic property results of the steel plate in this experiment.

【0039】この結果、MgSO4 にCaCl2 の添加
量を変更して添加したケースでは本発明2、3のCaC
2 7、15gではグラスレス化が均一で磁性が良好で
あった。しかし、比較例1の添加量30gでは表面に肌
荒れが生じ、磁性が劣化する結果となった。又、MnS
4 とCaSの添加量を変えた4〜6のケースでは何れ
も均一なグラスレス化が進み、磁性も良好で、特に5、
6は良好であった。
As a result, in the case where the addition amount of CaCl 2 was changed to MgSO 4 , CaC of the present invention 2 and 3 was added.
With l 2 of 7 and 15 g, glasslessness was uniform and the magnetism was good. However, with the addition amount of 30 g in Comparative Example 1, the surface was roughened and the magnetism was deteriorated. Also, MnS
In the cases of 4 to 6 in which the addition amounts of O 4 and CaS were changed, uniform glassless progressed and magnetism was good in all cases.
6 was good.

【0040】一方、添加剤としてS化合物のみの場合は
グラスレス化が生じず、塩化物と炭酸塩のみの場合はグ
ラスレス化は充分であったが、磁性が非常に悪い結果と
なった。
On the other hand, when the S compound alone was used as the additive, no glassless reaction was observed. When only the chloride and carbonate were used, the glassless reaction was sufficient, but the magnetism was very poor.

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【発明の効果】本発明によれば、脱炭焼鈍での酸化量を
特定量とし、焼鈍分離剤の添加物S化合物と塩化物、硝
酸塩、炭酸塩等との併用及び仕上焼鈍時の雰囲気ガス中
のN2量の制御によりグラス皮膜を有しないため、鉄心
加工性が良好でかつ磁区細分化による鉄損改善効果能の
優れる高磁束密度方向性電磁鋼板が得られる。
According to the present invention, the amount of oxidation in decarburization annealing is set to a specific amount, the additive S compound of the annealing separator is used in combination with chloride, nitrate, carbonate, etc., and the atmosphere gas at the time of finish annealing. Since the glass film is not formed by controlling the amount of N 2 in the inside, a high magnetic flux density grain-oriented electrical steel sheet having good iron core workability and excellent iron loss improving effect by magnetic domain refinement can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)、(B)は、最終仕上焼鈍条件が昇温時
700℃以後の雰囲気をN2 10%+H2 90%とした
場合(図2(B)タイプ)の鋼板中のN及びSを焼鈍分
離剤組成との関係で示した図である。
1 (A) and 1 (B) are the steel sheets in the case where the final finishing annealing condition is N 2 10% + H 2 90% in the atmosphere after the temperature rising and 700 ° C. (FIG. 2 (B) type). It is a figure showing N and S in relation to an annealing separation agent composition.

【図2】(A)、(B)、(C)は仕上焼鈍における熱サ
イクルと雰囲気条件を示す図である。(A)、(B)は
本発明の雰囲気条件で昇温時の700℃以後の雰囲気が
2 25%以下の例であり、(C)は比較例の昇温時雰
囲気がN2 30%の場合の例である。
2 (A), (B), and (C) are diagrams showing a thermal cycle and an atmospheric condition in finish annealing. (A) and (B) are examples in which the atmosphere after 700 ° C. when raising the temperature under the atmospheric conditions of the present invention is N 2 25% or less, and (C) is the atmosphere in the comparative example when raising the temperature is N 2 30%. This is an example of the case.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 22/00 A (72)発明者 小野 正雄 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location C23C 22/00 A (72) Inventor Masao Ono 1-1 No. 1 Hibatacho, Tobata-ku, Kitakyushu, Fukuoka New Nippon Steel Co., Ltd., Yawata Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.03〜0.12%、S
i:2.5〜4.5%、Mn:0.03〜0.20%、
S:0.01〜0.06%、酸可溶Al:0.01〜
0.05%、N:0.0030〜0.012%を含み、
残部Feと不可避の不純物からなる珪素鋼スラブを熱延
し、最終冷延工程前に焼鈍と急冷処理を行い、冷延して
最終板厚とし、脱炭焼鈍し、焼鈍分離剤を塗布し、最終
仕上焼鈍を行いヒートフラットニングすることからなる
方向性電磁鋼板の製造方法において、MgO100重量
部に対し、少なくともLi、K、Na、Ca、Mg、Z
n、Fe、Mn、Cu、Sn、Sr、AlのS化合物の
1種又は2種以上0.5〜20重量部を含有し、更に前
記元素の塩化物、炭酸塩、硝酸塩の1種又は2種以上を
2〜20重量部添加した焼鈍分離剤を塗布した後、最終
仕上焼鈍条件として昇温時700℃以後1200℃まで
をN2 25%以下の雰囲気中で焼鈍することを特徴とす
るグラス皮膜を有しない高磁束密度方向性電磁鋼板の製
造方法。
1. C: 0.03 to 0.12% by weight, S
i: 2.5 to 4.5%, Mn: 0.03 to 0.20%,
S: 0.01 to 0.06%, acid-soluble Al: 0.01 to
0.05%, including N: 0.0030 to 0.012%,
Hot rolling a silicon steel slab consisting of the balance Fe and unavoidable impurities, annealing and quenching treatment before the final cold rolling step, cold rolling to a final plate thickness, decarburization annealing, and applying an annealing separator, In a method for producing a grain-oriented electrical steel sheet, comprising performing final finish annealing and heat flattening, at least Li, K, Na, Ca, Mg, Z relative to 100 parts by weight of MgO.
One or two or more S compounds of n, Fe, Mn, Cu, Sn, Sr, and Al are contained in an amount of 0.5 to 20 parts by weight, and further, one or two of chlorides, carbonates, and nitrates of the above elements. A glass characterized by applying an annealing separator containing 2 to 20 parts by weight of the above seeds and then annealing as a final finishing annealing condition at an elevated temperature of 700 ° C. to 1200 ° C. in an atmosphere of N 2 25% or less. A method for producing a high magnetic flux density grain-oriented electrical steel sheet having no coating.
【請求項2】 請求項1記載の方法において、ヒートフ
ラットニング処理の前又は後に、レーザー、歯形ロー
ル、プレス、ケガキ、局部エッチング等により、線状ま
たは点状疵を圧延方向に対し45〜90°の方向に付与
した後絶縁皮膜処理を行うことを特徴とするグラス皮膜
を有しない超低鉄損高磁束密度方向性電磁鋼板の製造方
法。
2. The method according to claim 1, wherein, before or after the heat flattening treatment, a linear or dotted flaw is 45 to 90 in the rolling direction by laser, tooth roll, press, scribe, local etching or the like. A method for manufacturing an ultra-low iron loss high magnetic flux density grain-oriented electrical steel sheet having no glass coating, which is characterized by performing an insulating coating treatment after application in the direction of °.
【請求項3】 脱炭焼鈍における酸素目付量が900p
pm以下、かつ酸化膜中のFeO/SiO2 ≦0.25
であることを特徴とする請求項1又は2記載のグラス皮
膜を有しない高磁束密度方向性電磁鋼板の製造方法。
3. The oxygen basis weight in decarburization annealing is 900 p.
pm or less and FeO / SiO 2 ≦ 0.25 in the oxide film
3. The method for producing a high magnetic flux density grain-oriented electrical steel sheet having no glass coating according to claim 1 or 2.
【請求項4】 焼鈍分離剤に使用するMgOの水和水分
が0.5〜5.0%であることを特徴とする請求項1又
は2記載のグラス皮膜を有しない高磁束密度方向性電磁
鋼板の製造方法。
4. The high magnetic flux density directional electromagnetic wave having no glass film according to claim 1 or 2, wherein the hydrated water content of MgO used as the annealing separator is 0.5 to 5.0%. Steel plate manufacturing method.
JP4131189A 1992-05-22 1992-05-22 Production of high magnetic flux density grain-oriented silicon steel sheet having no glass film Withdrawn JPH05320770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4131189A JPH05320770A (en) 1992-05-22 1992-05-22 Production of high magnetic flux density grain-oriented silicon steel sheet having no glass film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4131189A JPH05320770A (en) 1992-05-22 1992-05-22 Production of high magnetic flux density grain-oriented silicon steel sheet having no glass film

Publications (1)

Publication Number Publication Date
JPH05320770A true JPH05320770A (en) 1993-12-03

Family

ID=15052104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4131189A Withdrawn JPH05320770A (en) 1992-05-22 1992-05-22 Production of high magnetic flux density grain-oriented silicon steel sheet having no glass film

Country Status (1)

Country Link
JP (1) JPH05320770A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479994B1 (en) * 1999-12-02 2005-03-30 주식회사 포스코 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
CN109306198A (en) * 2018-08-22 2019-02-05 武汉钢铁有限公司 For improving the masking liquid and preparation method thereof of high magnetic induction grain-oriented silicon steel magnesium silicate bottom layer quality
CN110218849A (en) * 2019-06-24 2019-09-10 鞍钢股份有限公司 Bottom separant for high-temperature annealing of oriented silicon steel coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479994B1 (en) * 1999-12-02 2005-03-30 주식회사 포스코 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
CN109306198A (en) * 2018-08-22 2019-02-05 武汉钢铁有限公司 For improving the masking liquid and preparation method thereof of high magnetic induction grain-oriented silicon steel magnesium silicate bottom layer quality
CN110218849A (en) * 2019-06-24 2019-09-10 鞍钢股份有限公司 Bottom separant for high-temperature annealing of oriented silicon steel coil
CN110218849B (en) * 2019-06-24 2021-04-02 鞍钢股份有限公司 Bottom separant for high-temperature annealing of oriented silicon steel coil

Similar Documents

Publication Publication Date Title
US5512110A (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
US5507883A (en) Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for production the same
EP0577124B1 (en) Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for producing the same
JP7269505B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP2620171B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet without glass coating
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP3336555B2 (en) Method for producing grain-oriented electrical steel sheet without glass coating with excellent surface properties
JPH05320770A (en) Production of high magnetic flux density grain-oriented silicon steel sheet having no glass film
JP2691828B2 (en) Ultra low iron loss grain oriented electrical steel sheet with extremely high magnetic flux density.
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH05311353A (en) Ultralow core loss grain-oriented silicon steel sheet without glass coating film and its production
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JP3393218B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP2603170B2 (en) Method for producing high magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet with excellent workability
JPH09268322A (en) Production of grain oriented silicon steel sheet with ultralow iron loss
JPH0754155A (en) Production of ultralow core loss grain-oriented silicon steel sheet
JP2738620B2 (en) High magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet with excellent workability and method of manufacturing the same
JPH02107722A (en) Production of grain-oriented electrical steel easy to punch and having metallic luster

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803