JPS60131976A - Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic - Google Patents

Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic

Info

Publication number
JPS60131976A
JPS60131976A JP23943983A JP23943983A JPS60131976A JP S60131976 A JPS60131976 A JP S60131976A JP 23943983 A JP23943983 A JP 23943983A JP 23943983 A JP23943983 A JP 23943983A JP S60131976 A JPS60131976 A JP S60131976A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
annealing
silicon steel
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23943983A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kobayashi
康宏 小林
Yasuo Yokoyama
横山 靖雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23943983A priority Critical patent/JPS60131976A/en
Publication of JPS60131976A publication Critical patent/JPS60131976A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Abstract

PURPOSE:To obtain a grain-oriented silicon steel sheet having improved iron loss characteristics by working a silicon steel sheet after finish annealing to provide mirror finished surfaces, heat-treating it to form SiO2 layers on the surfaces, and coating the layers with tension applying insulating films. CONSTITUTION:A silicon steel slab is hot-rolled, cold-rolled, process-annealed, and cold-rolled. The cold-rolled steel sheet is subjected to decarburization, primary recrystallization annealing and final finish annealing, and it is worked to provide mirror finished surfaces. The steel sheet is heat-treated in a low oxidizing atmosphere to form SiO2 layers on the surfaces to 0.05-0.5mum thickness per one side. At the same time, flattening annealing is carried out. The layers are then coated with tension applying insulating films each consisting of silica, magnesium phosphate and chromic anhydride. By this method a grain-oriented silicon steel sheet having superior iron loss characteristics is obtd. without deteriorating the adhesive strength of the films.

Description

【発明の詳細な説明】 技術分野 鉄損特性に優れた一方向性けい素鋼板の製造方法に関し
て、この明細書に述べる技術内容は、仕上げ焼鈍後の鋼
板につきその表面性状に工夫を加えることにより、鉄損
特性の一層の向上を図ることに関連している。
[Detailed Description of the Invention] Technical Field The technical content described in this specification regarding a method for manufacturing a unidirectional silicon steel sheet with excellent iron loss characteristics is a method for manufacturing a unidirectional silicon steel sheet with excellent iron loss characteristics. , is related to further improving iron loss characteristics.

技術背景 主に変圧器鉄心材料としての用途をもつ一方向性けい素
鋼板に要求される基本的特性は、一定の磁化力におI;
)で得られる磁束密度が高いこと(B10値で代表され
る)および一定の磁束密度を与えた場合にその鉄損が低
いこと(” 17 /B。値で代表される)である。一
般に一方向性けい素鋼板の表面には、フォルステライ)
 (Mg25104 )買被膜とりん酸塩を主成分とす
るコーテイング膜から成る2層の絶縁被膜が形成されて
いて、積層して鉄心を作製する際、鋼板間の絶縁性を維
持し、実機の鉄損特性の劣化を防いでいる。最近、需要
の増大している高磁束密度一方向性けい素鋼板において
は、フォルスドライド質被膜とシリカ−りん酸塩系のコ
ーテイング膜とによって鋼板に張力を付与することによ
り、鉄損低減を達成しうることが見い出されていて、こ
のことからも素材磁性を向上させるためには絶縁被膜の
良好な形成が必須であるとされるわけである。加えて昨
今のエネルギー事情からも極めて低い鉄損の素材がめら
れている。
Technical Background The basic properties required of unidirectional silicon steel sheets, which are mainly used as transformer core materials, are a constant magnetizing force, I;
) has a high magnetic flux density (represented by the B10 value), and when a constant magnetic flux density is applied, its iron loss is low (represented by the 17/B. value). Forsterei) is used on the surface of grain-oriented silicon steel sheet.
(Mg25104) A two-layer insulating film consisting of a purchased film and a coating film mainly composed of phosphate is formed, and when laminated to create an iron core, it maintains the insulation between the steel plates and This prevents deterioration of loss characteristics. Recently, demand for high magnetic flux density unidirectional silicon steel sheets has been increasing, and iron loss has been reduced by applying tension to the steel sheets using a false dry film and a silica-phosphate coating film. It has been found that it is possible to do so, and from this fact, it is considered that good formation of an insulating film is essential in order to improve the magnetism of the material. In addition, due to the current energy situation, materials with extremely low iron loss are being sought.

かかる鉄損特性改善方法の1つとして、特公昭52−2
4499号、特公昭56−4150号各公報に開示され
ているような仕上げ焼鈍後の素材表面を化学研磨または
電解研磨などによって極めて平?冴にする方法があり、
かような方法によってそれまで以上に低い鉄損を得るこ
とが可能になった。
As one of the methods for improving iron loss characteristics,
4499 and Japanese Patent Publication No. 56-4150, the surface of the material after finish annealing is polished extremely flat by chemical polishing or electrolytic polishing. There is a way to be smart,
This method has made it possible to obtain lower iron loss than ever before.

しかしながら上記したような平滑化処理後の素材を何ら
の絶縁処理なく積層することは、鋼板間の導通を招くた
め、素材のもつ優れた鉄損特性を実機で生かすことがで
きない。従って、表面を平滑化した素材(以下、鏡面化
素材とよぶ)にも、絶縁層の形成が必要であり、かよう
な処理としてシリカ−りん酸塩を主成分とする張力付加
型の絶縁コーティングの塗布・焼付けが考えられる。し
かしながらかよう−な鏡面化素材に対する張力付加型絶
縁被膜のコーティング処理において、張力が十分に発揮
される700°C以上の温度での焼付けでは、得られる
コーテイング膜は、不均一なだけではなくはく離し易か
ったため、満足のいく鋼板間の絶縁は期待できなかった
。従って鏡面化素材についても、十分な張力を付加し得
る温度で良好なコーテイング膜を被成できる方法の開発
が望まれているわけであるが、現在に至るまでそのよう
な方法は未だ見出されていない。
However, stacking the above-mentioned smoothed materials without any insulation treatment causes electrical conduction between the steel plates, making it impossible to utilize the excellent iron loss characteristics of the materials in actual equipment. Therefore, it is necessary to form an insulating layer even on materials whose surfaces have been smoothed (hereinafter referred to as mirror-finished materials), and such treatment includes a tension-applied insulating coating mainly composed of silica-phosphate. Possible methods include coating and baking. However, when coating such mirror-finished materials with a tension-applied insulating film, baking at a temperature of 700°C or higher, where the tension is fully exerted, the resulting coating film is not only non-uniform, but also peels off. Therefore, satisfactory insulation between the steel plates could not be expected. Therefore, it is desired to develop a method for forming a good coating film on mirror-finished materials at a temperature that can apply sufficient tension, but to date, such a method has not yet been found. Not yet.

発明の目的 この発明は、上記の要請に有利に応じるもので、鏡面化
素材についても、被膜密着性を損うことなしに張力が十
分に発揮される温度での絶縁コーティング処理を可能な
らしめ、該素材の磁気特性をさらに向上させると共に、
良好な鋼板間の電気絶縁性も併せて得ることができる、
一方向性けい素鋼板の製造方法を提案することを目的と
するものである。
Purpose of the Invention The present invention advantageously satisfies the above-mentioned requirements by making it possible to perform an insulating coating treatment on mirror-finished materials at a temperature at which sufficient tension is exerted without impairing coating adhesion. In addition to further improving the magnetic properties of the material,
It is also possible to obtain good electrical insulation between steel plates.
The purpose of this paper is to propose a method for manufacturing unidirectional silicon steel sheets.

従来技術とその問題点 通常、一方向性けい素鋼板は、S、Se、AtおよびN
などのインヒビター形成成分を含有する熱延板に1回ま
たは2回の冷間圧延を施して所望の最終板厚に仕上げた
のち、脱炭焼鈍を兼ねた1次再結晶焼鈍を施し、ついで
Mg0を主成分とする焼鈍分離剤を塗布してから高温で
の箱焼鈍を経て製造される。この箱焼鈍において、脱炭
焼鈍時に生成するSin、酸化層と焼鈍分離剤のMgO
とが反応して、フォルステライト(Kg、 5i04 
)とよばれる酸化物被膜が形成される。このフォルステ
ライト質被膜は前述のように、磁性改善と鋼板間の絶縁
に有用である。しかしかかる鋼板において、地鉄と7オ
ルステライト質被膜との界面は平滑ではないので磁化時
の磁区移動の妨げとなり、磁性劣化の原因となっている
わけであるが、この照フォルステライト質被膜を除去し
た後、表面を極めて平滑とすることによって鉄損が改善
されることは、前述したとおりである〇 ところでこのような極めて低い鉄損特性をもつ素材にお
いては、積層して鉄心に組立てた際の絶縁性の維持が極
めて大きい課題となるところ、従来は平滑な表面状態に
よって低い鉄損値が得られていることの故に、その表面
状態を損なうことなしに絶縁被膜を形成することが必要
であると考えられ、かかる平滑性を維持するために、以
下に述べるような種々の方策が講じられてきたのである
Prior art and its problems Normally, unidirectional silicon steel sheets contain S, Se, At and N.
A hot-rolled sheet containing an inhibitor-forming component such as Mg0 It is manufactured by applying an annealing separator mainly composed of and then box annealing at a high temperature. In this box annealing, Sin generated during decarburization annealing, MgO as an oxide layer and an annealing separator
reacts with forsterite (Kg, 5i04
) is formed. As mentioned above, this forsterite coating is useful for improving magnetism and for insulating between steel plates. However, in such steel sheets, the interface between the base iron and the 7-orsterite coating is not smooth, which impedes magnetic domain movement during magnetization and causes magnetic deterioration. As mentioned above, iron loss can be improved by making the surface extremely smooth after removal. By the way, with materials that have such extremely low iron loss characteristics, when laminated and assembled into an iron core, Maintaining the insulation properties of steel is an extremely important issue, and since conventionally a low iron loss value has been obtained due to the smooth surface condition, it is necessary to form an insulating film without damaging the surface condition. In order to maintain such smoothness, various measures as described below have been taken.

たとえば特公昭52−24499号公報においては、鏡
面化後直ちにめっきを行って表面を保護しその後コーテ
ィング処理する方法が開示されている。しかしながら、
この方法では、実機鉄心に組立て後、加工歪の除去を目
的とした歪取り焼鈍において、めっきされた金属の鋼中
拡散により磁性劣化を来たすという不利があった。また
特公昭56−4150号公報には、セラミック薄膜を鏡
面化素材に被成する方法が開示されている。この方法は
真空蒸着、化学蒸着、スパッタリングなどがセラミック
被膜の形成方法として掲げられているが、かかる方法は
真空中または減圧下で銅帯を連続処理する必要があるた
めに、極めて高価でしかも制御も難しい設備を必要とし
、また厚み0.5〜5μmもの被覆を行なうためには極
めて長時間を要する上、さらに被覆の未処理部分を鏡面
状態に長時間保持することが困難であるなど種々の理由
によって、実用化はほとんど不可能に等しかった。
For example, Japanese Patent Publication No. 52-24499 discloses a method in which the surface is protected by plating immediately after mirror polishing, and then coated. however,
This method has the disadvantage that, after assembly into an actual iron core, during strain relief annealing for the purpose of removing processing strain, the plated metal diffuses into the steel, causing magnetic deterioration. Further, Japanese Patent Publication No. 56-4150 discloses a method of coating a mirror-finished material with a ceramic thin film. Vacuum deposition, chemical vapor deposition, sputtering, etc. have been proposed as methods for forming ceramic coatings, but these methods require continuous processing of the copper strip in vacuum or under reduced pressure, making them extremely expensive and controlled. However, it requires difficult equipment, it takes an extremely long time to coat the coating with a thickness of 0.5 to 5 μm, and it is difficult to maintain the untreated portion of the coating in a mirror-like state for a long time. For some reason, it was almost impossible to put it into practical use.

解決手段の解明経緯 発明者らは、工程的な負担を招くことなしに鏡面化素材
に容易に張力付加型絶縁コーティングを形成でき、しか
も磁性向上を達成する方法について検討した。なおこの
ようなコーティングを得るための処理液としては、特公
昭58−28375号公報に開示されるコロイド状シリ
カ−りん酸アルミニウムー無水クロム酸系や特公[+’
d 56−84638号公報に開示されるコロイド状シ
リカ−りん酸アルミニウムーりん酸マグネシウム系、さ
らには特公昭56−52117号公報に開示されるコロ
イド状シリカ−りん酸マグネシウムー無水りpム酸系な
どの組成物を用いることができる。
Background of the Elucidation of the Solution The inventors investigated a method that could easily form a tension-applied insulating coating on a mirror-finished material without incurring any process burden, and that could also improve magnetic properties. As a treatment solution for obtaining such a coating, there may be used a colloidal silica-aluminum phosphate-chromic acid anhydride system disclosed in Japanese Patent Publication No. 58-28375, or Japanese Patent Publication [+'
d Colloidal silica-aluminum phosphate-magnesium phosphate system disclosed in Japanese Patent Publication No. 56-84638, and colloidal silica-magnesium phosphate-magnesium anhydride system disclosed in Japanese Patent Publication No. 56-52117. Compositions such as can be used.

従来法においては、いずれも鏡面化素材の表面状態の保
持が、鉄損劣化を防止する重要な要因と考えられていた
わけであるが、これに対し発明者らは、コーティングの
焼付けが良好であれば、仮りにその前処理において若干
の鉄損劣化を招いたとしてもコーティングによる張力付
加によってその劣化を回復できるのではないかとの観点
に立って、種々の実験を試みた結果、絶縁コーティング
処理に先立ち、弱い酸化性雰囲気中で鏡面化処理済みの
鋼板表面に薄い酸化膜を形成させておくと、その後の張
力付加型絶縁コーティングの焼付は処理において、その
焼伺は温度を100°C以上高くできるとの知見を得た
のである。
In all conventional methods, maintaining the surface condition of the mirror-finished material was considered to be an important factor in preventing iron loss deterioration. For example, even if some iron loss deterioration occurs in the pretreatment, the deterioration can be recovered by adding tension through the coating.As a result of various experiments, we found that the insulating coating treatment If a thin oxide film is first formed on the surface of the mirror-treated steel sheet in a weakly oxidizing atmosphere, then the tension-applied insulating coating will be baked at a temperature of 100°C or more during the baking process. I learned that it is possible.

張力は、コーテイング膜と鋼板との熱膨張率の差によっ
て鋼板に付加されるわけであるから、焼付は湿度が低い
と十分な張力は付加されないことになる。この点、焼付
は温度を上昇できるということは、鋼板への付加張力を
大きくできるすなわち鉄損の改善効果が増大されること
を意味するわけである0 発明の構成 この発明は、上記の知見に由来するものである。
Tension is applied to the steel plate due to the difference in the coefficient of thermal expansion between the coating film and the steel plate, so if the humidity is low, sufficient tension will not be applied for seizure. In this regard, the fact that baking can increase the temperature means that the added tension to the steel plate can be increased, that is, the effect of improving iron loss is increased. It is derived from

tqわちこの発明は、含けい素鋼スラブヲ熱m圧延して
得られた熱延板に、必要な熱処理を経てから、1回また
は中間焼鈍を挟む2回の冷間圧延を施して最終板厚とし
たのち、脱炭・1次再結晶焼□鈍ついで仕上げ焼鈍を施
し、その後さらに平坦化焼鈍を施す一連の工程よりなる
一方向性けい素鋼板の製造方法において、 上記仕上げ焼鈍後の鋼板表面を鏡面状態に加工したのち
、弱酸化性雰囲気中で熱処理を施して該鋼板表面に、そ
の片面当り膜厚:0・05〜0.5μmのSiO酸化層
を形成させ、しかるのち張力付加型の絶縁コーテイング
膜を被成することからなる、鉄損特性に優れた一方向性
けい素鋼板の製造方法である。
In other words, in this invention, a hot-rolled sheet obtained by hot rolling a silicon-containing steel slab is subjected to necessary heat treatment and then cold-rolled once or twice with intermediate annealing in between to form a final sheet. In a method for manufacturing a unidirectional silicon steel sheet, which comprises a series of steps of thickening, decarburization, primary recrystallization annealing, finish annealing, and then further flattening annealing, the steel plate after finish annealing is After processing the surface into a mirror-like state, heat treatment is performed in a weakly oxidizing atmosphere to form a SiO oxide layer with a film thickness of 0.05 to 0.5 μm per side on the steel sheet surface, and then a tension-applied type This is a method of manufacturing a unidirectional silicon steel sheet with excellent iron loss characteristics, which comprises coating the steel sheet with an insulating coating film.

この発明において、絶縁コーティング処理に先立って鋼
板表面に形成されるSin、の酸化層は、鋼中にSin
、粒が分散した構造となっているため、鏡面化素材にs
io、層を形成させた場合には表面状態が悪化し、それ
に伴って鉄損特性も若干劣化する。しかしながらその後
のコーティング処理による張力付加によって鉄損特性は
その劣化分をこえて大きく改善される結果、最終的には
良好な鉄損特性が得られ、しかも被膜密着性も大幅に改
善されるのである。
In this invention, the oxidized layer of Sin, which is formed on the surface of the steel sheet prior to the insulating coating treatment, is
, because the grains have a dispersed structure,
io, when a layer is formed, the surface condition deteriorates, and the iron loss characteristics also deteriorate slightly accordingly. However, by adding tension through the subsequent coating process, the iron loss characteristics are greatly improved to more than compensate for the deterioration, and as a result, good iron loss characteristics are finally obtained, and the film adhesion is also greatly improved. .

このようにこの発明は、前掲した従来の諸技術とは異な
り、製造過程において一時的な鉄損劣化を招いたとして
も、その後の処理によって鏡面化状態よりも一層すぐれ
た鉄損特性を得ようとするものであり、鏡面状態の継続
を必須としない点において、従来とは技術内容を全く異
にするものである0 ここで、絶縁コーティング処理に先立つ熱処理において
形成されるSin、酸化層の厚みを、上記の範囲に限定
した理由について説明する。
In this way, the present invention differs from the conventional techniques mentioned above in that even if temporary deterioration of iron loss occurs during the manufacturing process, it is possible to obtain iron loss characteristics that are even better than those in a mirror-finished state through subsequent processing. The technology is completely different from the conventional one in that it does not require the continuation of a mirror-like state. The reason why is limited to the above range will be explained.

Sin、層の厚みは、厚くなるほどコーティング焼付き
性は良好となるが、逆に磁性劣化が著しく1・一方薄す
ぎるとコーティングの焼付き性が不十分となって十分な
張力を鋼板に付加できなくなる。
As for the thickness of the Sin layer, the thicker the layer, the better the coating's seizure properties, but conversely the magnetic deterioration is significant.1 On the other hand, if it is too thin, the coating's seizure properties are insufficient and sufficient tension cannot be applied to the steel plate. It disappears.

第1図に、鏡面化素材に置坦化焼鈍をかねて、各種の酸
化性雰囲気中でSi0□酸化層を形成させたのちシリカ
−りん酸マグネシウムー無水クロムm系の絶縁コーティ
ングを焼付けたときの、Si0□酸化層厚みと鉄損との
関係ならびにコーテイング膜の密着性について調べた結
果を、従来例と共に整理して示す。鋼板面の一部であっ
てもコーティングの剥離が生じた場合は、何ら絶縁の用
をなさないため使用に耐え得ず、不均一な応力が鋼板に
付加されて無応力状態より鉄損の劣化が著しい。
Figure 1 shows the results when a silica-magnesium phosphate-chromium anhydride insulating coating is baked on the mirror-finished material after forming a Si0□ oxide layer in various oxidizing atmospheres, which also serves as planarization annealing. , the relationship between the thickness of the Si0□ oxide layer and iron loss, as well as the results of investigating the adhesion of the coating film, are summarized together with conventional examples. If the coating peels off even on a part of the steel plate surface, it will not serve any purpose as insulation and will not be usable, and uneven stress will be applied to the steel plate, causing iron loss to deteriorate compared to a stress-free state. is remarkable.

第1図かられかるように、酸化層厚みが0.05〜0.
5μmの範囲で、実質的に鋼板に張力が付加る。従って
、酸化層厚みは0゜05〜0.5μmの範囲に限定した
のである。
As can be seen from Fig. 1, the oxide layer thickness is 0.05 to 0.
Tension is substantially applied to the steel plate within the range of 5 μm. Therefore, the oxide layer thickness was limited to a range of 0.05 to 0.5 μm.

なお鋼板表面の鏡面加工法は、公知の化学研磨、電解研
磨など、いずれの方法を用いてもよく、また張力付加型
絶縁コーティング処理についてもシリカとりん酸塩を主
成分とするものなど公知のものいずれもが使用できる。
Any known method such as chemical polishing or electrolytic polishing may be used to mirror the surface of the steel plate, and any known tension-applied insulating coating treatment may be used, such as one mainly composed of silica and phosphate. Any of these can be used.

またこの発明に従うS iOs酸化層の形成は、必ずし
も特別の工程を必要とするわけではなく、通常、コイル
の巻きぐせを直すために行われる750〜850℃の温
度範囲での数分間にわたる連続平坦化焼鈍の際に、Si
−02酬化層の同時形成を実施することもできる。
Furthermore, the formation of the SiOs oxide layer according to the present invention does not necessarily require a special process, and is usually performed by continuous flattening over several minutes at a temperature range of 750 to 850°C, which is usually done to straighten coil curls. During chemical annealing, Si
-02 formation layer can also be formed simultaneously.

次にこの発明の実施例について説明する。Next, embodiments of this invention will be described.

実施例1 00.048%、5i8−25%、Mn0.070%、
seo。018%およびSbO,025%を含む鋼スラ
ブご熱間圧延し、中間焼鈍を挟む2回の冷間圧延を施し
て板厚9.3mmの冷延板とした。次いで一次再結晶焼
鈍をかねた脱炭焼鈍後MgOを塗布してから、最終仕上
げ焼鈍を施した。仕上げ焼鈍後、フォルステライト被膜
を酸洗除去したのち、HFとH,Ogの溶液中で80秒
浸漬する鏡面化処理を施した。
Example 1 00.048%, 5i8-25%, Mn0.070%,
seo. A steel slab containing 018% SbO and 025% SbO was hot rolled and cold rolled twice with intermediate annealing interposed therebetween to obtain a cold rolled plate having a thickness of 9.3 mm. Next, after decarburization annealing which also served as primary recrystallization annealing, MgO was applied, and final finish annealing was performed. After final annealing, the forsterite coating was removed by pickling, and then a mirror polishing treatment was performed by immersing it in a solution of HF, H, and Og for 80 seconds.

その後直ちに平坦化焼鈍をかねて第1表に示す厚みの5
102酸化層を形成させた。この鋼板にシリカ−りん酸
マグネシウムー無水クロム酸系の張力付加型絶縁コーテ
ィングを750°Cで焼付けた。
Immediately thereafter, flattening annealing is performed to obtain a thickness of 5 mm as shown in Table 1.
A 102 oxide layer was formed. A silica-magnesium phosphate-chromic anhydride tension-adding type insulation coating was baked on this steel plate at 750°C.

なお比較のため、鏡面化処理やコーティング処理を施さ
ない場合についても同様の実験を行った。
For comparison, a similar experiment was also conducted without mirror polishing or coating.

得られた各製品の磁気特性および被膜密着性について調
べた結果を第1表に併記する。
Table 1 also shows the results of investigating the magnetic properties and film adhesion of each product obtained.

510g層を形成しない素材では、コーティング焼付き
性が極めて不良で、また磁気特性も悪いのに対し、この
発明法に従う場合は、良好なコーテイング膜が形成され
、しかも磁気特性も格段に向上している。
With materials that do not form a 510g layer, the coating has extremely poor seizure resistance and poor magnetic properties, but when the method of this invention is followed, a good coating film is formed and the magnetic properties are also significantly improved. There is.

発明の効果 かくしてこの発明によれば、鏡面化処理後の鋼板表面に
、被膜密着性を損うことなしに張力付加型のコーティン
グ被膜を効果的に被成することができ、従って鉄損特性
の改善も実現でき、有利である。
Effects of the Invention Thus, according to the present invention, a tension-applied coating film can be effectively formed on the surface of a steel sheet after mirror polishing treatment without impairing the adhesion of the film, and therefore the iron loss characteristics can be improved. Improvements can also be realized, which is advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、S10□酸化層の厚みと鉄損との関係をコー
ティング被膜の密着性と共に示したグラフである。
FIG. 1 is a graph showing the relationship between the thickness of the S10□ oxide layer and iron loss together with the adhesion of the coating film.

Claims (1)

【特許請求の範囲】 1 含けい素鋼スラブを熱間圧延して得られた熱延板に
、必要な熱処理を経てから、1回または中間焼鈍を挟む
2回の冷間圧延を施して最終板厚としたのち、脱炭・1
次再結晶焼鈍つ□いで仕上げ焼鈍を施し、その後さらに
平坦化焼鈍を施す一連の工程よりなる一方向性けい素鋼
板の製造方法において、 上記仕上げ焼鈍後の鋼板表面を鏡面状態に加工したのち
、弱酸化性雰囲気中で熱処理を施して該鋼板表面に、そ
の片面当り膜厚: 0.05〜0・5μmの5in2酸
化層を形成させ、しかるのち張力付加型の絶縁コーテイ
ング膜を被成することを特徴とする、鉄損特性に優れた
一方向性けい素鋼板の製造方法。
[Scope of Claims] 1 A hot-rolled plate obtained by hot rolling a silicon-containing steel slab is subjected to necessary heat treatment and then cold-rolled once or twice with intermediate annealing in between to form the final product. After making the plate thick, decarburization 1
In a method for manufacturing a unidirectional silicon steel sheet, which comprises a series of steps of performing finish annealing with subsequent recrystallization annealing, and then further flattening annealing, the surface of the steel sheet after the above finish annealing is processed into a mirror-like state, and then A 5in2 oxide layer with a film thickness of 0.05 to 0.5 μm per side is formed on the surface of the steel plate by heat treatment in a weakly oxidizing atmosphere, and then a tension-applied insulating coating film is formed. A method for manufacturing a unidirectional silicon steel sheet with excellent iron loss characteristics.
JP23943983A 1983-12-19 1983-12-19 Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic Pending JPS60131976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23943983A JPS60131976A (en) 1983-12-19 1983-12-19 Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23943983A JPS60131976A (en) 1983-12-19 1983-12-19 Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic

Publications (1)

Publication Number Publication Date
JPS60131976A true JPS60131976A (en) 1985-07-13

Family

ID=17044785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23943983A Pending JPS60131976A (en) 1983-12-19 1983-12-19 Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic

Country Status (1)

Country Link
JP (1) JPS60131976A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467384A2 (en) * 1990-07-20 1992-01-22 Nippon Steel Corporation Method of producing grain oriented silicon steel sheets each having a low watt loss
EP0577124A2 (en) * 1992-07-02 1994-01-05 Nippon Steel Corporation Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for producing the same
JPH0741958A (en) * 1993-07-27 1995-02-10 Kawasaki Steel Corp Formation of insulating coating film on grain-oriented silicon steel sheet
JPH0978252A (en) * 1995-09-13 1997-03-25 Nippon Steel Corp Formation of insulating film on grain-oriented silicon steel sheet
US5961744A (en) * 1992-04-07 1999-10-05 Nippon Steel Corporation Grain oriented silicon steel sheet having low core loss and method of manufacturing same
JP2002302774A (en) * 2001-04-09 2002-10-18 Nippon Steel Corp Method of forming insulating film of grain-oriented silicon steel sheet having excellent magnetic property and excellent adhesion of coating
JP2002309381A (en) * 2001-04-13 2002-10-23 Nippon Steel Corp Method of forming insulating coating film on grain oriented electromagnetic sheet
EP2537958A1 (en) * 2010-02-18 2012-12-26 Nippon Steel Corporation Non-oriented electromagnetic steel sheet and process for production thereof
JP2019019358A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same
JP2019019360A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Original sheet for grain-oriented electromagnetic steel sheet having no glass coating film, method for manufacturing the same, and method for manufacturing grain-oriented electromagnetic steel sheet excellent in adhesion of insulating film
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020012665A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020149331A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020149344A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
WO2020149332A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electrical steel sheet
CN113396242A (en) * 2019-02-08 2021-09-14 日本制铁株式会社 Grain-oriented electromagnetic steel sheet, method for forming insulating coating on grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet
WO2023204269A1 (en) * 2022-04-21 2023-10-26 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2023204266A1 (en) * 2022-04-21 2023-10-26 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and production method therefor

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467384A2 (en) * 1990-07-20 1992-01-22 Nippon Steel Corporation Method of producing grain oriented silicon steel sheets each having a low watt loss
US5129965A (en) * 1990-07-20 1992-07-14 Nippon Steel Corporation Method of producing grain oriented silicon steel sheets each having a low watt loss and a mirror surface
US5961744A (en) * 1992-04-07 1999-10-05 Nippon Steel Corporation Grain oriented silicon steel sheet having low core loss and method of manufacturing same
EP0577124A2 (en) * 1992-07-02 1994-01-05 Nippon Steel Corporation Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for producing the same
EP0577124B1 (en) * 1992-07-02 2002-10-16 Nippon Steel Corporation Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for producing the same
JPH0741958A (en) * 1993-07-27 1995-02-10 Kawasaki Steel Corp Formation of insulating coating film on grain-oriented silicon steel sheet
JPH0978252A (en) * 1995-09-13 1997-03-25 Nippon Steel Corp Formation of insulating film on grain-oriented silicon steel sheet
JP2002302774A (en) * 2001-04-09 2002-10-18 Nippon Steel Corp Method of forming insulating film of grain-oriented silicon steel sheet having excellent magnetic property and excellent adhesion of coating
JP2002309381A (en) * 2001-04-13 2002-10-23 Nippon Steel Corp Method of forming insulating coating film on grain oriented electromagnetic sheet
EP2537958A1 (en) * 2010-02-18 2012-12-26 Nippon Steel Corporation Non-oriented electromagnetic steel sheet and process for production thereof
EP2537958A4 (en) * 2010-02-18 2015-04-29 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet and process for production thereof
US9187830B2 (en) 2010-02-18 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
US9934894B2 (en) 2010-02-18 2018-04-03 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
JP2019019358A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same
JP2019019360A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Original sheet for grain-oriented electromagnetic steel sheet having no glass coating film, method for manufacturing the same, and method for manufacturing grain-oriented electromagnetic steel sheet excellent in adhesion of insulating film
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020012665A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
KR20210018934A (en) 2018-07-13 2021-02-18 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20210018433A (en) 2018-07-13 2021-02-17 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2020149344A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
US20220090226A1 (en) * 2019-01-16 2022-03-24 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2020149331A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
CN113286908A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113302320A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
KR20210110681A (en) 2019-01-16 2021-09-08 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet with excellent insulation film adhesion without forsterite film
US11952646B2 (en) 2019-01-16 2024-04-09 Nippon Steel Corporation Grain-oriented electrical steel sheet having excellent insulation coating adhesion without forsterite coating
JPWO2020149331A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
JPWO2020149332A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
WO2020149332A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electrical steel sheet
CN113286908B (en) * 2019-01-16 2023-03-14 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113302320B (en) * 2019-01-16 2023-02-28 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
EP3922754A4 (en) * 2019-02-08 2023-01-11 Nippon Steel Corporation Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
CN113396242B (en) * 2019-02-08 2023-05-30 日本制铁株式会社 Grain-oriented electrical steel sheet, method for forming insulating film on grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
CN113396242A (en) * 2019-02-08 2021-09-14 日本制铁株式会社 Grain-oriented electromagnetic steel sheet, method for forming insulating coating on grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet
WO2023204269A1 (en) * 2022-04-21 2023-10-26 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2023204266A1 (en) * 2022-04-21 2023-10-26 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and production method therefor

Similar Documents

Publication Publication Date Title
JP2698003B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JPS60131976A (en) Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
JP4018878B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
JP2698501B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JP2583357B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP3272210B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP2002309380A (en) Method of forming insulating coating film on electromagnetic steel sheet
JP2005240157A (en) Grain-oriented electromagnetic steel sheet with phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium, and method for forming phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium
JPS62103374A (en) Grain-oriented silicon steel sheet having superior magnetic characteristic
JP2019123936A (en) Method for manufacturing grain-oriented electromagnetic steel sheets
JP3300117B2 (en) Method of forming insulating coating on grain-oriented silicon steel sheet
JPS62290844A (en) Grain-oriented silicon steel sheet having very small iron loss
JPS6269501A (en) Manufacture of low iron loss grain oriented silicon steel plate
JP3461712B2 (en) Unidirectional electrical steel sheet and method for forming insulating film on unidirectional electrical steel sheet
JPH0577749B2 (en)
JP2627083B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JPH046264A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH02301571A (en) Production of grain-oriented electrical steel sheet having uniform glassy coating film
JPH03294468A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH04272166A (en) Manufacture of ultralow core loss grain-oriented silicon steel sheet
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss