JP6460505B2 - Manufacturing method of dust core - Google Patents

Manufacturing method of dust core Download PDF

Info

Publication number
JP6460505B2
JP6460505B2 JP2018118676A JP2018118676A JP6460505B2 JP 6460505 B2 JP6460505 B2 JP 6460505B2 JP 2018118676 A JP2018118676 A JP 2018118676A JP 2018118676 A JP2018118676 A JP 2018118676A JP 6460505 B2 JP6460505 B2 JP 6460505B2
Authority
JP
Japan
Prior art keywords
powder
dust core
soft magnetic
magnetic alloy
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018118676A
Other languages
Japanese (ja)
Other versions
JP2018198319A (en
Inventor
好正 西尾
好正 西尾
野口 伸
伸 野口
西村 和則
和則 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018118676A priority Critical patent/JP6460505B2/en
Publication of JP2018198319A publication Critical patent/JP2018198319A/en
Application granted granted Critical
Publication of JP6460505B2 publication Critical patent/JP6460505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、圧粉磁心の製造方法に関する。   The present invention relates to a method for manufacturing a dust core.

従来から、家電機器、産業機器、車両など多種多様な用途において、インダクタ、トランス、チョーク等のコイル部品が用いられている。コイル部品は、磁性コアと、磁性コアの周囲に巻装されたコイルで構成される。かかる磁性コアには、磁気特性、形状自由度、価格に優れるフェライトが広く用いられている。   Conventionally, coil parts such as inductors, transformers and chokes have been used in a wide variety of applications such as home appliances, industrial equipment, and vehicles. The coil component includes a magnetic core and a coil wound around the magnetic core. For such a magnetic core, ferrite having excellent magnetic properties, flexibility in shape and price is widely used.

近年、電子機器等の電源装置の小型化が進んだ結果、小型・低背で、かつ大電流に対しても使用可能なコイル部品の要求が強くなり、フェライトと比較して飽和磁束密度が高い金属系磁性粉末を使用した圧粉磁心の採用が進んでいる。金属系磁性粉末としては、例えばFe−Si系、Fe−Ni系、Fe−Si−Al系などの磁性合金粉末が用いられている。   In recent years, as power supply devices such as electronic devices have been downsized, the demand for coil parts that are small and low in profile and can be used for large currents has become stronger, and the saturation magnetic flux density is higher than that of ferrite. Adoption of powder magnetic cores using metallic magnetic powder is progressing. As the metal-based magnetic powder, for example, magnetic alloy powders such as Fe-Si, Fe-Ni, and Fe-Si-Al are used.

一方、Fe−Si系、Fe−Ni系などの磁性合金粉末を圧密化して得られる圧粉磁心は、フェライトに比較して飽和磁束密度が高い反面、合金粉末であるため電気抵抗率が低い。そのため、合金粉末表面に絶縁性被覆を形成したのち成形するなど、磁性合金粉末間の絶縁性を高める方法が適用されている。特許文献1には、Fe100−a−bSiCr(重量%で、0≦a≦8、0<b≦3)の組成の軟磁性金属粉末に耐熱性絶縁性酸化物を付着させ、非酸化性雰囲気で熱処理することにより、粉末表面にCrリッチな絶縁性被膜が形成された軟磁性金属粉末およびそれを用いた圧粉体が開示されている。特許文献1では、高温熱処理が可能で、低ヒステリシス損失および高電気抵抗を備えた圧粉体を得ることをその目的としている。 On the other hand, a dust core obtained by compacting a magnetic alloy powder such as Fe—Si or Fe—Ni has a higher saturation magnetic flux density than ferrite, but has a low electrical resistivity because it is an alloy powder. Therefore, a method for increasing the insulation between the magnetic alloy powders, such as forming after forming an insulating coating on the surface of the alloy powder, is applied. In Patent Document 1, a heat-resistant insulating oxide is attached to a soft magnetic metal powder having a composition of Fe 100-ab Si a Cr b (by weight, 0 ≦ a ≦ 8, 0 <b ≦ 3). A soft magnetic metal powder in which a Cr-rich insulating film is formed on the powder surface by heat treatment in a non-oxidizing atmosphere and a green compact using the same are disclosed. In Patent Document 1, an object is to obtain a green compact that can be heat-treated at high temperature and has low hysteresis loss and high electrical resistance.

特開2008−195986号公報JP 2008-195986 A

特許文献1に開示された圧粉磁心は、Crを含み、かつ絶縁性酸化物が形成されていることから、Fe−Si系等の圧粉磁心に比べて耐食性と絶縁性に優れる圧粉磁心が得られることが期待される。しかしながら、圧粉磁心においては、耐食性等のみならず、製造時の安定性、使用時の信頼性を確保するために高い強度が必要とされる。コイル部品が小型になればなるほど高強度化の必要性は高まる。この点、上述のように特許文献1に開示された圧粉磁心は、耐食性等の向上は期待されるものの、かかる高強度化に対しては必ずしも十分なものではなかった。   Since the dust core disclosed in Patent Document 1 contains Cr and an insulating oxide is formed, the dust core is superior in corrosion resistance and insulation as compared to a Fe-Si based dust core. Is expected to be obtained. However, in a dust core, high strength is required to ensure not only corrosion resistance and the like, but also stability during production and reliability during use. The need for higher strength increases as the coil components become smaller. In this regard, as described above, the dust core disclosed in Patent Document 1 is not necessarily sufficient for increasing the strength, although improvement in corrosion resistance and the like is expected.

そこで、上記問題点に鑑み、本発明は、強度に優れた圧粉磁心の製造方法を提供することを目的とする。   Then, in view of the said problem, an object of this invention is to provide the manufacturing method of the powder magnetic core excellent in intensity | strength.

本発明は、Fe、SiおよびCrを含むFe−Si−Cr系軟磁性合金粉を用いた圧粉磁心の製造方法であって、表面にSi酸化物皮膜が設けられたFe−Si−Cr系軟磁性合金粉とバインダーを混合する第1の工程と、前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、前記第2の工程を経て得られた成形体を酸化性雰囲気中で熱処理する第3の工程とを有し、前記第3の工程を経て得られた圧粉磁心は、Fe−Si−Cr系軟磁性合金粉の合金相同士がFe、SiおよびCrを含む酸化物相を介して結合された組織を有し、前記酸化物相は、前記合金相側に、質量比で前記合金相よりもCrの含有量およびSiの含有量が大きく、かつCrおよびSiの含有量の合計がFeの含有量よりも大きいCr−Si濃化部を有することを特徴とする圧粉磁心の製造方法である。   The present invention relates to a method for producing a dust core using Fe-Si-Cr soft magnetic alloy powder containing Fe, Si and Cr, wherein the surface is provided with a Si oxide film. A first step of mixing the soft magnetic alloy powder and the binder, a second step of press-molding the mixture obtained through the first step, and a molded body obtained through the second step. A dust core obtained through the third step, in which the alloy phases of the Fe—Si—Cr soft magnetic alloy powder are Fe, Si and Having a structure bonded through an oxide phase containing Cr, the oxide phase has a Cr content and a Si content larger than the alloy phase in mass ratio on the alloy phase side, and It has a Cr-Si enriched part in which the total content of Cr and Si is larger than the content of Fe. A method for producing a dust core according to claim Rukoto.

本発明の圧粉磁心の製造方法では、前記Si酸化物皮膜は、Fe−Si−Cr系軟磁性合金粉をTEOS(テトラエトキシシラン)、エタノール、アンモニア水の混合溶液に混合後、乾燥して形成するのが好ましい。   In the method for producing a dust core according to the present invention, the Si oxide film is prepared by mixing Fe-Si-Cr soft magnetic alloy powder with a mixed solution of TEOS (tetraethoxysilane), ethanol, and ammonia water, and then drying. Preferably formed.

本発明の圧粉磁心の製造方法では、前記Si酸化物皮膜は厚さが20〜500nmであるのが好ましい。   In the method for manufacturing a dust core according to the present invention, the Si oxide film preferably has a thickness of 20 to 500 nm.

本発明の圧粉磁心の製造方法では、前記バインダーがポリエチレン、ポリビニルアルコール、アクリル樹脂のいずれかの有機バインダーであるのが好ましい。   In the method for producing a dust core according to the present invention, the binder is preferably an organic binder of polyethylene, polyvinyl alcohol, or acrylic resin.

本発明の圧粉磁心の製造方法では、前記熱処理を大気中で500〜900℃の温度で行うのが好ましい。   In the method for producing a dust core according to the present invention, it is preferable that the heat treatment is performed in the atmosphere at a temperature of 500 to 900 ° C.

本発明の圧粉磁心の製造方法では、前記Fe−Si−Cr系軟磁性合金粉が、Siが1.0質量%以上10.0質量%以下、Crが1.0質量%以上7.0質量%以下、1.0質量%未満(0を含む)の非磁性元素と、残部が不可避不純物と、Feである組成であるのが好ましい。   In the method for producing a dust core according to the present invention, the Fe—Si—Cr soft magnetic alloy powder has a Si content of 1.0 mass% to 10.0 mass% and a Cr content of 1.0 mass% to 7.0 mass%. It is preferable that the composition be non-magnetic elements of less than or equal to 1% by mass and less than 1.0% by mass (including 0), the remainder being inevitable impurities, and Fe.

本発明の圧粉磁心の製造方法では、前記Fe−Si−Cr系軟磁性合金粉は、平均粒径d50が1μm以上30μm以下の粒状粉であるのが好ましい。   In the method for producing a dust core according to the present invention, the Fe—Si—Cr soft magnetic alloy powder is preferably a granular powder having an average particle diameter d50 of 1 μm to 30 μm.

本発明によれば、強度に優れた圧粉磁心の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the powder magnetic core excellent in intensity | strength can be provided.

本発明の一実施形態である圧粉磁心の断面TEM写真である。It is a cross-sectional TEM photograph of the powder magnetic core which is one Embodiment of this invention.

本発明により得られる圧粉磁心は、Fe、SiおよびCrを含むFe−Si−Cr系軟磁性合金粉を用いた圧粉磁心であり、前記Fe−Si−Cr系軟磁性合金粉の合金相同士がFe、SiおよびCrを含む酸化物相を介して結合された組織を有し、前記酸化物相は、前記合金相側に、質量比で前記合金相よりもCrの含有量およびSiの含有量が大きく、かつCrおよびSiの含有量の合計がFeの含有量よりも大きいCr−Si濃化部(Cr−Siリッチ部)を有することがその特徴の一つである。かかる酸化物の構成によって、Fe−Si−Cr系軟磁性合金粉を用いた圧粉磁心の強度を高めることが可能となる。
以下、本発明に係る圧粉磁心の実施形態を、具体的に説明するが、本発明はこれに限定されるものではない。
The dust core obtained by the present invention is a dust core using Fe-Si-Cr soft magnetic alloy powder containing Fe, Si, and Cr, and has an alloy homogeneity with the Fe-Si-Cr soft magnetic alloy powder. Has a structure bonded through an oxide phase containing Fe, Si and Cr, and the oxide phase is closer to the alloy phase than the alloy phase in terms of mass ratio and Si content. One of its features is that it has a Cr—Si concentrated portion (Cr—Si rich portion) having a large content and a total content of Cr and Si larger than the content of Fe. With such an oxide structure, it is possible to increase the strength of the powder magnetic core using the Fe—Si—Cr soft magnetic alloy powder.
Hereinafter, although embodiment of the powder magnetic core which concerns on this invention is described concretely, this invention is not limited to this.

Fe−Si−Cr系軟磁性合金粉は、含有比率の高い三つの主要元素としてFe、SiおよびCrを含む。このうち、Crは耐食性向上に寄与する元素であるため、Fe−Si−Cr系軟磁性合金粉は、Fe−Si系等の合金粉に比べて耐食性に優れる。かかる軟磁性合金粉を用いるとともに、Fe−Si−Cr系軟磁性合金粉の合金相同士が上述の酸化物相を介して結合されることによって、耐食性と強度に優れた圧粉磁心が得られる。   The Fe—Si—Cr based soft magnetic alloy powder contains Fe, Si and Cr as three main elements having a high content ratio. Among these, since Cr is an element that contributes to the improvement of corrosion resistance, the Fe—Si—Cr-based soft magnetic alloy powder is superior in corrosion resistance compared to Fe—Si-based alloy powder. A powder magnetic core having excellent corrosion resistance and strength can be obtained by using such soft magnetic alloy powder and combining the alloy phases of Fe-Si-Cr soft magnetic alloy powder through the above-mentioned oxide phase. .

上記酸化物相の構成を圧粉磁心の製造方法とともにさらに詳述する。本発明に係る圧粉磁心は、軟磁性合金粉とバインダーを混合する第1の工程と、前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、前記第2の工程を経て得られた成形体を熱処理する第3の工程とを有する製造方法によって得ることができる。第3の工程等を後述する特定の条件で行うことで、Fe−Si−Cr系軟磁性合金粉の合金相同士がFe、SiおよびCrを含む酸化物相を介して結合された組織を有し、前記酸化物相が、前記合金相側に、Cr−Si濃化部を有する圧粉磁心を得ることができる。   The structure of the oxide phase will be described in detail together with the method for producing a dust core. A dust core according to the present invention includes a first step of mixing a soft magnetic alloy powder and a binder, a second step of pressure-molding the mixture obtained through the first step, and the second step. It can obtain by the manufacturing method which has the 3rd process of heat-processing the molded object obtained through the process. By performing the third step and the like under specific conditions described later, a structure in which the alloy phases of the Fe-Si-Cr soft magnetic alloy powder are bonded via an oxide phase containing Fe, Si, and Cr is provided. And the powder magnetic core which the said oxide phase has a Cr-Si concentration part in the said alloy phase side can be obtained.

Cr−Si濃化部は、第3工程の熱処理によってFe−Si−Cr系軟磁性合金粉の表面にCrおよびSiが濃化して形成される。Crは酸化しやすい元素であるため、Fe−Si−Cr系軟磁性合金粉の表面に酸素が存在すると、表面に拡散して濃化し、酸化物を形成する。かかる酸化物の形成の際に、Fe−Si−Cr系軟磁性合金粉同士が結合される。この際、Crだけでなく、Siも濃化したCr−Si濃化部を形成することが強度向上に特に有効である。また、かかるCr−Si濃化部は、電気抵抗率の向上、コアロスの低減の観点からも有利な構成である。Cr−Si濃化部は相対的にFeが少ないため、Fe欠乏部(Feプア部)でもある。   The Cr—Si concentrating portion is formed by concentrating Cr and Si on the surface of the Fe—Si—Cr soft magnetic alloy powder by the heat treatment in the third step. Since Cr is an easily oxidizable element, if oxygen is present on the surface of the Fe—Si—Cr soft magnetic alloy powder, it diffuses and concentrates on the surface to form an oxide. During the formation of such an oxide, Fe—Si—Cr soft magnetic alloy powders are bonded together. At this time, it is particularly effective to improve the strength to form a Cr—Si concentrated portion in which not only Cr but also Si is concentrated. Moreover, this Cr-Si concentration part is a structure advantageous also from a viewpoint of the improvement of an electrical resistivity, and reduction of a core loss. Since the Cr-Si concentrated portion has relatively less Fe, it is also an Fe-deficient portion (Fe poor portion).

Cr−Si濃化部を形成するCrおよびSiはFe−Si−Cr系軟磁性合金粉自体から供給されるが、それに加えてSiはFe−Si−Cr系軟磁性合金粉自体以外から供給されることが好ましい。かかる構成は、例えば、Fe−Si−Cr系軟磁性合金粉の表面にSi化合物が配置された状態で、酸化性雰囲気で第3の工程の熱処理を行うことで得られる。Cr−Si濃化部に関するこれらの構成は、圧粉体を窒素中で熱処理するために軟磁性金属粉末表面にSiまたはCrが濃化していない特許文献1に示す構成と対照をなす。   Cr and Si forming the Cr-Si concentrated portion are supplied from the Fe-Si-Cr soft magnetic alloy powder itself, but in addition, Si is supplied from other than the Fe-Si-Cr soft magnetic alloy powder itself. It is preferable. Such a configuration can be obtained, for example, by performing the heat treatment in the third step in an oxidizing atmosphere in a state where the Si compound is arranged on the surface of the Fe—Si—Cr soft magnetic alloy powder. These configurations relating to the Cr-Si concentrated portion contrast with the configuration shown in Patent Document 1 in which Si or Cr is not concentrated on the surface of the soft magnetic metal powder in order to heat-treat the green compact in nitrogen.

Fe−Si−Cr系軟磁性合金粉の表面にSi化合物が配置された状態は、例えば(a)第1の工程に供する前に予めFe−Si−Cr系軟磁性合金粉の表面にTEOS(テトラエトキシシラン)等を用いてSi酸化物(シリカ)被膜を設けること、(b)第1の工程等において、Fe−Si−Cr系軟磁性合金粉とコロイダルシリカを混合して、Fe−Si−Cr系軟磁性合金粉の表面にシリカを配置することで実現できる。なお、Fe−Si−Cr系軟磁性合金粉の表面にSi化合物が配置された状態は上記(a)、(b)の構成に限るものではなく、上記以外のSiの供給源を用いてもよい。また、Si化合物はシリカに限らず、Si以外の他の元素を含んでもよいし、Si化合物以外の化合物を含んでもよい。   The state in which the Si compound is arranged on the surface of the Fe—Si—Cr soft magnetic alloy powder is, for example, (a) TEOS (on the surface of the Fe—Si—Cr soft magnetic alloy powder in advance before being subjected to the first step. (Si) (Si) coating using tetraethoxysilane), (b) In the first step, Fe-Si-Cr soft magnetic alloy powder and colloidal silica are mixed, and Fe-Si This can be realized by placing silica on the surface of the Cr-based soft magnetic alloy powder. The state in which the Si compound is disposed on the surface of the Fe—Si—Cr soft magnetic alloy powder is not limited to the above configurations (a) and (b), and a Si supply source other than those described above may be used. Good. In addition, the Si compound is not limited to silica, and may include elements other than Si or may include compounds other than Si compounds.

前記(a)の方法の場合、Si酸化物(シリカ)被膜の厚さは、これを特に限定するものではない。被膜として十分な厚さを確保するとともに、軟磁性合金粉間の距離が必要以上に大きくならないようにする観点からは、例えば20〜500nmの範囲にすればよい。たとえば、Fe−Si−Cr系軟磁性合金粉をTEOS(テトラエトキシシラン)、エタノール、アンモニア水の混合溶液に含浸、撹拌後、乾燥することで、Fe−Si−Cr系軟磁性合金粉の表面に、Si酸化物(シリカ)被膜を形成することができる。   In the case of the method (a), the thickness of the Si oxide (silica) film is not particularly limited. From the viewpoint of ensuring a sufficient thickness as the coating and preventing the distance between the soft magnetic alloy powders from becoming unnecessarily large, the thickness may be, for example, in the range of 20 to 500 nm. For example, the surface of the Fe-Si-Cr soft magnetic alloy powder is impregnated with a mixed solution of TEOS (tetraethoxysilane), ethanol, and ammonia water with Fe-Si-Cr soft magnetic alloy powder, stirred and then dried. In addition, a Si oxide (silica) film can be formed.

前記(a)の方法を用いる場合、前記酸化物相における前記Cr−Si濃化部同士の間に 質量比で、Fe、SiおよびCrのうちFeの含有量が最も多いFe濃化部(Feリッチ部)を有する圧粉磁心が得られる。かかる構成は圧粉磁心の強度向上に好適である。また、前記(b)の方法を用いる場合、前記酸化物相における前記Cr−Si濃化部同士の間に 質量比で、Fe、SiおよびCrのうちCrの含有量が最も多いCr濃化部(Crリッチ部)を有する圧粉磁心が得られる。かかる構成は、圧粉磁心の強度向上に特に好適である。なお、FeまたはCrの含有量が多いこれらの相は、Cr−Si濃化部よりもSi含有量が少なく、これと区別することができる。Cr−Si濃化部等を有する上記酸化物相は、相全体としてFe、SiおよびCrを含むが、それ以外の元素を含もことも可能である。但し、上記酸化物相はFe−Si−Cr系軟磁性合金粉を構成する元素の酸化物であることが好ましく、不可避不純物を除きFe、SiおよびCrのみで酸化物を構成していることがより好ましい。
上記(a)等の方法を用いる場合のように、加圧成形に供するFe−Si−Cr系軟磁性合金粉の表面がSi化合物で覆われていても、成形体を酸化性雰囲気で熱処理することで、Fe−Si−Cr系軟磁性合金粉間にさらに酸化物が形成され、Fe−Si−Cr系軟磁性合金粉同士が結合される。
When the method (a) is used, the Fe-enriched part (Fe having the highest Fe content among Fe, Si and Cr) in mass ratio between the Cr-Si enriched parts in the oxide phase. A dust core having a rich portion is obtained. Such a configuration is suitable for improving the strength of the dust core. When the method (b) is used, a Cr-enriched part having the largest Cr content among Fe, Si and Cr in a mass ratio between the Cr-Si-enriched parts in the oxide phase. A dust core having (Cr-rich part) is obtained. Such a configuration is particularly suitable for improving the strength of the dust core. In addition, these phases with much content of Fe or Cr have less Si content than a Cr-Si concentrated part, and can be distinguished from this. The oxide phase having a Cr—Si enriched portion or the like contains Fe, Si and Cr as a whole, but may contain other elements. However, the oxide phase is preferably an oxide of an element constituting the Fe—Si—Cr soft magnetic alloy powder, and the oxide phase is composed of only Fe, Si and Cr except for inevitable impurities. More preferred.
Even when the surface of the Fe—Si—Cr soft magnetic alloy powder subjected to pressure forming is covered with a Si compound as in the case of using the method (a) or the like, the formed body is heat-treated in an oxidizing atmosphere. Thus, an oxide is further formed between the Fe—Si—Cr soft magnetic alloy powders, and the Fe—Si—Cr soft magnetic alloy powders are bonded to each other.

Fe−Si−Cr系軟磁性合金粉について、さらに詳述する。上述の圧粉磁心の構成を実現できるものであれば、Fe−Si−Cr系軟磁性合金粉の組成は、これを特に限定するものではないが、例えば以下のような組成を用いることができる。
Siは電気抵抗率や透磁率を高める元素である。かかる観点から、例えば、Siは1.0質量%以上が好ましい。より好ましくは2.0質量%以上である。一方、Siが多くなりすぎると飽和磁束密度の低下が大きくなるため、10.0質量%以下が好ましい。より好ましくは6.0質量%以下、さらに好ましくは4.0質量%以下である。
上述のようにCrは耐食性等を高める元素である。かかる観点から、例えばCrは1.0質量%以上が好ましい。より好ましくは、Crは2.0質量%以上である。一方、Crが多くなりすぎると飽和磁束密度が低下するため7.0質量%以下が好ましい。より好ましくはCrは5.0質量%以下である。
The Fe—Si—Cr soft magnetic alloy powder will be further described in detail. The composition of the Fe-Si-Cr soft magnetic alloy powder is not particularly limited as long as the above-described configuration of the powder magnetic core can be realized. For example, the following composition can be used. .
Si is an element that increases electrical resistivity and magnetic permeability. From this viewpoint, for example, Si is preferably 1.0% by mass or more. More preferably, it is 2.0 mass% or more. On the other hand, if the amount of Si is excessively increased, the saturation magnetic flux density is greatly decreased. More preferably, it is 6.0 mass% or less, More preferably, it is 4.0 mass% or less.
As described above, Cr is an element that improves corrosion resistance and the like. From this viewpoint, for example, Cr is preferably 1.0% by mass or more. More preferably, Cr is 2.0 mass% or more. On the other hand, if the amount of Cr is too much, the saturation magnetic flux density is lowered, so 7.0% by mass or less is preferable. More preferably, Cr is 5.0 mass% or less.

また、上記SiおよびCr以外の残部は主にFeで構成されるが、Fe−Si−Cr系合金粉を使用する利点を発揮する限りにおいて、他の元素を含むこともできる。但し、他の元素の含有量はFe、SiおよびCrの含有量未満である。さらに、非磁性元素は飽和磁束密度等が低下するため、不可避不純物を除き、1.0質量%未満であることがより好ましい。Fe−Si−Cr系合金粉は、不可避不純物を除きFe、SiおよびCrで構成されることがさらに好ましい。   The balance other than Si and Cr is mainly composed of Fe, but may contain other elements as long as the advantage of using the Fe—Si—Cr alloy powder is exhibited. However, the content of other elements is less than the content of Fe, Si and Cr. Further, since the saturation magnetic flux density and the like of the nonmagnetic element is decreased, it is more preferably less than 1.0% by mass excluding inevitable impurities. The Fe—Si—Cr-based alloy powder is more preferably composed of Fe, Si and Cr excluding inevitable impurities.

軟磁性合金粉の平均粒径(ここでは、累積粒度分布におけるメジアン径d50を用いる)は、これを限定するものではないが、例えば、1μm以上、100μm以下の平均粒径を有するものを用いることができる。平均粒径を小さくすることで、圧粉磁心の強度、コアロス、高周波特性が改善されるので、メジアン径d50はより好ましくは30μm以下、さらに好ましくは15μm以下である。一方、高い透磁率を得るためには平均粒径が大きいことが有効であるため、メジアン径d50はより好ましくは5μm以上である。   The average particle diameter of the soft magnetic alloy powder (here, the median diameter d50 in the cumulative particle size distribution is used) is not limited to this, but for example, a powder having an average particle diameter of 1 μm or more and 100 μm or less should be used. Can do. By reducing the average particle size, the strength, core loss, and high frequency characteristics of the powder magnetic core are improved. Therefore, the median diameter d50 is more preferably 30 μm or less, and even more preferably 15 μm or less. On the other hand, in order to obtain a high magnetic permeability, it is effective that the average particle diameter is large, so the median diameter d50 is more preferably 5 μm or more.

また、軟磁性合金粉の形態もこれを特に限定するものではない。例えば、流動性等の観点からは、アトマイズ粉に代表される粒状粉を用いることが好ましい。ガスアトマイズ、水アトマイズ等のアトマイズ法は、展性や延性が高く、粉砕しにくい合金の粉末作製に好適である。また、アトマイズ法は略球状の軟磁性合金粉を得る上でも好適である。   Further, the form of the soft magnetic alloy powder is not particularly limited. For example, from the viewpoint of fluidity and the like, it is preferable to use granular powder represented by atomized powder. Atomization methods such as gas atomization and water atomization are suitable for producing powders of alloys that have high malleability and ductility and are difficult to grind. The atomization method is also suitable for obtaining a substantially spherical soft magnetic alloy powder.

次に、第1の工程において用いるバインダーについて説明する。バインダーは、加圧成形する際、粉体同士を結着させ、成形後のハンドリングに耐える強度を成形体に付与する。バインダーの種類は、これを限定するものではないが、例えば、ポリエチレン、ポリビニルアルコール、アクリル樹脂等の各種有機バインダーを用いることができる。有機バインダーは成形後の熱処理により、熱分解する。そのため、熱処理後においても固化、残存して粉末同士を結着する、シリコーン樹脂などの無機系バインダーを併用してもよい。但し、本発明に係る圧粉磁心の製造方法においては、第3の工程で形成される酸化物層が軟磁性合金粉同士を結着する作用があるため、上記の無機系バインダーの使用を省略して、工程を簡略化することができる。   Next, the binder used in the first step will be described. When the binder is pressure-molded, the binder binds the powders together and gives the molded body the strength to withstand handling after molding. Although the kind of binder does not limit this, For example, various organic binders, such as polyethylene, polyvinyl alcohol, an acrylic resin, can be used. The organic binder is thermally decomposed by heat treatment after molding. Therefore, an inorganic binder such as a silicone resin that solidifies and remains after the heat treatment and binds the powders may be used in combination. However, in the method of manufacturing a powder magnetic core according to the present invention, the oxide layer formed in the third step has an action of binding soft magnetic alloy powders, and thus the use of the above inorganic binder is omitted. Thus, the process can be simplified.

バインダーの添加量は、軟磁性合金粉間に十分に行きわたり、十分な成形体強度を確保できる量にすればよい。一方、これが多すぎると密度が低下するようになる。例えば、軟磁性合金粉100重量部に対して、0.5〜3.0重量部にすることが好ましい。   The amount of the binder added may be an amount that can be sufficiently distributed between the soft magnetic alloy powders or that can secure a sufficient compact strength. On the other hand, if this is too much, the density will decrease. For example, the amount is preferably 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the soft magnetic alloy powder.

第1の工程における、軟磁性合金粉とバインダーとの混合方法はこれを特に限定するものではない。従来から知られている混合方法、混合機を用いることができる。バインダーが混合された状態では、その結着作用により、混合粉は広い粒度分布をもった凝集粉となっている。かかる混合粉を、例えば振動篩等を用いて篩に通すことによって、成形に適した所望の二次粒子径の造粒粉を得ることができる。また、加圧成形時の粉末と金型との摩擦を低減させるために、ステアリン酸、ステアリン酸塩等の潤滑材を添加することが好ましい。潤滑材の添加量は、軟磁性合金粉100重量部に対して0.1〜2.0重量部とすることが好ましい。一方、潤滑剤は、金型に塗布することも可能である。   The mixing method of the soft magnetic alloy powder and the binder in the first step is not particularly limited. Conventionally known mixing methods and mixers can be used. In a state where the binder is mixed, the mixed powder is an agglomerated powder having a wide particle size distribution due to its binding action. By passing the mixed powder through a sieve using, for example, a vibration sieve or the like, a granulated powder having a desired secondary particle size suitable for molding can be obtained. Further, in order to reduce the friction between the powder and the mold during pressure molding, it is preferable to add a lubricant such as stearic acid or stearate. The addition amount of the lubricant is preferably 0.1 to 2.0 parts by weight with respect to 100 parts by weight of the soft magnetic alloy powder. On the other hand, the lubricant can be applied to the mold.

次に、第1の工程を経て得られた混合物を加圧成形する第2の工程について説明する。第1の工程で得られた混合物は、好適には上述のように造粒されて、第2の工程に供される。造粒された混合物は、成形金型を用いて、トロイダル形状、直方体形状等の所定形状に加圧成形される。   Next, the 2nd process of press-molding the mixture obtained through the 1st process is explained. The mixture obtained in the first step is preferably granulated as described above and subjected to the second step. The granulated mixture is pressure-molded into a predetermined shape such as a toroidal shape or a rectangular parallelepiped shape using a molding die.

次に、前記第2の工程を経て得られた成形体を熱処理する第3の工程について説明する。成形等で導入された応力歪を緩和して良好な磁気特性を得ることを目的の一つとして第2の工程を経た成形体に対して熱処理が施される。上述したように、Fe−Si−Cr系軟磁性合金粉の表面にSi化合物が配置された状態で、かかる熱処理を酸化性雰囲気で行うことによって、さらに、前記Fe−Si−Cr系軟磁性合金粉の合金相同士がFe、SiおよびCrを含む酸化物相を介して結合された組織が形成される。すなわち、Fe−Si−Cr系軟磁性合金粉同士の粒界に、Fe、SiおよびCrを含む酸化物相が層状に形成される。前記酸化物相の厚さ方向の両端側、すなわち前記合金相側には、上述のCr−Si濃化部が形成される。   Next, the 3rd process of heat-processing the molded object obtained through the said 2nd process is demonstrated. Heat treatment is performed on the molded body that has undergone the second step for the purpose of alleviating stress strain introduced by molding or the like and obtaining good magnetic properties. As described above, by performing the heat treatment in an oxidizing atmosphere in a state where the Si compound is disposed on the surface of the Fe—Si—Cr soft magnetic alloy powder, the Fe—Si—Cr soft magnetic alloy is further obtained. A structure is formed in which the alloy phases of the powder are bonded together through an oxide phase containing Fe, Si and Cr. That is, an oxide phase containing Fe, Si, and Cr is formed in layers at the grain boundaries between the Fe—Si—Cr soft magnetic alloy powders. The above-described Cr—Si enriched portions are formed on both end sides in the thickness direction of the oxide phase, that is, on the alloy phase side.

酸化性雰囲気としては、大気中、酸素ガスと不活性ガスの混合気体中など、酸素ガスが存在する雰囲気を適用することができる。また、水蒸気と不活性ガスの混合気体中など、水蒸気が存在する雰囲気を適用することもできる。これらのうち大気中の熱処理が簡便であり好ましい。また、熱処理の温度は、上記Cr−Si濃化部が形成される温度であればこれを特に限定するものではないが、軟磁性合金粉が著しく焼結しない温度で行うことが好ましい。例えば、熱処理温度としては500〜900℃の範囲が好ましい。   As the oxidizing atmosphere, an atmosphere in which oxygen gas exists, such as the air, a mixed gas of oxygen gas and inert gas, can be applied. In addition, an atmosphere in which water vapor exists, such as in a mixed gas of water vapor and an inert gas, can also be applied. Of these, heat treatment in the air is simple and preferable. Further, the temperature of the heat treatment is not particularly limited as long as it is a temperature at which the Cr-Si concentrated portion is formed, but it is preferably performed at a temperature at which the soft magnetic alloy powder is not significantly sintered. For example, the heat treatment temperature is preferably in the range of 500 to 900 ° C.

上記の圧粉磁心と、該圧粉磁心の周囲に巻装されたコイルとを用いてコイル部品が提供される。コイルは導線を圧粉磁心に巻回して構成してもよいし、ボビンに巻回して構成してもよい。前記圧粉磁心と前記コイルとを有するコイル部品は、例えばチョーク、インダクタ、リアクトル、トランス等として用いられる。   A coil component is provided using the above-described dust core and a coil wound around the dust core. The coil may be configured by winding a conductive wire around a powder magnetic core, or may be configured by winding it around a bobbin. A coil component having the dust core and the coil is used as, for example, a choke, an inductor, a reactor, a transformer, or the like.

なお、圧粉磁心は、上述のようにバインダー等を混合した軟磁性材料粉末だけを加圧成形した圧粉磁心単体の形態で製造してもよいし、軟磁性材料粉末とコイルとを一体で加圧成形してコイル封入構造の圧粉磁心の形態で製造してもよい。   The powder magnetic core may be manufactured in the form of a powder magnetic core obtained by pressing only the soft magnetic material powder mixed with the binder as described above, or the soft magnetic material powder and the coil may be integrated. You may press-mold and manufacture with the form of the powder magnetic core of a coil enclosure structure.

以下のようにして、軟磁性材料粉末としてFe−Si−Cr系軟磁性合金粉を用いて圧粉磁心を作製した。かかるFe−Si−Cr系軟磁性合金粉は粒状のアトマイズ粉であり、その組成は質量百分率でFe−3.5%Si−4.0%Crであった。また、レーザー回折散乱式粒度分布測定装置(堀場製作所製LA−920)で測定した平均粒径(メジアン径d50)は9.8μmであった。
前記Fe−Si−Cr系軟磁性合金粉を用い、その表面にSi化合物を配置した構成として、以下のようにしてシリコン酸化物被膜を形成したもの(粉末a)と、コロイダルシリカを付着させたもの(粉末b)を作製した。
A powder magnetic core was produced using Fe—Si—Cr soft magnetic alloy powder as the soft magnetic material powder as follows. Such Fe—Si—Cr-based soft magnetic alloy powder was a granular atomized powder, and its composition was Fe-3.5% Si-4.0% Cr in mass percentage. The average particle size (median diameter d50) measured with a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.) was 9.8 μm.
Using the Fe-Si-Cr-based soft magnetic alloy powder and having a Si compound disposed on the surface thereof, a silicon oxide film formed as follows (powder a) and colloidal silica were adhered. A thing (powder b) was produced.

前記Fe−Si−Cr系軟磁性合金粉と、TEOS(テトラエトキシシラン、Si(OC)と、アンモニア水溶液と、エタノールとを混合、撹拌した後、Fe−Si−Cr系軟磁性合金粉をろ過・分離し、オーブンで乾燥して粉末aを得た。乾燥後のFe−Si−Cr系軟磁性合金粉(粉末a)の表面には、厚さ約30nmのシリコン酸化物被膜が形成されていた。 The Fe—Si—Cr soft magnetic alloy powder, TEOS (tetraethoxysilane, Si (OC 2 H 5 ) 4 ), an aqueous ammonia solution and ethanol are mixed and stirred, and then Fe—Si—Cr soft The magnetic alloy powder was filtered and separated, and dried in an oven to obtain powder a. A silicon oxide film having a thickness of about 30 nm was formed on the surface of the dried Fe-Si-Cr soft magnetic alloy powder (powder a).

また、前記Fe−Si−Cr系軟磁性合金粉100重量部にコロイダルシリカ(固形分濃度60質量%)を1.2重量部添加し、混合した。この混合粉を120℃で乾燥させた後、目開き425μmの篩を通して粉末bを得た。   Further, 1.2 parts by weight of colloidal silica (solid content concentration: 60% by mass) was added to and mixed with 100 parts by weight of the Fe—Si—Cr soft magnetic alloy powder. After this mixed powder was dried at 120 ° C., powder b was obtained through a sieve having an opening of 425 μm.

前記粉末a、bそれぞれ100重量部に対して、2.0重量部の割合でエマルジョンのアクリル樹脂系のバインダー(昭和高分子株式会社製ポリゾールAP−604 固形分40%)を添加し、混合した。混合粉は120℃で10時間乾燥し、乾燥後の混合粉を篩を通して造粒粉を得た。この造粒粉に、軟磁性合金粉100重量部に対して0.4重量部の割合でステアリン酸亜鉛を添加、混合して成形用の混合物を得た。   An acrylic resin binder of emulsion (Polysol AP-604 solid content 40% by Showa Polymer Co., Ltd.) was added and mixed at a ratio of 2.0 parts by weight with respect to 100 parts by weight of each of the powders a and b. . The mixed powder was dried at 120 ° C. for 10 hours, and the dried mixed powder was passed through a sieve to obtain granulated powder. To this granulated powder, zinc stearate was added and mixed at a ratio of 0.4 parts by weight with respect to 100 parts by weight of the soft magnetic alloy powder to obtain a mixture for molding.

得られた混合物は、プレス機を使用して、1GPaの成形圧で室温にて加圧成形した。得られたトロイダル形状の成形体に、大気中、700℃の熱処理温度で1時間熱処理を施し、粉末aを使用した圧粉磁心(No1)および粉末bを使用した圧粉磁心(No2)を得た。また、比較のために、特許文献1の構成に対応した圧粉磁心を準備した。すなわち、粉末aを使用し、熱処理の雰囲気を窒素とした以外はNo1と同様にして圧粉磁心を作製した(No3)。各圧粉磁心の寸法は外径14mm、内径8mm、高さ5mmとした。   The resulting mixture was pressure molded at room temperature with a molding pressure of 1 GPa using a press. The obtained toroidal shaped molded body was heat-treated in the atmosphere at a heat treatment temperature of 700 ° C. for 1 hour to obtain a powder magnetic core (No 1) using powder a and a powder magnetic core (No 2) using powder b. It was. Moreover, the powder magnetic core corresponding to the structure of patent document 1 was prepared for the comparison. That is, a powder magnetic core was prepared in the same manner as in No. 1 except that powder a was used and the heat treatment atmosphere was changed to nitrogen (No. 3). Each powder magnetic core had an outer diameter of 14 mm, an inner diameter of 8 mm, and a height of 5 mm.

以上の工程により作製した圧粉磁心に対して一次側と二次側にそれぞれ導線を15ターン巻回し、B−Hアナライザー(岩通計測株式会社製SY−8232)により、最大磁束密度35mT、周波数100kHzの条件でコアロスPcvを測定した。また、初透磁率μiは、前記トロイダル形状の圧粉磁心に導線を30ターン巻回し、ヒューレット・パッカード社製4284Aにより、周波数100kHzで測定した。
さらに、トロイダル形状の圧粉磁心の径方向に荷重をかけ、破壊時の最大加重P(N)を測定し、次式から圧環強度σr(MPa)を求めた。
σr=P(D−d)/(Id
(ここで、D:コアの外径(mm)、d:コアの肉厚(mm)、I:コアの高さ(mm)である。)
上記の測定の結果を表1に示す。
The conductive wire is wound on the primary side and the secondary side for 15 turns with respect to the dust core produced by the above process, and the maximum magnetic flux density is 35 mT and the frequency is measured by a BH analyzer (SY-8232 manufactured by Iwatatsu Measurement Co., Ltd.). Core loss Pcv was measured under the condition of 100 kHz. The initial permeability μi was measured at a frequency of 100 kHz by winding a conducting wire 30 turns around the toroidal powder magnetic core and using 4284A manufactured by Hewlett-Packard Company.
Further, a load was applied in the radial direction of the toroidal powder magnetic core, the maximum load P (N) at the time of fracture was measured, and the crushing strength σr (MPa) was obtained from the following equation.
σr = P (D−d) / (Id 2 )
(Here, D: outer diameter of the core (mm), d: thickness of the core (mm), I: height of the core (mm))
The results of the above measurements are shown in Table 1.

さらに透過電子顕微鏡(TEM/EDX)を用いて、実施例(No1および2)の圧粉磁心の断面の観察・分析を行った。図1はNo2の圧粉磁心のFe−Si−Cr系軟磁性合金粉間の粒界部分のTEM写真である。また、図1中のFe−Si−Cr系軟磁性合金粉の粒内1および粒界相2の分析結果を表2に示す。   Furthermore, using a transmission electron microscope (TEM / EDX), the cross section of the powder magnetic core of Examples (No. 1 and 2) was observed and analyzed. FIG. 1 is a TEM photograph of a grain boundary portion between Fe-Si-Cr soft magnetic alloy powders of a No. 2 dust core. Table 2 shows the analysis results of the intragranular 1 and the grain boundary phase 2 of the Fe—Si—Cr soft magnetic alloy powder in FIG.

図1に示すように、粒界相2は複層構造であり、粒界相のうち軟磁性合金粉の合金相に接した両端の層は共に中央の層よりも薄く形成されていた。なお、粒界相全体の厚さは約70nmであった。表2において、粒内とは軟磁性合金粉の粒内1の合金相部分(図1の分析点Aに相当)、粒界相(端部)とは粒界相2のうち合金相に接した両端の層の部分(図1の分析点B、B’に相当)、粒界相(中央)とは前記両端の二つの層に挟まれた中央の層の部分(図1の分析点Cに相当)の分析値である。   As shown in FIG. 1, the grain boundary phase 2 has a multilayer structure, and both layers of the grain boundary phase in contact with the alloy phase of the soft magnetic alloy powder are both thinner than the central layer. The total thickness of the grain boundary phase was about 70 nm. In Table 2, the term “inside grain” refers to the alloy phase portion (corresponding to analysis point A in FIG. 1) of the soft magnetic alloy powder, and the grain boundary phase (edge) refers to the alloy phase of the grain boundary phase 2. The portion of the layer at both ends (corresponding to analysis points B and B ′ in FIG. 1) and the grain boundary phase (center) are the portion of the center layer sandwiched between the two layers at both ends (analysis point C in FIG. 1). Analysis value).

表2の粒界相(端部)等の分析結果および図1の組織観察から明らかなように、No1および2の圧粉磁心とも、Fe、SiおよびCrを含む酸化物が形成されており、該酸化物を介してFe−Si−Cr系軟磁性合金粉の合金相同士が結合されていた。また、前記酸化物相は、前記合金相側(粒界相(端部))に、質量比で、前記合金相よりもCrの含有量およびSiの含有量が大きく、かつCrおよびSiの含有量の合計がFeの含有量よりも大きいCr−Si濃化部が形成されていることがわかる。また、表1に示すように、かかる構成を有するNo1および2の圧粉磁心は、比較例(No3)の圧粉磁心に比べて高い圧環強度を示した。   As is clear from the analysis results of the grain boundary phases (edges) and the like in Table 2 and the structure observation of FIG. 1, oxides containing Fe, Si, and Cr are formed in both the No. 1 and No. 2 dust cores, The alloy phases of the Fe—Si—Cr soft magnetic alloy powder were bonded to each other through the oxide. In addition, the oxide phase has a mass ratio on the alloy phase side (grain boundary phase (end portion)), a Cr content and a Si content larger than the alloy phase, and a Cr and Si content. It can be seen that a Cr—Si concentrated portion having a total amount larger than the Fe content is formed. Moreover, as shown in Table 1, the dust cores of No. 1 and No. 2 having such a configuration showed higher crushing strength than the dust core of the comparative example (No. 3).

また、表2の粒界相(中央)の分析結果等から、No1の圧粉磁心は、粒界相(端部)の酸化物相の上側、すなわち、Cr−Si濃化部同士の間に 質量比で、Fe、SiおよびCrのうちFeの含有量が最も多い酸化物相を有することがわかる。一方、No2の圧粉磁心は、Cr−Si濃化部同士の間に 質量比で、Fe、SiおよびCrのうちCrの含有量が最も多い酸化物相を有することがわかる。なお、表2から、Cr−Si濃化部に挟まれたFe濃化部およびCr濃化部とも、Fe,CrおよびSiのうち、Siの含有量が最も少なくなっていることがわかる。表1に示すように、かかる構成を有するNo2の
圧粉磁心は、良好な磁気特性を備えつつ、特に高い強度を有することが確認された。
Moreover, from the analysis result of the grain boundary phase (center) in Table 2, the No. 1 dust core is located above the oxide phase of the grain boundary phase (end), that is, between the Cr-Si concentrated portions. It can be seen that the oxide phase has the largest Fe content among Fe, Si and Cr by mass ratio. On the other hand, it can be seen that the No. 2 dust core has an oxide phase having the largest Cr content among Fe, Si and Cr in terms of mass ratio between the Cr-Si concentrated portions. In addition, it can be seen from Table 2 that the Fe content in the Fe enriched portion and the Cr enriched portion sandwiched between the Cr—Si enriched portions has the smallest Si content among Fe, Cr, and Si. As shown in Table 1, it was confirmed that the No. 2 dust core having such a configuration has particularly high strength while having good magnetic properties.

1:粒内
2:粒界相

1: Intragranular 2: Grain boundary phase

Claims (7)

Fe、SiおよびCrを含むFe−Si−Cr系軟磁性合金粉を用いた圧粉磁心の製造方法であって、
表面にSi酸化物皮膜が設けられたFe−Si−Cr系軟磁性合金粉とバインダーを混合する第1の工程と、
前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、
前記第2の工程を経て得られた成形体を酸化性雰囲気中で熱処理する第3の工程とを有し、
前記第3の工程を経て得られた圧粉磁心は、Fe−Si−Cr系軟磁性合金粉の合金相同士がFe、SiおよびCrを含む酸化物相を介して結合された組織を有し、
前記酸化物相は、前記合金相側に、質量比で前記合金相よりもCrの含有量およびSiの含有量が大きく、かつCrおよびSiの含有量の合計がFeの含有量よりも大きいCr−Si濃化部を有することを特徴とする圧粉磁心の製造方法。
A method for producing a dust core using Fe-Si-Cr soft magnetic alloy powder containing Fe, Si and Cr,
A first step of mixing Fe-Si-Cr-based soft magnetic alloy powder having a Si oxide film on its surface and a binder;
A second step of pressure-molding the mixture obtained through the first step;
And a third step of heat-treating the molded body obtained through the second step in an oxidizing atmosphere,
The dust core obtained through the third step has a structure in which the alloy phases of the Fe-Si-Cr soft magnetic alloy powder are bonded via an oxide phase containing Fe, Si, and Cr. ,
The oxide phase has a Cr content and a Si content larger than the alloy phase on the alloy phase side, and the total content of Cr and Si is larger than the Fe content. A method for producing a powder magnetic core comprising a Si-enriched part.
請求項1に記載の圧粉磁心の製造方法であって、
前記Si酸化物皮膜は、Fe−Si−Cr系軟磁性合金粉をTEOS(テトラエトキシシラン)、エタノール、アンモニア水の混合溶液に混合後、乾燥して形成することを特徴とする圧粉磁心の製造方法。
It is a manufacturing method of the dust core according to claim 1,
The Si oxide film is formed by mixing Fe-Si-Cr soft magnetic alloy powder with a mixed solution of TEOS (tetraethoxysilane), ethanol, and ammonia water and then drying the powder. Production method.
請求項1または2に記載の圧粉磁心の製造方法であって、
前記Si酸化物皮膜は厚さが20〜500nmであることを特徴とする圧粉磁心の製造方法。
It is a manufacturing method of the dust core according to claim 1 or 2,
The method of manufacturing a dust core, wherein the Si oxide film has a thickness of 20 to 500 nm.
請求項1から3のいずれかに記載の圧粉磁心の製造方法であって、
前記バインダーがポリエチレン、ポリビニルアルコール、アクリル樹脂のいずれかの有機バインダーであることを特徴とする圧粉磁心の製造方法。
It is a manufacturing method of the dust core according to any one of claims 1 to 3,
The method for producing a dust core, wherein the binder is an organic binder of polyethylene, polyvinyl alcohol, or acrylic resin.
請求項1から4のいずれかに記載の圧粉磁心の製造方法であって、
前記熱処理を大気中で500〜900℃の温度で行うことを特徴とする圧粉磁心の製造方法。
A method for producing a dust core according to any one of claims 1 to 4,
A method for producing a dust core, wherein the heat treatment is performed at 500 to 900 ° C. in the atmosphere.
請求項1から5のいずれかに記載の圧粉磁心の製造方法であって、
前記Fe−Si−Cr系軟磁性合金粉は、Siが1.0質量%以上10.0質量%以下、Crが1.0質量%以上7.0質量%以下、1.0質量%未満(0を含む)の非磁性元素と、残部が不可避不純物と、Feである組成であることを特徴とする圧粉磁心の製造方法。
A method for producing a dust core according to any one of claims 1 to 5,
In the Fe—Si—Cr soft magnetic alloy powder, Si is 1.0% by mass or more and 10.0% by mass or less, Cr is 1.0% by mass or more and 7.0% by mass or less, and less than 1.0% by mass ( A non-magnetic element (including 0), the balance is inevitable impurities, and the composition is Fe.
請求項1から6のいずれかに記載の圧粉磁心の製造方法であって、
前記Fe−Si−Cr系軟磁性合金粉は、平均粒径d50が1μm以上30μm以下の粒状粉であることを特徴とする圧粉磁心の製造方法。

It is a manufacturing method of the dust core according to any one of claims 1 to 6,
The method for producing a dust core, wherein the Fe—Si—Cr soft magnetic alloy powder is a granular powder having an average particle diameter d50 of 1 μm to 30 μm.

JP2018118676A 2018-06-22 2018-06-22 Manufacturing method of dust core Active JP6460505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018118676A JP6460505B2 (en) 2018-06-22 2018-06-22 Manufacturing method of dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018118676A JP6460505B2 (en) 2018-06-22 2018-06-22 Manufacturing method of dust core

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013268356A Division JP6358491B2 (en) 2013-12-26 2013-12-26 Dust core, coil component using the same, and method for manufacturing dust core

Publications (2)

Publication Number Publication Date
JP2018198319A JP2018198319A (en) 2018-12-13
JP6460505B2 true JP6460505B2 (en) 2019-01-30

Family

ID=64662702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018118676A Active JP6460505B2 (en) 2018-06-22 2018-06-22 Manufacturing method of dust core

Country Status (1)

Country Link
JP (1) JP6460505B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3928892A4 (en) * 2019-02-22 2023-03-08 Alps Alpine Co., Ltd. Powder magnetic core and method for producing same
JPWO2020175367A1 (en) * 2019-02-25 2020-09-03
CN110306104B (en) * 2019-08-06 2021-07-06 华北理工大学 Corrosion-resistant alloy and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734141B1 (en) * 2004-03-29 2012-07-11 Hitachi Powdered Metals Co., Ltd. Production method for soft magnetic sintered member
JP5099480B2 (en) * 2007-02-09 2012-12-19 日立金属株式会社 Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
JP5492155B2 (en) * 2010-04-30 2014-05-14 太陽誘電株式会社 Coil type electronic components
JP5240234B2 (en) * 2010-04-30 2013-07-17 株式会社デンソー Manufacturing method of dust core
JP6091744B2 (en) * 2011-10-28 2017-03-08 太陽誘電株式会社 Coil type electronic components
JP2014143286A (en) * 2013-01-23 2014-08-07 Tdk Corp Soft magnetic material composition, method for producing the same, magnetic core, and coil type electronic component
JP2014216495A (en) * 2013-04-25 2014-11-17 Tdk株式会社 Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact

Also Published As

Publication number Publication date
JP2018198319A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6358491B2 (en) Dust core, coil component using the same, and method for manufacturing dust core
JP6260508B2 (en) Dust core
KR102091592B1 (en) Magnetic core and coil component using same
KR101910139B1 (en) Magnetic core, method for producing magnetic core, and coil component
US10573441B2 (en) Method for manufacturing magnetic core
KR102195949B1 (en) Magnetic core, coil component and magnetic core manufacturing method
JP2007019134A (en) Method of manufacturing composite magnetic material
JP6460505B2 (en) Manufacturing method of dust core
JP6369749B2 (en) Magnetic core and coil component using the same
JP6213809B2 (en) Powder magnetic core, coil component using the same, and method for manufacturing powder magnetic core
JP6471881B2 (en) Magnetic core and coil parts
JP6471882B2 (en) Magnetic core and coil parts
JP2016021510A (en) Magnetic core and coil component using the same
JP2012222062A (en) Composite magnetic material
JP2008195970A (en) Composite magnetic material, powder magnetic core and magnetic element
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2011211026A (en) Composite magnetic material
JP6478141B2 (en) Magnetic core manufacturing method, magnetic core and coil component using the same
JP2018137349A (en) Magnetic core and coil component
JP2009302447A (en) Composite magnetic material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181220

R150 Certificate of patent or registration of utility model

Ref document number: 6460505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350