JP2008195970A - Composite magnetic material, powder magnetic core and magnetic element - Google Patents

Composite magnetic material, powder magnetic core and magnetic element Download PDF

Info

Publication number
JP2008195970A
JP2008195970A JP2007029006A JP2007029006A JP2008195970A JP 2008195970 A JP2008195970 A JP 2008195970A JP 2007029006 A JP2007029006 A JP 2007029006A JP 2007029006 A JP2007029006 A JP 2007029006A JP 2008195970 A JP2008195970 A JP 2008195970A
Authority
JP
Japan
Prior art keywords
powder
magnetic
magnetic material
core
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007029006A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Sugano
博芳 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007029006A priority Critical patent/JP2008195970A/en
Publication of JP2008195970A publication Critical patent/JP2008195970A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite magnetic material which has superior direct-current-superimposition characteristics and provides superior magnetic properties through a high-frequency power; a powder magnetic core using the same; and a magnetic element using the same. <P>SOLUTION: A powder of a magnetic metal material has a composition containing 6 to 7 wt.% Si, 5 wt.% or less (including 0 wt.%) Cr, with respect to the total magnetic metal material and the balance Fe with unavoidable impurities; has a saturated magnetic flux density of 1.2 T or more at ordinary temperature; and has a specific resistance of 0.8 μΩm or more. The composite magnetic material is obtained by the steps of: annealing the powder of the magnetic metal material; and mixing an insulative binding agent of 1 to 10 wt.% with respect to the powder of the magnetic metal material into the powder. The powder magnetic core or the magnetic element is produced by using the composite magnetic material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、チョークコイル、インダクタなどのインダクタンス部品用の複合磁性材料とそれを用いた圧粉磁心および磁性素子に関する。   The present invention relates to a composite magnetic material for an inductance component such as a choke coil and an inductor, a dust core and a magnetic element using the same.

電源電圧の低電圧化に伴い、近年、パワーインダクタは大電流対応が求められている。特に電子機器の小型化と電源の高周波化が進み、それらに対応可能な磁性材料と高性能な磁性素子が要求されている。従来より高周波数帯で使用されるインダクタなどの磁心にはフェライトが多く使用されている。フェライトは金属磁性材料粉末よりも安価なため、それまで主流だった金属磁性材料粉末に変わる磁性素子材料として多くのチョークコイルやノイズフィルタなどに用いられてきたが、フェライトは飽和磁束密度が低い欠点があり、近年の小型で大電流対応の要求には、再び飽和磁束密度の高い金属磁性材料粉末が磁性素子用磁心として利用されてきている。特に金属磁性材料粉末の圧粉磁心は高周波数帯でも特性が安定しているため、近年の電子部品の高周波化に対応する磁性素子として注目されている。   In recent years, power inductors are required to handle large currents as the power supply voltage decreases. In particular, electronic devices are becoming smaller and power supplies have higher frequencies, and magnetic materials and high-performance magnetic elements that can cope with them have been demanded. Conventionally, a ferrite is often used in a magnetic core such as an inductor used in a high frequency band. Since ferrite is cheaper than metal magnetic material powder, it has been used in many choke coils and noise filters as a magnetic element material that has changed to metal magnetic material powder, which has been the mainstream until now. In response to recent demands for small size and large current, metal magnetic material powder having a high saturation magnetic flux density has been used as a magnetic element magnetic core again. In particular, the powder magnetic core of the metal magnetic material powder has attracted attention as a magnetic element corresponding to higher frequency of electronic parts in recent years because the characteristics are stable even in a high frequency band.

特許文献1に軟磁性合金粉末と絶縁性結着剤からなる複合磁性材料が提案されている。これは、絶縁性結着剤を添加する前のその金属磁性粉、もしくは複合磁性材料として加圧成形した後に、窒素雰囲気にて500〜1000℃の温度で熱処理を施すものである。前記文献によれば、加圧成形体を非酸化性雰囲気にて700〜1000℃の温度で焼鈍を施す前に、その窒素雰囲気にて500〜1000℃の温度で熱処理を施すことで、優れた磁気特性が得られる。この方法は、結果的に高温での熱処理を2度行う必要があり、しかも、非酸化性雰囲気での700〜1000℃の焼鈍を複合磁性材料を加圧成形した後に施す必要があるため、工数増の他に、表面が被覆された導線からなる空芯コイルを含むように複合磁性材料を圧粉成形してなる磁性素子においては、導線の被覆が熱分解されてしまいレアショートしてしまう危険性が高い方法である。   Patent Document 1 proposes a composite magnetic material composed of soft magnetic alloy powder and an insulating binder. In this method, heat treatment is performed at a temperature of 500 to 1000 ° C. in a nitrogen atmosphere after the metal magnetic powder before adding the insulating binder or pressure molding as a composite magnetic material. According to the above literature, before the pressure-formed body is annealed at a temperature of 700 to 1000 ° C. in a non-oxidizing atmosphere, heat treatment is performed at a temperature of 500 to 1000 ° C. in the nitrogen atmosphere. Magnetic properties can be obtained. As a result, it is necessary to perform heat treatment twice at a high temperature, and it is necessary to perform annealing at 700 to 1000 ° C. in a non-oxidizing atmosphere after the composite magnetic material is pressure-molded. In addition to the increase, in a magnetic element formed by compacting a composite magnetic material so as to include an air-core coil composed of a conductor whose surface is coated, there is a risk that the conductor covering is thermally decomposed and rarely short-circuited This is a highly reliable method.

特許文献2に軟磁性合金粉末と絶縁性結着剤からなる複合磁性材料とその磁性素子が提案されている。この文献によれば、金属磁性材料粉末と絶縁性結着剤からなる複合磁性材料を用いて圧粉磁性素子を形成した後、空気中で80℃以上の低温で絶縁性結着剤の硬化および金属磁性材料を酸化させる熱処理を施すことで耐食性に優れ、優れた磁気特性が得られる磁性素子を作製することができる。一般に金属磁性材料は材料中の歪を低減することで鉄損、特にヒステリシス損失が低減されるため、歪を緩和する焼鈍を施すことが望ましいが、前記文献では金属磁性材料粉末の焼鈍が施されていない。   Patent Document 2 proposes a composite magnetic material comprising a soft magnetic alloy powder and an insulating binder and its magnetic element. According to this document, after forming a dust magnetic element using a composite magnetic material composed of a metal magnetic material powder and an insulating binder, the insulating binder is cured at a low temperature of 80 ° C. or higher in air. By performing a heat treatment for oxidizing the metal magnetic material, a magnetic element having excellent corrosion resistance and excellent magnetic characteristics can be produced. In general, it is desirable to perform annealing to alleviate the strain of the metal magnetic material because the iron loss, particularly hysteresis loss, is reduced by reducing the strain in the material. However, in the above document, the metal magnetic material powder is annealed. Not.

金属磁性材料にて歪の影響を低減するには、磁性材料的にセンダストや ニッケルが80重量%前後のPCパーマロイのような磁歪定数が0近傍の磁性材料の粉末を用いることが望ましい。しかし、ニッケルが80重量%前後のPCパーマロイは低磁気損失、高透磁率材料であるが、飽和磁束密度が低いため、優れた直流重畳特性が得られない。また、体積固有抵抗も低く、高周波での磁気損失が大きくなってしまう問題もあり、高周波にて使用する圧粉磁心としては適していない。しかも高価なニッケルを80重量%程度含有するため成分組成的に素材コストが高価になってしまう問題もある。   In order to reduce the influence of strain in a metal magnetic material, it is desirable to use a magnetic material powder having a magnetostriction constant of about 0, such as PC permalloy in which the send material or nickel is about 80% by weight. However, although PC permalloy with nickel of around 80% by weight is a low magnetic loss and high permeability material, it cannot obtain excellent DC superposition characteristics because of its low saturation magnetic flux density. In addition, there is a problem that the volume resistivity is low and the magnetic loss at high frequency is increased, which is not suitable as a dust core used at high frequency. Moreover, since expensive nickel is contained in an amount of about 80% by weight, there is a problem that the material cost becomes high in terms of component composition.

特許文献3にはメタルコンポジットコア用のセンダスト粉末が提案されている。保磁力が低く、磁気損失も低い良好な特性が得られている。しかし、センダストの飽和磁束密度が1.1T以下と、優れた直流重畳特性を必要とする磁性素子には飽和磁束密度が低いため、センダスト粉末を使用することは難しい。   Patent Document 3 proposes a sendust powder for a metal composite core. Good characteristics with low coercive force and low magnetic loss are obtained. However, it is difficult to use Sendust powder because the saturation flux density of Sendust is 1.1 T or less and the magnetic element that requires excellent DC superposition characteristics has a low saturation flux density.

特開2003−243215号公報JP 2003-243215 A 特開2003−160847号公報JP 2003-160847 A 特開2003−68513号公報JP 2003-68513 A

一般にFe基合金からなる金属磁性材料は、材料中に残存する歪を緩和するためには、少なくとも600℃〜700℃以上の温度で焼鈍を施す必要がある。ゆえに金属磁性材料粉末による圧粉磁心は、成形加工後に600℃〜700℃以上の温度で焼鈍することが好ましい。しかし、複合磁性材料では混合される絶縁性結着剤が熱分解されてしまう問題があり、成形加工後に歪を緩和する焼鈍が難しい。また、表面が被覆された導線からなる空芯コイルと複合磁性材料を一体成形する磁性素子においては、内蔵する空芯コイルの導線の被覆が熱分解してしまい、レアショートを起こす危険性が高いため、その磁性素子の焼鈍は難しい。そのような問題により、複合磁性材料および複合磁性材料による磁性素子は成形加工後に焼鈍を施せないものが多く、複合磁性材料による磁性素子では、複合磁性材料を焼鈍しなくても良好な特性が得られる磁性材料の粉末や方法を検討する必要がある。   In general, a metal magnetic material made of an Fe-based alloy needs to be annealed at a temperature of at least 600 ° C. to 700 ° C. in order to relieve strain remaining in the material. Therefore, it is preferable that the powder magnetic core made of the metal magnetic material powder is annealed at a temperature of 600 ° C. to 700 ° C. or more after the forming process. However, in the composite magnetic material, there is a problem that the insulating binder to be mixed is thermally decomposed, and it is difficult to perform annealing to relieve strain after molding. In addition, in a magnetic element in which an air-core coil composed of a conductive wire whose surface is coated and a composite magnetic material are integrally formed, the coating of the conductor of the built-in air-core coil is thermally decomposed, and there is a high risk of causing a short circuit. Therefore, it is difficult to anneal the magnetic element. Due to such problems, many composite magnetic materials and magnetic elements made of composite magnetic materials cannot be annealed after molding, and magnetic elements made of composite magnetic materials have good characteristics without annealing the composite magnetic material. It is necessary to study the powder and method of magnetic material to be used.

この状況にあって、本発明の課題は、直流重畳特性に優れ、高周波にて優れた磁気特性が得られる複合磁性材料とそれを用いた圧粉磁心および磁性素子を提供することにある。   In this situation, an object of the present invention is to provide a composite magnetic material that is excellent in direct current superposition characteristics and has excellent magnetic characteristics at high frequencies, and a dust core and a magnetic element using the same.

電源電圧の低電圧化に伴い、大電流対応が求められる磁性素子は、電子部品の高周波化に対応することが求められている。ゆえに磁性素子に求められる複合磁性材料も高周波にて優れた磁気特性を有する磁性材料が求められる。   As the power supply voltage is lowered, a magnetic element that is required to handle a large current is required to cope with a higher frequency of electronic components. Therefore, a composite magnetic material required for a magnetic element is also required to be a magnetic material having excellent magnetic properties at high frequencies.

磁性材料の飽和磁束密度は高いほど優れた直流重畳特性を有する磁性素子が得られるため、磁性材料としては飽和磁束密度が1.2T以上有することが好ましい。また、体積固有抵抗も大きい方が、高周波での鉄損低減が図れるため、磁性材料としては体積固有抵抗が0.8μΩm以上有することが好ましい。しかし、Fe基合金からなる金属磁性材料は、体積固有抵抗が大きくなるほど飽和磁束密度が低下していく傾向が見られるため、飽和磁束密度と体積固有抵抗の兼ね合いを考慮しなくてはならない。   Since a magnetic element having excellent DC superposition characteristics can be obtained as the saturation magnetic flux density of the magnetic material is higher, the magnetic material preferably has a saturation magnetic flux density of 1.2 T or more. Moreover, since the iron loss reduction at a high frequency can be achieved when the volume specific resistance is large, the magnetic material preferably has a volume specific resistance of 0.8 μΩm or more. However, a metal magnetic material made of an Fe-based alloy has a tendency that the saturation magnetic flux density tends to decrease as the volume specific resistance increases, so the balance between the saturation magnetic flux density and the volume specific resistance must be taken into consideration.

粉末を成型加工するものについては、成型加工性に優れ、かつ圧粉磁心にて優れた磁気特性が得られる金属磁性材料の粉末であることが好ましい。また、歪を緩和する焼鈍が施せない複合磁性材料およびその複合磁性材料を用いた磁性素子に用いる金属磁性材料の粉末は、圧粉成型後に良好な磁気特性が得られる磁性材料の粉末が好ましく、歪の影響を受けにくい磁歪定数が0近傍である磁性材料の粉末がより好ましい。   The powder that is molded is preferably a metal magnetic material powder that is excellent in molding processability and that provides excellent magnetic properties with a dust core. In addition, the composite magnetic material that cannot be annealed to relieve strain and the metal magnetic material powder used in the magnetic element using the composite magnetic material are preferably magnetic material powders that provide good magnetic properties after compacting, A powder of a magnetic material having a magnetostriction constant that is hardly affected by strain and near zero is more preferable.

その金属磁性材料の粉末を絶縁性結着剤と混合する前に非酸化雰囲気中で600℃以上800℃以下の温度で焼鈍することにより、金属磁性材料粉末中の歪を緩和することができる。Fe基合金からなる金属磁性材料は一般に融点の1/2程度の温度で焼鈍することで歪が緩和されるため、少なくとも600℃以上、好ましくは700℃以上で熱処理することが望ましい。しかしながら、金属磁性材料粉末と絶縁性結着剤を混合してなる複合磁性材料においては、600℃以上で焼鈍すると絶縁性結着剤が熱分解してしまうため、複合磁性材料の焼鈍は困難である。また、複合磁性材料化前の金属磁性材料の粉末を焼鈍する場合、900℃以上の温度で焼鈍すると粉末が焼結化してしまう問題がある。   By annealing the metal magnetic material powder in a non-oxidizing atmosphere at a temperature of 600 ° C. or higher and 800 ° C. or lower before mixing with the insulating binder, strain in the metal magnetic material powder can be alleviated. In general, a metal magnetic material made of an Fe-based alloy is annealed at a temperature of about ½ of the melting point, so that the strain is relaxed. Therefore, it is desirable to heat-treat at least 600 ° C. However, in the composite magnetic material obtained by mixing the metal magnetic material powder and the insulating binder, annealing the composite magnetic material is difficult because the insulating binder is thermally decomposed when annealed at 600 ° C. or higher. is there. Moreover, when annealing the powder of the metal magnetic material before forming the composite magnetic material, there is a problem that the powder is sintered when annealed at a temperature of 900 ° C. or higher.

高周波での磁性素子の鉄損低減には、渦電流損失の低減が必要である。この高周波での渦電流損失を低減させるには、金属磁性材料の粒径を小さくすることや金属磁性材料の固有抵抗を高めることが効果的である。粒径は小さいほど、渦電流損失の抑制効果が期待され、50μmを超えると渦電流損失が大きくなり、また粉末形状が異形状化しやすいため、粉末密度の低下も懸念される。逆に粒径が1μm未満になると成形体の実効透磁率が上がらず、また粉末収率も悪くなる問題があり、金属粉末粒径は1μm以上50μm以下が適当である。   In order to reduce the iron loss of a magnetic element at high frequency, it is necessary to reduce eddy current loss. In order to reduce the eddy current loss at high frequencies, it is effective to reduce the particle size of the metal magnetic material or increase the specific resistance of the metal magnetic material. As the particle size is smaller, the effect of suppressing the eddy current loss is expected. When the particle size exceeds 50 μm, the eddy current loss increases, and the powder shape tends to be deformed. On the contrary, if the particle size is less than 1 μm, there is a problem that the effective permeability of the molded body does not increase and the powder yield is deteriorated, and the metal powder particle size is suitably from 1 μm to 50 μm.

絶縁性結着剤としては、フェノール樹脂、エポキシ樹脂、シリコーン樹脂などの熱硬化型樹脂材料であれば問題ない。絶縁性結着剤の混合量は金属磁性材料粉末に対して1重量%未満では金属磁性材料粉末間の結着力が弱く、10重量%超では磁心の粉末充填率が低下し、磁性素子の磁気特性が低下してしまうため、絶縁性結着剤の混合量は金属磁性材料粉末(100重量%)に対して1重量%以上10重量%以下が好ましい。   The insulating binder is not a problem as long as it is a thermosetting resin material such as a phenol resin, an epoxy resin, or a silicone resin. When the mixing amount of the insulating binder is less than 1% by weight with respect to the metal magnetic material powder, the binding force between the metal magnetic material powders is weak, and when it exceeds 10% by weight, the powder filling rate of the magnetic core decreases, and the magnetic element magnetic properties are reduced. Since the characteristics are deteriorated, the amount of the insulating binder mixed is preferably 1 wt% or more and 10 wt% or less with respect to the metal magnetic material powder (100 wt%).

また、これら熱硬化型の樹脂と金属磁性材料粉末からなる複合磁性材料粉末は、圧粉磁心の加圧成形中または加圧成形後に不活性ガス中で絶縁性結着剤を加熱硬化させることで磁性素子を製造することが望ましい。   In addition, these composite magnetic material powders consisting of thermosetting resin and metal magnetic material powder can be obtained by heat-curing the insulating binder in an inert gas during or after pressure molding of the powder magnetic core. It is desirable to manufacture a magnetic element.

以上をまとめると、本発明の複合磁性材料は、金属磁性材料粉末と、この粉末の全重量に対する比率で表して1重量%以上10重量%以下の絶縁性結着剤とを混合してなる複合磁性材料において、前記金属磁性材料粉末は、この粉末の全重量に対して、Siが6重量%以上7重量%以下、Crが5重量%以下(0重量%を含む)、残部がFeおよび不可避な不純物からなる成分組成を有し、前記絶縁性結着剤と混合する前に非酸化雰囲気中で600℃以上800℃以下の温度で焼鈍されたことを特徴とする。また、前記金属磁性材料の飽和磁束密度が1.2T以上、体積固有抵抗が0.8μΩm以上であることを特徴とする。また、前記金属磁性材料粉末の平均粒径は1μm以上50μm以下であることを特徴とする。   In summary, the composite magnetic material of the present invention is a composite formed by mixing a metal magnetic material powder and 1 to 10% by weight of an insulating binder expressed as a ratio to the total weight of the powder. In the magnetic material, the metal magnetic material powder has a Si content of 6 wt% to 7 wt%, a Cr content of 5 wt% or less (including 0 wt%), the balance being Fe and inevitable with respect to the total weight of the powder. It is characterized in that it is annealed at a temperature of 600 ° C. or higher and 800 ° C. or lower in a non-oxidizing atmosphere before mixing with the insulating binder. The metal magnetic material has a saturation magnetic flux density of 1.2 T or more and a volume resistivity of 0.8 μΩm or more. The metal magnetic material powder has an average particle size of 1 μm or more and 50 μm or less.

また、本発明の圧粉磁心は、前記複合磁性材料を用いてなることを特徴とする。   The dust core of the present invention is characterized by using the composite magnetic material.

そして、本発明の磁性素子は、表面が被覆された導線からなる空芯コイルを含むように前記複合磁性材料を圧粉成形してなることを特徴とする。   The magnetic element according to the present invention is characterized in that the composite magnetic material is compacted so as to include an air-core coil made of a conductive wire whose surface is coated.

本発明によれば、飽和磁束密度が高く、高周波でも優れた磁気特性が得られる複合磁性材料を提供することができ、その複合磁性材料により直流重畳特性が優れ、高周波でも優れた磁気特性が得られる圧粉磁心を提供することができる。また、その圧粉磁心に巻線を施すことで優れた特性の磁性素子を得ることが可能となり、さらには高周波でも有効な特性を有する、表面が被覆された導線からなる空芯コイルと複合磁性材料を一体成形した小型の磁性素子を提供することが可能である。   According to the present invention, it is possible to provide a composite magnetic material having a high saturation magnetic flux density and excellent magnetic characteristics even at high frequencies. The composite magnetic material has excellent DC superposition characteristics and excellent magnetic characteristics even at high frequencies. Can be provided. In addition, it is possible to obtain a magnetic element with excellent characteristics by winding the powder magnetic core, and furthermore, an air-core coil composed of a surface-coated lead wire and composite magnetism that has characteristics effective even at high frequencies. It is possible to provide a small magnetic element in which materials are integrally formed.

本発明の実施の形態を説明する。   An embodiment of the present invention will be described.

(実施の形態1)まず、本発明に係る磁性素子とそれに用いる磁心について説明する。図1は圧粉磁心形状の例を示し、図1(a)はE型コアの斜視図、図1(b)は円筒型あるいはトロイダルコアの斜視図、図1(c)は鍔つきコアの斜視図である。図2は磁性素子の例を示し、図2(a)はEI型コアによるインダクタンス部品を示す斜視図、図2(b)は一体成形型インダクタンス部品を示す斜視図であり、21は磁心、22は巻線部、23は一体成形型磁心、24は巻線部である。 (Embodiment 1) First, a magnetic element according to the present invention and a magnetic core used therefor will be described. FIG. 1 shows an example of a dust core shape, FIG. 1 (a) is a perspective view of an E-type core, FIG. 1 (b) is a perspective view of a cylindrical or toroidal core, and FIG. It is a perspective view. FIG. 2 shows an example of a magnetic element, FIG. 2 (a) is a perspective view showing an inductance part by an EI type core, FIG. 2 (b) is a perspective view showing an integrally formed type inductance part, 21 is a magnetic core, 22 is a perspective view. Is a winding part, 23 is an integral mold core, and 24 is a winding part.

次に、このような磁心に用いる複合磁性材料について説明する。   Next, a composite magnetic material used for such a magnetic core will be described.

始めに金属磁性材料の選定を行った。代表的な軟磁性材料とFe−Cr合金系の磁性材料を水アトマイズ法で作製し、常温の飽和磁束密度、体積固有抵抗の比較を行った。その結果を表1に示す。   First, metal magnetic materials were selected. A typical soft magnetic material and an Fe—Cr alloy-based magnetic material were produced by the water atomization method, and the saturation magnetic flux density at room temperature and the volume resistivity were compared. The results are shown in Table 1.

Figure 2008195970
Figure 2008195970

常温の飽和磁束密度が1.2T以上のものは○、1.2T未満のものは×、また、体積固有抵抗が0.8μΩm以上のものは○、0.8μΩm未満のものは×と表示した。純鉄や1〜3%珪素鋼組成の材質は、飽和磁束密度が高いものの、体積固有抵抗が低いことがわかる。センダストは、体積固有抵抗は高いが飽和磁束密度が低く、PCパーマロイは飽和磁束密度、体積固有抵抗ともに低いのがわかる。   ○ when the saturation magnetic flux density at room temperature is 1.2T or more, ○ when it is less than 1.2T, ○ when the volume resistivity is 0.8μΩm or more, and × when it is less than 0.8μΩm. . It can be seen that pure iron and 1 to 3% silicon steel composition have high saturation magnetic flux density but low volume resistivity. Sendust has a high volume resistivity but a low saturation magnetic flux density, and PC permalloy has a low saturation magnetic flux density and a volume resistivity.

図3にFeおよびFe−Si合金におけるCr成分による飽和磁束密度Bsの変化、図4にFeおよびFe−Si合金におけるCr成分による体積固有抵抗ρの変化を示す。なお、Fe−3SiおよびFe−6.5Siはそれぞれ3重量%および6.5重量%のSiを含有することを示す。このデータより体積固有抵抗ρを上げるにはSi量およびCr量を増加させることが効果的であるが、飽和磁束密度Bsは逆に低下していく問題もあり、体積固有抵抗と飽和磁束密度の双方を考慮して材質を選定する必要がある。   FIG. 3 shows changes in saturation magnetic flux density Bs due to Cr components in Fe and Fe—Si alloys, and FIG. 4 shows changes in volume resistivity ρ due to Cr components in Fe and Fe—Si alloys. Note that Fe-3Si and Fe-6.5Si contain 3 wt% and 6.5 wt% Si, respectively. From this data, it is effective to increase the amount of Si and Cr in order to increase the volume resistivity ρ, but there is also a problem that the saturation magnetic flux density Bs decreases conversely. It is necessary to select materials considering both.

このように選定した材質、すなわち、Siが6重量%以上7重量%以下、Crが5重量%以下(0重量%を含む)、残部がFeおよび不可避な不純物からなる成分組成を有するSi−Cr−Fe合金を用いて本発明の複合磁性材料が得られる。   The material selected as described above, that is, Si—Cr having a component composition of 6 to 7% by weight, 5% by weight or less (including 0% by weight) of Cr, and the balance of Fe and inevitable impurities. The composite magnetic material of the present invention can be obtained using a -Fe alloy.

表1の試料No.4〜13(常温の飽和磁束密度が1.2T以上、かつ体積固有抵抗が0.8μΩm以上となる成分組成を主に選択したもの)に相当する金属粉末を水アトマイズ法にて作製し、リング形状の圧粉磁心を作製した。各粉末の平均粒径は約10〜12μm程度の範囲に揃えた。絶縁性結着剤には熱硬化性エポキシ樹脂を用い、これら粉末に対して5重量%となる量を混合し混練した。造粒した複合磁性粉末はその後、篩にて500μm以下に整粒した。その複合磁性粉末にステアリン酸亜鉛を0.5重量%混合し、外径φ14mm、内径φ10mmのプレス成形金型に充填して、圧粉リングコアを加圧成形した。その後、窒素雰囲気中150℃で熱処理し、絶縁性結着剤を熱硬化させ、粉末占積率75%の圧粉リングコアを作製した。この時、各金属磁性材料の粉末については、絶縁性結着剤を混合する前に焼鈍を施さないものと、アルゴン雰囲気中で700℃の焼鈍を施したものを用意し、前記の条件にて各々の圧粉リングコアを作製した。   Sample No. in Table 1 A metal powder corresponding to 4 to 13 (mainly a component composition with a saturation magnetic flux density at room temperature of 1.2 T or more and a volume resistivity of 0.8 μΩm or more) was prepared by a water atomization method, and a ring A dust core with a shape was prepared. The average particle size of each powder was adjusted to a range of about 10 to 12 μm. A thermosetting epoxy resin was used as the insulating binder, and an amount of 5% by weight with respect to these powders was mixed and kneaded. The granulated composite magnetic powder was then sized with a sieve to 500 μm or less. The composite magnetic powder was mixed with 0.5% by weight of zinc stearate and filled in a press mold having an outer diameter of 14 mm and an inner diameter of 10 mm, and the dust ring core was press-molded. Thereafter, heat treatment was performed at 150 ° C. in a nitrogen atmosphere to thermally cure the insulating binder, and a powdered ring core with a powder space factor of 75% was produced. At this time, as for the powder of each metal magnetic material, prepare one that is not annealed before mixing the insulating binder and one that is annealed at 700 ° C. in an argon atmosphere. Each dust ring core was produced.

表2はそのように作製した圧粉リングコアの周波数:300kHzの実効透磁率と鉄損の一例を示す。なお、金属磁性材料の粉末において、前記の焼鈍を施した方が圧粉リングコアとして実効透磁率が高く、結果的に金属磁性材料の粉末を焼鈍することによる特性向上の効果が見られたものを○と表示した。また同様に、金属磁性材料の粉末において、前記の焼鈍を施した方が圧粉リングコアとして鉄損が低く、結果的に金属磁性材料の粉末を焼鈍することによる鉄損低減効果が見られたものを○と表示した。   Table 2 shows an example of the effective magnetic permeability and iron loss of the powder ring core produced as described above at a frequency of 300 kHz. In addition, in the powder of the metal magnetic material, the one that has been subjected to the above annealing has a higher effective magnetic permeability as a dust ring core, and as a result, the effect of improving the characteristics by annealing the powder of the metal magnetic material is seen. ○ is displayed. Similarly, in the metal magnetic material powder, the above-mentioned annealing has a lower iron loss as a dust ring core, and as a result, the iron loss reduction effect by annealing the metal magnetic material powder was seen. Is displayed as ○.

Figure 2008195970
Figure 2008195970

飽和磁束密度が1.2T以上、体積固有抵抗が0.8μΩm以上となる、Siが6重量%以上7重量%以下、Crが5重量%以下(0重量%を含む)、残部がFeおよび不可避な不純物からなる金属磁性材料の粉末と絶縁性結着剤を混合してなる複合磁性材料は良好な特性が得られている。なお、試料No.13のセンダストでは粉末焼鈍効果は認められるが、飽和磁束密度が1.2Tに達していないので、実用的でない。   Saturation magnetic flux density is 1.2 T or more, volume resistivity is 0.8 μΩm or more, Si is 6 wt% or more and 7 wt% or less, Cr is 5 wt% or less (including 0 wt%), the balance is Fe and inevitable A composite magnetic material obtained by mixing a metal magnetic material powder composed of various impurities and an insulating binder has good characteristics. Sample No. The powder annealing effect of 13 Sendust is recognized, but since the saturation magnetic flux density does not reach 1.2T, it is not practical.

また、本実施の形態の複合磁性材料を用い、表面が被覆された導線からなる空芯コイルと複合磁性材料を一体成形した図2(b)のような磁性素子についても、良好なプレス成形性が得られると共に、優れた磁気特性が得られた。   In addition, the press element of the present embodiment is also excellent in press formability with respect to a magnetic element as shown in FIG. 2B in which an air-core coil made of a conductive wire coated with a surface and a composite magnetic material are integrally formed. As well as excellent magnetic properties.

(実施の形態2)
表1にて試料No.4に相当するSiが6.5重量%、残部がFeおよび不可避な不純物からなる成分組成の金属磁性材料の粉末を水アトマイズ法にて作製した。その粉末を粒度分級し、平均粒径10.47μmとなる粉末を得た後、リング形状の圧粉磁心を作製した。絶縁性結着剤には熱硬化性エポキシ樹脂を用い、この粉末に対して5重量%となる量を混合し混練した。造粒した複合磁性粉末はその後、篩にて500μm以下に整粒した。その複合磁性粉末にステアリン酸亜鉛を0.5重量%混合し、外径φ14mm、内径φ10mmのプレス成形金型に充填して、圧粉リングコアを加圧成形した。その後、窒素雰囲気中150℃で熱処理し、絶縁性結着剤を熱硬化させ、粉末占積率75%の圧粉リングコアを作製した。この時、前記金属磁性材料の粉末については、絶縁性結着剤を混合する前に焼鈍を施さないものと、400℃〜900℃の温度にて非酸化雰囲気であるアルゴン雰囲気中で焼鈍を施したものを用意し、前記の条件にて各々の圧粉リングコアを作製した。表3はそのようにして作製した圧粉リングコアの周波数:300kHzの鉄損の一例を示す。
(Embodiment 2)
In Table 1, sample no. A powder of a metal magnetic material having a component composition composed of 6.5% by weight of Si corresponding to 4 and the balance of Fe and inevitable impurities was prepared by a water atomization method. The powder was classified into particle sizes to obtain a powder having an average particle size of 10.47 μm, and then a ring-shaped dust core was produced. A thermosetting epoxy resin was used as the insulating binder, and an amount of 5% by weight with respect to this powder was mixed and kneaded. The granulated composite magnetic powder was then sized with a sieve to 500 μm or less. The composite magnetic powder was mixed with 0.5% by weight of zinc stearate and filled into a press mold having an outer diameter of φ14 mm and an inner diameter of φ10 mm, and the dust ring core was press-molded. Thereafter, heat treatment was performed at 150 ° C. in a nitrogen atmosphere to thermally cure the insulating binder, and a powdered ring core having a powder space factor of 75% was produced. At this time, the powder of the metal magnetic material is annealed in an argon atmosphere which is a non-oxidizing atmosphere at a temperature of 400 ° C. to 900 ° C. without annealing before mixing the insulating binder. Each powdered ring core was prepared under the above conditions. Table 3 shows an example of the iron loss of the frequency: 300 kHz of the powdered ring core produced as described above.

Figure 2008195970
Figure 2008195970

900℃で焼鈍したものは粉末が焼結してしまい、評価に至らなかった。未焼鈍の粉末による圧粉リングコアの鉄損と比べると600℃〜800℃の温度にて焼鈍を施した圧粉リングコアの方が鉄損は低く、焼鈍による圧粉磁心の鉄損低減効果が見られる。   In the case of annealing at 900 ° C., the powder was sintered and was not evaluated. Compared with the iron loss of the dust ring core by the unannealed powder, the iron loss of the powder ring core annealed at a temperature of 600 ° C to 800 ° C is lower, and the iron loss reduction effect of the dust core by annealing is seen It is done.

(実施の形態3)
表1にて試料No.8に相当するSiが7重量%、Crが2重量%、残部がFeおよび不可避な不純物からなる成分組成の金属磁性材料の粉末を水アトマイズ法にて作製した。その粉末を粒度分級し、平均粒径10.01μmとなる粉末を得た後、リング形状の圧粉磁心を作製した。絶縁性結着剤には熱硬化性フェノール樹脂を用い、これら粉末に対して4重量%となる量を混合し混練した。造粒した複合磁性粉末はその後、篩にて500μm以下に整粒した。その複合磁性粉末にステアリン酸亜鉛を0.5重量%混合し、外径φ14mm、内径φ10mmのプレス成形金型に充填して、圧粉リングコアを加圧成形した。その後、窒素雰囲気中150℃で熱処理し、絶縁性結着剤を熱硬化させ、粉末占積率70%の圧粉リングコアを作製した。この時、前記金属磁性材料の粉末については、絶縁性結着剤を混合する前にアルゴン雰囲気中で750℃の焼鈍を施したものを用意し、前記の条件にて各々の圧粉リングコアを作製した。表4はそのようにして作製した圧粉リングコアの周波数:300kHzの実効透磁率と渦電流損失の一例を示す。
(Embodiment 3)
In Table 1, sample no. A powder of a metallic magnetic material having a component composition consisting of 7% by weight of Si corresponding to 8 and 2% by weight of Cr and the balance of Fe and inevitable impurities was prepared by a water atomization method. The powder was classified into particle sizes to obtain a powder having an average particle size of 10.01 μm, and then a ring-shaped dust core was produced. A thermosetting phenol resin was used as the insulating binder, and an amount of 4% by weight with respect to these powders was mixed and kneaded. The granulated composite magnetic powder was then sized with a sieve to 500 μm or less. The composite magnetic powder was mixed with 0.5% by weight of zinc stearate and filled in a press mold having an outer diameter of 14 mm and an inner diameter of 10 mm, and the dust ring core was press-molded. Thereafter, heat treatment was performed at 150 ° C. in a nitrogen atmosphere to thermally cure the insulating binder, and a powdered ring core having a powder space factor of 70% was produced. At this time, the powder of the metal magnetic material is prepared by annealing at 750 ° C. in an argon atmosphere before mixing the insulating binder, and each powdered ring core is manufactured under the above conditions. did. Table 4 shows an example of the effective magnetic permeability and eddy current loss of the powder ring core produced as described above at a frequency of 300 kHz.

Figure 2008195970
Figure 2008195970

このように金属磁性材料粉末の平均粒径が小さい方が実効透磁率は低く、平均粒径が大きい方が渦電流損失は大きくなる。実用的には、平均粒径が1μm以上、50μm以下の条件の金属磁性材料の粉末において、実効透磁率を損なわず、低損失な圧粉磁心を得ることができる。   Thus, the smaller the average particle size of the metal magnetic material powder, the lower the effective magnetic permeability, and the larger the average particle size, the larger the eddy current loss. Practically, in a powder of a metal magnetic material having an average particle diameter of 1 μm or more and 50 μm or less, a low-loss powder magnetic core can be obtained without impairing the effective magnetic permeability.

圧粉磁心形状の一例を示す図。図1(a)はE型コアの斜視図、図1(b)は円筒型あるいはトロイダルコアの斜視図、図1(c)は鍔つきコアの斜視図。The figure which shows an example of a powder magnetic core shape. 1A is a perspective view of an E-type core, FIG. 1B is a perspective view of a cylindrical or toroidal core, and FIG. 1C is a perspective view of a hooked core. 磁性素子の一例を示す図。図2(a)はEI型コアによるインダクタンス部品を示す斜視図、図2(b)は一体成形型インダクタンス部品を示す斜視図。The figure which shows an example of a magnetic element. FIG. 2A is a perspective view showing an inductance component using an EI type core, and FIG. 2B is a perspective view showing an integrally molded type inductance component. FeおよびFe−Si合金におけるCr成分による飽和磁束密度の変化を示す図。The figure which shows the change of the saturation magnetic flux density by Cr component in Fe and Fe-Si alloy. FeおよびFe−Si合金におけるCr成分による固有抵抗の変化を示す図。The figure which shows the change of the specific resistance by Cr component in Fe and Fe-Si alloy.

符号の説明Explanation of symbols

21 磁心
22 巻線部
23 一体成形型磁心
24 巻線部
21 Magnetic core 22 Winding part 23 Integrated molding magnetic core 24 Winding part

Claims (5)

金属磁性材料粉末と、この粉末の全重量に対する比率で表して1重量%以上10重量%以下の絶縁性結着剤とを混合してなる複合磁性材料において、前記金属磁性材料粉末は、この粉末の全重量に対して、Siが6重量%以上7重量%以下、Crが5重量%以下(0重量%を含む)、残部がFeおよび不可避な不純物からなる成分組成を有し、前記絶縁性結着剤と混合する前に非酸化雰囲気中で600℃以上800℃以下の温度で焼鈍されたことを特徴とする複合磁性材料。   In a composite magnetic material obtained by mixing a metal magnetic material powder and an insulating binder in an amount of 1 wt% or more and 10 wt% or less expressed as a ratio to the total weight of the powder, the metal magnetic material powder is the powder Having a component composition comprising Si of 6 wt% or more and 7 wt% or less, Cr of 5 wt% or less (including 0 wt%), and the balance of Fe and inevitable impurities with respect to the total weight of A composite magnetic material characterized by being annealed at a temperature of 600 ° C. or higher and 800 ° C. or lower in a non-oxidizing atmosphere before mixing with a binder. 前記金属磁性材料は、常温での飽和磁束密度が1.2T以上、体積固有抵抗が0.8μΩm以上であることを特徴とする請求項1に記載の複合磁性材料。   2. The composite magnetic material according to claim 1, wherein the metal magnetic material has a saturation magnetic flux density at room temperature of 1.2 T or more and a volume resistivity of 0.8 μΩm or more. 前記金属磁性材料粉末の平均粒径は1μm以上50μm以下であることを特徴とする請求項1または2に記載の複合磁性材料。   3. The composite magnetic material according to claim 1, wherein an average particle diameter of the metal magnetic material powder is 1 μm or more and 50 μm or less. 請求項1〜3のいずれか1項に記載の複合磁性材料を用いてなることを特徴とする圧粉磁心。   A powder magnetic core comprising the composite magnetic material according to claim 1. 表面が被覆された導線からなる空芯コイルを含むように請求項1〜3のいずれか1項に記載の複合磁性材料を圧粉成形してなることを特徴とする磁性素子。   A magnetic element obtained by compacting the composite magnetic material according to any one of claims 1 to 3 so as to include an air-core coil comprising a conducting wire whose surface is coated.
JP2007029006A 2007-02-08 2007-02-08 Composite magnetic material, powder magnetic core and magnetic element Pending JP2008195970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007029006A JP2008195970A (en) 2007-02-08 2007-02-08 Composite magnetic material, powder magnetic core and magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007029006A JP2008195970A (en) 2007-02-08 2007-02-08 Composite magnetic material, powder magnetic core and magnetic element

Publications (1)

Publication Number Publication Date
JP2008195970A true JP2008195970A (en) 2008-08-28

Family

ID=39755185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029006A Pending JP2008195970A (en) 2007-02-08 2007-02-08 Composite magnetic material, powder magnetic core and magnetic element

Country Status (1)

Country Link
JP (1) JP2008195970A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049568A (en) * 2010-09-17 2011-03-10 Seiko Epson Corp Dust core, and magnetic element
JP2013077618A (en) * 2011-09-29 2013-04-25 Taiyo Yuden Co Ltd Soft magnetic alloy assembly and electronic component using the same
CN106077619A (en) * 2016-08-23 2016-11-09 安徽华东光电技术研究所 Metal dust high frequency annealing method
US20190237236A1 (en) * 2018-01-26 2019-08-01 Taiyo Yuden Co., Ltd. Wire-wound coil component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251129A (en) * 1998-03-03 1999-09-17 Daido Steel Co Ltd Fe-6.5 si powder and its manufacture
JP2003160847A (en) * 2001-11-26 2003-06-06 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP2004137536A (en) * 2002-10-16 2004-05-13 Sanyo Special Steel Co Ltd Metal powder for compressed powder magnetic core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251129A (en) * 1998-03-03 1999-09-17 Daido Steel Co Ltd Fe-6.5 si powder and its manufacture
JP2003160847A (en) * 2001-11-26 2003-06-06 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP2004137536A (en) * 2002-10-16 2004-05-13 Sanyo Special Steel Co Ltd Metal powder for compressed powder magnetic core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049568A (en) * 2010-09-17 2011-03-10 Seiko Epson Corp Dust core, and magnetic element
JP2013077618A (en) * 2011-09-29 2013-04-25 Taiyo Yuden Co Ltd Soft magnetic alloy assembly and electronic component using the same
CN106077619A (en) * 2016-08-23 2016-11-09 安徽华东光电技术研究所 Metal dust high frequency annealing method
US20190237236A1 (en) * 2018-01-26 2019-08-01 Taiyo Yuden Co., Ltd. Wire-wound coil component
US11621114B2 (en) * 2018-01-26 2023-04-04 Taiyo Yuden Co., Ltd. Wire-wound coil component

Similar Documents

Publication Publication Date Title
JP5626672B1 (en) Dust core manufacturing method, dust core and coil component
JP6358491B2 (en) Dust core, coil component using the same, and method for manufacturing dust core
JP5288405B2 (en) Inductor and method of manufacturing inductor
JP2007134381A (en) Composite magnetic material, dust core using the same, and magnetic element
JP6365670B2 (en) Magnetic core, magnetic core manufacturing method, and coil component
KR102195949B1 (en) Magnetic core, coil component and magnetic core manufacturing method
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JPWO2005020252A1 (en) High frequency magnetic core and inductance component using the same
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2016012715A (en) Powder compact core, manufacturing method thereof, electronic/electric part having powder compact core, and electronic/electric device with electronic/electric part mounted thereon
JP2007035826A (en) Composite magnetic material, and dust core and magnetic element using the same
JP2007134591A (en) Composite magnetic material, dust core using the same and magnetic element
JP6471881B2 (en) Magnetic core and coil parts
JP6460505B2 (en) Manufacturing method of dust core
JP2017108098A (en) Dust core, method of producing dust core, inductor including dust core, and electronic/electrical apparatus mounting inductor
JP6191855B2 (en) Soft magnetic metal powder and high frequency powder magnetic core
JP2008195970A (en) Composite magnetic material, powder magnetic core and magnetic element
JP6471882B2 (en) Magnetic core and coil parts
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
JP2006319020A (en) Inductance component
JP2006294733A (en) Inductor and its manufacturing method
JP2010118484A (en) Inductance element and method of manufacturing the same
JP6458853B1 (en) Powder magnetic core and inductor element
JP6742674B2 (en) Metal powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120307