JP2018137349A - Magnetic core and coil component - Google Patents

Magnetic core and coil component Download PDF

Info

Publication number
JP2018137349A
JP2018137349A JP2017031113A JP2017031113A JP2018137349A JP 2018137349 A JP2018137349 A JP 2018137349A JP 2017031113 A JP2017031113 A JP 2017031113A JP 2017031113 A JP2017031113 A JP 2017031113A JP 2018137349 A JP2018137349 A JP 2018137349A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
alloy
magnetic field
based soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017031113A
Other languages
Japanese (ja)
Inventor
敏男 三原
Toshio Mihara
敏男 三原
加藤 哲朗
Tetsuro Kato
哲朗 加藤
西村 和則
Kazunori Nishimura
和則 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017031113A priority Critical patent/JP2018137349A/en
Publication of JP2018137349A publication Critical patent/JP2018137349A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic core which allows a high initial effective magnetic permeability and a small magnetic core loss to be achieved, and which is superior in DC superposing characteristics, and a coil component with the magnetic core.SOLUTION: A magnetic core comprises Fe-based soft magnetic alloy particles which bind to each other through a layer of oxide of an element making a constituent of the alloy. The magnetic core is magnetically excited by an AC current with a DC current superposed thereon. The magnetic core is superior in DC superposing characteristics; the space factor is over 85%, the initial value of an effective magnetic permeability μe at a frequency of 100 kHz is 34 or more; the DC magnetic field Hsat is 5.6 kA/m or more when the effective magnetic permeability μe is 80% of the initial value, and the magnetic flux density Bsat on an initial magnetization curve at the DC magnetic field Hsat is 400 mT or more.SELECTED DRAWING: Figure 1

Description

本発明は、Fe基軟磁性合金の粒子を主体とした組織を有する磁心、およびそれを用いたコイル部品に関する。   The present invention relates to a magnetic core having a structure mainly composed of Fe-based soft magnetic alloy particles, and a coil component using the same.

従来、家電機器、産業機器、車両など多種多様な用途において、インダクタ、トランス、チョーク、モータ等のコイル部品が用いられている。一般的なコイル部品は、磁心(磁性コア)と、その磁心の周囲に巻回されたコイルで構成される場合が多い。かかる磁心には、磁気特性、形状自由度、価格に優れるフェライトが広く用いられている。   Conventionally, coil parts such as inductors, transformers, chokes, and motors have been used in various applications such as home appliances, industrial equipment, and vehicles. A general coil component is often composed of a magnetic core (magnetic core) and a coil wound around the magnetic core. For such a magnetic core, ferrite having excellent magnetic properties, flexibility in shape, and cost is widely used.

近年、電子機器等の電源装置の小型化が進んだ結果、小型・低背で、かつ大電流に対しても使用可能なコイル部品の要求が強くなり、フェライトと比較して飽和磁束密度が高い金属系磁性粉末を使用した磁心の採用が進んでいる。
金属系磁性粉末としては、例えばFe−Si系、Fe−Ni系、Fe−Si−Cr系、Fe−Si−Al系などのFe基軟磁性合金の粉末が用いられている。かかるFe基軟磁性合金の粉末の成形体から得られる磁心は、飽和磁束密度が高い反面、合金粉末であるため電気抵抗率が低く、予め水ガラスや熱硬化性樹脂等を用いて磁性合金粉末を絶縁被覆する場合が多い。
In recent years, as power supply devices such as electronic devices have been downsized, the demand for coil parts that are small and low in profile and can be used for large currents has become stronger, and the saturation magnetic flux density is higher than that of ferrite. Adoption of magnetic cores using metallic magnetic powder is progressing.
As the metal-based magnetic powder, Fe-based soft magnetic alloy powders such as Fe-Si, Fe-Ni, Fe-Si-Cr, and Fe-Si-Al are used, for example. The magnetic core obtained from a compact of the Fe-based soft magnetic alloy powder has a high saturation magnetic flux density, but has a low electrical resistivity because it is an alloy powder, and magnetic alloy powder using water glass or thermosetting resin in advance. Are often covered with insulation.

一方で、特許文献1にはFeとともにAlやCrを含有するFe基軟磁性合金の粉末を成形した後、酸素を含む雰囲気で熱処理して、前記合金の粒子の表面に、該粒子の酸化により得られる酸化層を形成し、当該酸化層を介して軟磁性合金の粒子を結合するとともに、磁心に絶縁性を付与する技術も提案されている。   On the other hand, in Patent Document 1, after forming Fe-based soft magnetic alloy powder containing Al and Cr together with Fe, heat treatment is performed in an atmosphere containing oxygen, and the surface of the alloy particles is oxidized by oxidation of the particles. There has also been proposed a technique for forming an obtained oxide layer, bonding particles of a soft magnetic alloy through the oxide layer, and providing insulation to the magnetic core.

国際公開第2014/112483号International Publication No. 2014/1122483

ところでコイル部品に用いる磁心は、磁心損失が小さくて、透磁率が大きく、かつ重畳特性に優れる、即ち、直流電流が重畳した交流電流で励磁された磁心のインダクタンスが、高い電流値まで初期値を維持し、その低下が抑えられることが求められる。   By the way, the magnetic core used for the coil component has a small magnetic core loss, a large magnetic permeability, and excellent superposition characteristics, i.e., the inductance of the magnetic core excited by the alternating current superimposed with the direct current has an initial value up to a high current value. It is required to maintain and suppress the decrease.

Fe基軟磁性合金の粒子を用いた磁心では、成形体密度を高めて粒子間の空隙を少なくすることで磁心の占積率を高めて、後述する初期の実効透磁率を高くし、且つ磁心損失を小さくすることが出来る。しかし、一方では直流重畳特性が劣化し、コイル部品として使用可能な最大電流値が低下する問題があった。   In a magnetic core using Fe-based soft magnetic alloy particles, the space density between the particles is increased by increasing the density of the compact to increase the space factor of the magnetic core, increasing the initial effective magnetic permeability described later, and the magnetic core. Loss can be reduced. However, on the other hand, there is a problem that the direct current superimposition characteristics deteriorate and the maximum current value that can be used as a coil component is reduced.

本発明は上記問題点に鑑みたものであり、高い初期の実効透磁率と小さい磁心損失が得られると共に、更には直流重畳特性に優れる磁心およびそれを用いたコイル部品を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic core having high initial effective magnetic permeability and small magnetic core loss and excellent in DC superposition characteristics and a coil component using the same. To do.

第1の発明は、Fe基軟磁性合金の粒子が前記合金を構成する元素の酸化物層を介して結合した磁心であって、直流電流が重畳した交流電流で励磁され、占積率が85%超で、周波数100kHzにおける実効透磁率μeの初期値が34以上であり、実効透磁率μeが前記初期値に対して80%となる直流磁界Hsatが5.6kA/m以上で、且つ、前記直流磁界Hsatにおける初磁化曲線上の磁束密度Bsatが400mT以上である直流重畳特性に優れた磁心。   The first invention is a magnetic core in which particles of an Fe-based soft magnetic alloy are bonded via an oxide layer of an element constituting the alloy, and is excited by an alternating current on which a direct current is superimposed, and has a space factor of 85. %, The initial value of the effective permeability μe at a frequency of 100 kHz is 34 or more, the DC magnetic field Hsat at which the effective permeability μe is 80% of the initial value is 5.6 kA / m or more, and A magnetic core excellent in DC superposition characteristics in which the magnetic flux density Bsat on the initial magnetization curve in the DC magnetic field Hsat is 400 mT or more.

本発明においては、前記Fe基軟磁性合金は、Feを主成分とし、Feよりも酸化しやすい元素M(Mは少なくともSi,Cr,Alの少なくとも1種)を含むのが好ましい。   In the present invention, it is preferable that the Fe-based soft magnetic alloy contains Fe as a main component and an element M (M is at least one of Si, Cr, and Al) that is more easily oxidized than Fe.

本発明においては、前記Fe基軟磁性合金が、組成式:aFebAlcCrdSiで表され、質量%で、a+b+c+d=100、75≦a<100、0≦b<13.8、0≦c≦7、0≦d≦5であるのが好ましい。   In the present invention, the Fe-based soft magnetic alloy is represented by the composition formula: aFebAlcCrdSi, and by mass%, a + b + c + d = 100, 75 ≦ a <100, 0 ≦ b <13.8, 0 ≦ c ≦ 7, 0 It is preferable that ≦ d ≦ 5.

第2の発明は、第1の発明の磁心と、前記磁心に巻かれたコイルを備えたコイル部品である。   2nd invention is a coil component provided with the magnetic core of 1st invention, and the coil wound around the said magnetic core.

本発明によれば、高い初期の実効透磁率と小さい磁心損失が得られると共に、更に直流重畳特性に優れる磁心およびそれを用いたコイル部品を提供することが出来る。     According to the present invention, a high initial effective magnetic permeability and a small core loss can be obtained, and a magnetic core excellent in DC superposition characteristics and a coil component using the same can be provided.

本発明の一実施形態を含む磁心を用いたコイル部品の直流重畳特性を示すグラフである。It is a graph which shows the direct current superimposition characteristic of the coil components using the magnetic core containing one Embodiment of this invention. 実効透磁率μeが初期値に対して80%となる直流磁界Hsatを説明するための図である。It is a figure for demonstrating the direct-current magnetic field Hsat from which the effective magnetic permeability microe becomes 80% with respect to an initial value. 直流磁界Hsatにおける初磁化曲線上で求まる磁束密度Bsatを説明するための図である。It is a figure for demonstrating the magnetic flux density Bsat calculated | required on the initial magnetization curve in DC magnetic field Hsat. 本発明の一実施形態を含む磁心の直流磁界Hsatと磁束密度Bsatとの関係を示すグラフである。It is a graph which shows the relationship between DC magnetic field Hsat of a magnetic core containing one Embodiment of this invention, and magnetic flux density Bsat.

以下、本発明の一実施形態に係る磁心およびそれを用いたコイル部品について具体的に説明する。ただし、本発明はこれに限定されるものではない。   Hereinafter, a magnetic core according to an embodiment of the present invention and a coil component using the magnetic core will be specifically described. However, the present invention is not limited to this.

本発明に係る磁心は、Fe基軟磁性合金の粒子が前記合金を構成する元素の酸化物層を介して結合した磁心である。即ち、Fe基軟磁性合金の粒子が粒界を介して繋がった組織を有し、隣り合うFe基軟磁性合金の粒子の間を繋ぐ粒界には前記合金由来の酸化物層が形成されている。   The magnetic core according to the present invention is a magnetic core in which particles of an Fe-based soft magnetic alloy are bonded through an oxide layer of an element constituting the alloy. That is, the Fe-based soft magnetic alloy particles have a structure connected through grain boundaries, and an oxide layer derived from the alloy is formed at the grain boundaries connecting adjacent Fe-based soft magnetic alloy particles. Yes.

本発明においてFeと共にFe基軟磁性合金を構成する元素は、要求される磁気特性や酸化物層の形成能に応じて適宜選択可能だが、Feよりも酸化しやすい元素M(MはSi,Cr,Alの少なくとも1種)を含む、FeSi合金、FeSiCr合金、FeSiAl合金、FeAlCr合金、FeAlCrSi合金のいずれかが好ましい。非鉄金属であるSi、Al及びCrは、FeよりもOとの親和力が大きい。そのためFe基軟磁性合金の粒子を、酸素を含む雰囲気中や水蒸気を含む雰囲気中で高温酸化させると、その表面にOに対して親和力の大きいこれらの非鉄金属の酸化物が形成される。酸化物層は熱処理によりFe基軟磁性合金の粒子と酸素とを反応させ成長させたものであり、Fe基軟磁性合金の粒子の自然酸化を超える酸化反応により形成される。前記酸化物層はヘマタイト(Fe)、ウスタイト(FeO)、マグネタイト(Fe)を含んでいても良い。 In the present invention, the elements constituting the Fe-based soft magnetic alloy together with Fe can be appropriately selected according to the required magnetic properties and the ability to form an oxide layer. However, the elements M (M is Si, Cr , At least one of Al), FeSi alloy, FeSiCr alloy, FeSiAl alloy, FeAlCr alloy, and FeAlCrSi alloy are preferable. Nonferrous metals Si, Al, and Cr have a greater affinity with O than Fe. Therefore, when the Fe-based soft magnetic alloy particles are oxidized at a high temperature in an atmosphere containing oxygen or an atmosphere containing water vapor, oxides of these non-ferrous metals having a high affinity for O are formed on the surface. The oxide layer is grown by reacting Fe-based soft magnetic alloy particles and oxygen by heat treatment, and is formed by an oxidation reaction exceeding the natural oxidation of Fe-based soft magnetic alloy particles. The oxide layer may contain hematite (Fe 2 O 3 ), wustite (FeO), or magnetite (Fe 3 O 4 ).

高温酸化前のFe基軟磁性合金の粒子を所定の形状に成形し、所定の雰囲気にてその成形体を所定の温度で焼鈍すると、Oに対して親和力の大きいこれらの非鉄金属及びFeの酸化物が形成されてFe基軟磁性合金の粒子の表面を覆い、さらに粒子間の空隙を充填し、形成された酸化物層は粒界を構成し合金粒子を結合する。   When the particles of Fe-based soft magnetic alloy before high-temperature oxidation are formed into a predetermined shape and the formed body is annealed at a predetermined temperature in a predetermined atmosphere, oxidation of these non-ferrous metals and Fe having a large affinity for O An object is formed to cover the surface of the Fe-based soft magnetic alloy particles, and further, the voids between the particles are filled. The formed oxide layer forms a grain boundary and bonds the alloy particles.

また、表面に予め酸化物層を形成したFe基軟磁性合金の粒子を所定の形状に成形し、前記酸化物層が焼結する温度で、還元雰囲気中で熱処理しても良い。この場合も酸化物層は粒界を構成し合金粒子を結合する。   Alternatively, Fe-based soft magnetic alloy particles having an oxide layer formed on the surface thereof may be formed into a predetermined shape and heat-treated in a reducing atmosphere at a temperature at which the oxide layer is sintered. In this case as well, the oxide layer forms a grain boundary and bonds the alloy particles.

前記元素Mの内、Alは他の非鉄金属と比較してOとの親和力が大きく、高温酸化によって化学的に安定なAlや他の非鉄金属との複合酸化物等を合金粒子の表面に形成する。Alを含む酸化物は耐食性や安定性に優れるため、Fe基軟磁性合金の粒子の表面にAlの酸化物の層が形成されることにより、粒子間の絶縁を高めて磁心の渦電流損失を低減できる。また結晶磁気異方性を低減させ磁心損失を改善する。 Among the elements M, Al has a higher affinity with O than other non-ferrous metals, and Al 2 O 3 which is chemically stable by high-temperature oxidation or composite oxides with other non-ferrous metals are used as alloy particles. Form on the surface. Since the oxide containing Al is excellent in corrosion resistance and stability, the formation of an Al oxide layer on the surface of the Fe-based soft magnetic alloy particles increases the insulation between the particles and reduces the eddy current loss of the magnetic core. Can be reduced. It also reduces the magnetocrystalline anisotropy and improves the core loss.

Crは、Alに次いでOとの親和力が大きく、Alと同様に酸素と結合して、化学的に安定なCrや他の非鉄金属との複合酸化物等を生成する。Crを含む酸化物もまた耐食性や安定性に優れるため、粒子間の絶縁を高めて磁心の渦電流損失を低減できる。 Cr has the highest affinity with O next to Al, and combines with oxygen in the same manner as Al to produce chemically stable Cr 2 O 3 and composite oxides with other non-ferrous metals. Since the oxide containing Cr is also excellent in corrosion resistance and stability, it is possible to increase the insulation between the particles and reduce the eddy current loss of the magnetic core.

Siは化学的に安定なSiOや他の非鉄金属との複合酸化物等を合金粒子の表面に形成する。SiOによっても粒子間の絶縁を高めて磁心の渦電流損失を低減できる。また、透磁率を高める効果もある。またSiを多く含むと粒子が硬質となる。 Si forms chemically stable SiO 2 and composite oxides with other non-ferrous metals on the surface of the alloy particles. SiO 2 can also increase the insulation between the particles and reduce the eddy current loss of the magnetic core. It also has the effect of increasing the magnetic permeability. Further, when a large amount of Si is contained, the particles become hard.

元素Mの酸化物形成能や磁気特性への影響を考慮してFe基軟磁性合金は、組成式:aFebAlcCrdSiで表され、Si,Cr,Alの少なくとも1種を含み、質量%で、a+b+c+d=100、75≦a<100、0≦b<13.8、0≦c≦10、0≦d≦5とするのが好ましい。より好ましくは前記組成式において、a+b+c+d=100、4≦b<13.8、3≦c≦7、0≦d≦1である。AlとともにCrを含む場合、CrはAlの酸化を助けるようにも機能し、熱処理においてFe基軟磁性合金の粒子が、Alが濃化した酸化物層を介して結合されるように構成するのに役立つ。   In consideration of the influence of the element M on the oxide forming ability and the magnetic characteristics, the Fe-based soft magnetic alloy is represented by a composition formula: aFebAlcCrdSi, contains at least one of Si, Cr, and Al, and is expressed in mass% as a + b + c + d = Preferably, 100, 75 ≦ a <100, 0 ≦ b <13.8, 0 ≦ c ≦ 10, 0 ≦ d ≦ 5. More preferably, in the composition formula, a + b + c + d = 100, 4 ≦ b <13.8, 3 ≦ c ≦ 7, and 0 ≦ d ≦ 1. When Cr is included together with Al, Cr also functions to assist the oxidation of Al, and in the heat treatment, the Fe-based soft magnetic alloy particles are combined through an oxide layer enriched in Al. To help.

不可避的不純物等として、例えばMn≦1質量%、C≦0.05質量%、Ni≦0.5質量%、N≦0.1質量%、P≦0.02質量%、S≦0.02質量%で含んでいても良い。また、合金中に含まれるOは少なければ少ないほど良くO≦0.5質量%であるのが好ましい。何れの組成量も主成分100質量%とした場合の外数の値である。   As inevitable impurities, for example, Mn ≦ 1 mass%, C ≦ 0.05 mass%, Ni ≦ 0.5 mass%, N ≦ 0.1 mass%, P ≦ 0.02 mass%, S ≦ 0.02 It may be contained in mass%. Further, the smaller the amount of O contained in the alloy, the better and it is preferable that O ≦ 0.5% by mass. Any composition amount is a value of the outer number when the main component is 100 mass%.

前記酸化物層は磁心の断面を走査型電子顕微鏡(SEM/EDX:Scanning Electron Microscope/energy dispersive X−ray spectroscopy)を用いて観察し、各構成元素の分布を調べることで容易に確認することが出来る。2粒子間の粒界として形成される酸化物層は透過型電子顕微鏡(TEM:transmission electron microscope)を用いて観察すると、例えば10nm〜200nmの厚みで確認できる。   The oxide layer can be easily confirmed by observing the cross-section of the magnetic core using a scanning electron microscope (SEM / EDX: Scanning Electron Microscope / energy dispersive X-ray spectroscopy) and examining the distribution of each constituent element. I can do it. When an oxide layer formed as a grain boundary between two particles is observed using a transmission electron microscope (TEM), it can be confirmed to have a thickness of, for example, 10 nm to 200 nm.

合金粒子の平均粒径(ここでは、累積粒度分布におけるメジアン径d50を用いる)は特に限定されるものではないが、平均粒径を小さくすることで磁心の強度、高周波特性が改善されるので、例えば、高周波特性が要求される用途では、20μm以下の平均粒径を有する粒子を好適に用いることができる。メジアン径d50は、より好ましくは18μm以下、さらに好ましくは16μm以下である。一方、平均粒径が小さい場合は比表面積が大きく酸化し易くなるため、メジアン径d50はより好ましくは3μm以上である。また、篩等を用いて粒子から粗い粒子を除くことがより好ましい。この場合、少なくとも32μmアンダーの(すなわち、目開き32μmの篩を通過した)合金粒子を用いることが好ましい。
Fe基軟磁性合金の粒子の形態は、特に限定されるものではないが、流動性等の観点からアトマイズ粉に代表される粒状粉を原料粉末として用いることが好ましい。ガスアトマイズ、水アトマイズ等のアトマイズ法は、展性や延性が高く、粉砕しにくい合金の粉末作製に好適である。また、アトマイズ法は略球状の軟磁性合金粉を得る上でも好適である
Although the average particle diameter of the alloy particles (here, the median diameter d50 in the cumulative particle size distribution is used) is not particularly limited, the strength of the magnetic core and high frequency characteristics are improved by reducing the average particle diameter. For example, in applications where high frequency characteristics are required, particles having an average particle size of 20 μm or less can be suitably used. The median diameter d50 is more preferably 18 μm or less, and further preferably 16 μm or less. On the other hand, when the average particle size is small, the specific surface area is large and oxidation is easy, so the median diameter d50 is more preferably 3 μm or more. It is more preferable to remove coarse particles from the particles using a sieve or the like. In this case, it is preferable to use alloy particles that are at least under 32 μm (that is, passed through a sieve having an opening of 32 μm).
The form of the Fe-based soft magnetic alloy particles is not particularly limited, but it is preferable to use a granular powder represented by atomized powder as a raw material powder from the viewpoint of fluidity and the like. Atomization methods such as gas atomization and water atomization are suitable for producing powders of alloys that have high malleability and ductility and are difficult to grind. The atomization method is also suitable for obtaining a substantially spherical soft magnetic alloy powder.

以下磁心の製造方法について加圧成形を採用した製法を一例に説明する。
Fe基軟磁性合金の粒子を成形する際に、粒同士を結着させて成形後のハンドリングに耐える強度を成形体に付与するためにバインダーを添加することが好ましい。バインダーの種類は、特に限定されないが、例えば、ポリエチレン、ポリビニルアルコール、アクリル樹脂等の各種有機バインダーを用いることができる。有機バインダーは成形後の熱処理により、熱分解する。熱処理後においても固化、残存し、あるいはSi酸化物として合金のM元素の酸化物とともに粉末同士を結着する、シリコーン樹脂などの無機系バインダーを併用してもよい。
Hereinafter, a manufacturing method employing pressure molding will be described as an example of a method for manufacturing a magnetic core.
When forming the Fe-based soft magnetic alloy particles, it is preferable to add a binder in order to bind the particles and give the molded body strength to withstand handling after forming. Although the kind of binder is not specifically limited, For example, various organic binders, such as polyethylene, polyvinyl alcohol, an acrylic resin, can be used. The organic binder is thermally decomposed by heat treatment after molding. An inorganic binder such as a silicone resin that solidifies and remains after the heat treatment or binds the powder together with the oxide of the M element of the alloy as a Si oxide may be used in combination.

バインダーの添加量は、合金の粒子間に十分に行きわたり、十分な成形体強度を確保できる量にすればよい。一方、これが多すぎると密度や強度が低下するようになる。かかる観点から、バインダーの添加量は、例えば、平均粒径(d50)10μmの合金粒子100質量部に対して、0.8〜3.0質量部にすることが好ましい。   The amount of the binder added may be an amount that can sufficiently reach between the particles of the alloy or ensure a sufficient compact strength. On the other hand, if the amount is too large, the density and strength are lowered. From this viewpoint, the amount of binder added is preferably 0.8 to 3.0 parts by mass with respect to 100 parts by mass of alloy particles having an average particle diameter (d50) of 10 μm, for example.

合金の粒子とバインダーとの混合方法は、特に限定されるものではなく、従来から知られている混合方法、混合機を用いることができる。バインダーが混合された状態では、その結着作用により、混合粉は広い粒度分布をもった凝集粉となっている。かかる混合粉を、例えば振動篩等を用いて篩に通すことによって、成形に適した所望の二次粒子径の造粒粉を得ることができる。また、加圧成形時の粉末と金型との摩擦を低減させるために、ステアリン酸、ステアリン酸塩等の潤滑材を添加することが好ましい。潤滑材の添加量は、合金の粒子100質量部に対して0.1〜2.0質量部とすることが好ましい。潤滑剤は、金型に塗布することも可能である。潤滑材とバインダーの添加量の総量は3.5質量部以下であるのが好ましい。   The mixing method of the alloy particles and the binder is not particularly limited, and conventionally known mixing methods and mixers can be used. In a state where the binder is mixed, the mixed powder is an agglomerated powder having a wide particle size distribution due to its binding action. By passing the mixed powder through a sieve using, for example, a vibration sieve or the like, a granulated powder having a desired secondary particle size suitable for molding can be obtained. Further, in order to reduce the friction between the powder and the mold during pressure molding, it is preferable to add a lubricant such as stearic acid or stearate. The addition amount of the lubricant is preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the alloy particles. The lubricant can be applied to the mold. The total amount of lubricant and binder added is preferably 3.5 parts by mass or less.

次に、得られた混合粉を加圧成形して成形体を得る。上記手順で得られた混合粉は、好適には上述のように造粒されて、加圧成形工程に供される。造粒された混合粉は、成形金型を用いて、トロイダル形状、直方体形状、円柱形状、鼓形状、押しピン形状等の様々な形状に加圧成形される。加圧成形は、室温成形でもよいし、バインダーが消失しない程度に加熱して行う温間成形でもよい。加圧成形時の成形圧は0.8GPa以上が好ましい。加圧成形時の成形圧が高くなるほど金型の破損が生じやすくなるため1.8GPa以下に成形圧を抑えるのが好ましい。なお、成形方法は上記の加圧成形に限定されるものではなく、ドクターブレード法等の公知のシート成形方法によって得られたシート状の成形体を積み重ねて加熱し圧着するなどしても良く、混合粉の調製方法もまた成形方法に応じて公知の方法を採用することが出来る。   Next, the obtained mixed powder is pressure-molded to obtain a molded body. The mixed powder obtained by the above procedure is preferably granulated as described above and subjected to a pressure forming step. The granulated mixed powder is pressure-molded into various shapes such as a toroidal shape, a rectangular parallelepiped shape, a cylindrical shape, a drum shape, and a push pin shape using a molding die. The pressure molding may be room temperature molding or warm molding performed by heating to such an extent that the binder does not disappear. The molding pressure during pressure molding is preferably 0.8 GPa or more. As the molding pressure at the time of pressure molding becomes higher, the mold is more likely to be damaged. Therefore, it is preferable to suppress the molding pressure to 1.8 GPa or less. In addition, the molding method is not limited to the above-described pressure molding, and may be a method of stacking and heating and pressure-bonding sheet-like molded bodies obtained by a known sheet molding method such as a doctor blade method, As a method for preparing the mixed powder, a known method can be adopted depending on the molding method.

次に、前記成形工程を経て得られた成形体を熱処理する熱処理工程について説明する。合金の粒子間に合金由来の酸化物層を形成するため、成形体に対して熱処理(高温酸化)が施される。かかる熱処理によって、さらに、成形等で導入された応力歪を緩和することも出来る。この酸化物層は、熱処理により合金の粒子と酸素(O)とを反応させ成長させたものであり、合金の自然酸化を超える酸化反応により形成される。かかる熱処理は、大気中、酸素と不活性ガスの混合気体中など、酸素が存在する雰囲気中で行うことができる。また、水蒸気と不活性ガスの混合気体中など、水蒸気が存在する雰囲気中で熱処理を行うこともできる。これらのうち大気中の熱処理が簡便であり好ましい。   Next, a heat treatment process for heat-treating the molded body obtained through the molding process will be described. In order to form an alloy-derived oxide layer between the alloy particles, the molded body is subjected to heat treatment (high temperature oxidation). Such heat treatment can further alleviate stress strain introduced by molding or the like. This oxide layer is grown by a reaction between alloy particles and oxygen (O) by heat treatment, and is formed by an oxidation reaction exceeding the natural oxidation of the alloy. Such heat treatment can be performed in an atmosphere in which oxygen exists, such as in the air or in a mixed gas of oxygen and an inert gas. Further, the heat treatment can be performed in an atmosphere in which water vapor exists, such as in a mixed gas of water vapor and inert gas. Of these, heat treatment in the air is simple and preferable.

本工程の熱処理は上記酸化物層等が形成される温度で行えばよい。合金組成にも拠るが850℃を超える温度では合金の粒子同士が焼結を始め、磁心損失も増加するようになる。また、熱処理で形成される酸化物層は熱処理温度にも影響されるので、具体的な熱処理温度は、650〜850℃の範囲が好ましい。上記温度範囲での保持時間は、磁心の大きさ、処理量、特性ばらつきの許容範囲などによって適宜設定され、例えば0.5〜3時間に設定される。   The heat treatment in this step may be performed at a temperature at which the oxide layer or the like is formed. Although depending on the alloy composition, at temperatures exceeding 850 ° C., the alloy particles begin to sinter and the magnetic core loss also increases. In addition, since the oxide layer formed by heat treatment is also affected by the heat treatment temperature, the specific heat treatment temperature is preferably in the range of 650 to 850 ° C. The holding time in the above temperature range is appropriately set according to the size of the magnetic core, the processing amount, the allowable range of characteristic variation, and the like, and is set to 0.5 to 3 hours, for example.

熱処理を経た磁心における占積率は、85%超であることが好ましい。これにより、設備的、コスト的な負荷を抑えながらも、占積率を高めて磁気特性を向上することが出来る。   The space factor in the heat-treated magnetic core is preferably more than 85%. As a result, the space factor can be increased and the magnetic characteristics can be improved while suppressing the equipment and cost load.

合金組成、製造条件、あるいは合金の粒径を選択し、Fe基軟磁性合金の粒子が酸化物層を介して結合し、占積率が85%超であり、周波数100kHzにおける実効透磁率μeの初期値(直流磁界0.4A/m)が34以上で、実効透磁率μeが前記初期値に対して80%となる直流磁界Hsatが5.6kA/m以上で、前記直流磁界Hsatにおける初磁化曲線上の磁束密度Bsatが400mT以上の磁心とする。このような磁心にコイルを設けたコイル部品は直流重畳特性に優れたものとなる。 The alloy composition, manufacturing conditions, or alloy particle size is selected, Fe-based soft magnetic alloy particles are bonded through an oxide layer, the space factor is greater than 85%, and the effective permeability μe at a frequency of 100 kHz is When the initial value (DC magnetic field 0.4 A / m) is 34 or more and the effective magnetic permeability μe is 80% of the initial value, the DC magnetic field Hsat is 5.6 kA / m or more, and the initial magnetization in the DC magnetic field Hsat It is assumed that the magnetic flux density Bsat on the curve is 400 mT or more. A coil component in which a coil is provided on such a magnetic core has excellent direct current superposition characteristics.

実効透磁率μeが前記初期値に対して80%となる直流磁界Hsatついて図2を用いて説明する。図2においてμe80は直流電流が重畳した交流電流で励磁された磁心の実効透磁率μeがその初期値に対して80%となる点の値であり、直流磁界Hsatはその点における直流磁界の値を表す。重畳特性を評価する上で重畳する直流磁界に対する実効透磁率μeの低下が重要である。一般的に実効透磁率μeがその初期値に対して70〜80%となる直流磁界Hsatをコイル部品として利用可能と判断する閾値として評価することがあり、本発明では実効透磁率μeがその初期値に対して80%に低下する直流磁界を閾値とした。ここで実効透磁率μeの初期値とは、直流磁界が直流磁界Hsatに較べて十分小さい直流磁界における値であり、直流磁界の増加に対して実効透磁率μeの変化が実質的に生じていない直流磁界における値であれば良い。本発明では直流磁界が0.4 A/mである場合を実効透磁率μeの初期値とした。磁心が同一形状である場合、μe80となる直流磁界Hsatが大きければコイル部品に流せる最大電流も大きいので好ましい。更に実効透磁率μeの初期値が大きいほど巻線も減じられ、磁心の形状も小型化できるので好ましい。   A DC magnetic field Hsat having an effective permeability μe of 80% with respect to the initial value will be described with reference to FIG. In FIG. 2, μe80 is a value at a point where the effective permeability μe of a magnetic core excited by an alternating current superimposed with a direct current is 80% with respect to its initial value, and a direct current magnetic field Hsat is a value of the direct current magnetic field at that point. Represents. In evaluating the superimposition characteristics, it is important to reduce the effective permeability μe with respect to the DC magnetic field to be superimposed. In general, a DC magnetic field Hsat having an effective magnetic permeability μe of 70 to 80% with respect to its initial value may be evaluated as a threshold value for determining that it can be used as a coil component. In the present invention, the effective magnetic permeability μe is an initial value. A direct current magnetic field that drops to 80% of the value was used as a threshold value. Here, the initial value of the effective permeability μe is a value in a DC magnetic field in which the DC magnetic field is sufficiently smaller than the DC magnetic field Hsat, and the change in the effective permeability μe does not substantially occur as the DC magnetic field increases. Any value in a DC magnetic field may be used. In the present invention, the case where the DC magnetic field is 0.4 A / m is set as the initial value of the effective permeability μe. When the magnetic cores have the same shape, it is preferable that the DC current Hsat that is μe80 is large because the maximum current that can be passed through the coil component is large. Furthermore, it is preferable that the initial value of the effective magnetic permeability μe is larger because the number of windings is reduced and the shape of the magnetic core can be reduced.

次に、直流磁界Hsatにおける初磁化曲線上の磁束密度Bsatについて図3を基に説明する。
磁心の初磁化状態から飽和磁化までの初磁化曲線のメジャーループにおいて、直流磁界Hsatに対応する磁束密度をBsatとする。
Next, the magnetic flux density Bsat on the initial magnetization curve in the DC magnetic field Hsat will be described with reference to FIG.
In the major loop of the initial magnetization curve from the initial magnetization state of the magnetic core to the saturation magnetization, the magnetic flux density corresponding to the DC magnetic field Hsat is defined as Bsat.

磁心は、上述のようにバインダー等を混合した軟磁性合金粉末だけを加圧成形した磁心単体の形態で製造し、それに巻線を行なってコイル部品としてもよいし、内部にコイルが配置された形態で製造してコイル部品としてもよい。後者の構成は、特に限定されるものではなく、例えば軟磁性合金粉末とコイルとを一体で加圧成形する手法や、あるいはシート積層法や印刷法といった積層プロセスを用いたコイル封入構造の磁心の形態で製造することができる。磁心とコイルとを有するコイル部品は、例えばチョーク、インダクタ、リアクトル、トランス等として用いられる。   The magnetic core is manufactured in the form of a single magnetic core obtained by press-molding only a soft magnetic alloy powder mixed with a binder or the like as described above, and may be wound as a coil component, or a coil is disposed inside. It is good also as a coil component manufactured with a form. The latter configuration is not particularly limited. For example, a magnetic core of a coil encapsulating structure using a method in which soft magnetic alloy powder and a coil are integrally formed by pressure, or a lamination process such as a sheet lamination method or a printing method is used. It can be manufactured in the form. A coil component having a magnetic core and a coil is used as, for example, a choke, an inductor, a reactor, a transformer, or the like.

以下に、この発明の好適な実施例を例示的に詳しく説明する。また説明においては、Fe基軟磁性合金としてFeAlCr系合金を用いる。ただし、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. In the description, an FeAlCr alloy is used as the Fe-based soft magnetic alloy. However, the materials, blending amounts, and the like described in this example are not intended to limit the scope of the present invention only to those unless otherwise specified.

(1)原料粉末の準備
アトマイズ法によりAl 5質量%、Cr 4質量%、残部が実質的にFeの原料粉末を作製した。
(1) Preparation of raw material powder A raw material powder of 5 mass% Al, 4 mass% Cr, and the balance substantially Fe was prepared by an atomization method.

レーザー回折散乱式粒度分布測定装置(堀場製作所製LA−920)によって、原料粉末の平均粒径(メジアン径d50)を得た。得られた各原料粉末の飽和磁化Msと保磁力Hc、飽和磁束密度BsをVSM磁気特性測定装置(東英工業製VSM−5−20)によって得た。その結果、飽和磁化Msは180emu/g、保磁力Hcは1200A/mであった。   The average particle diameter (median diameter d50) of the raw material powder was obtained using a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.). Saturation magnetization Ms, coercive force Hc, and saturation magnetic flux density Bs of each obtained raw material powder were obtained by a VSM magnetic property measuring apparatus (VSM-5-20 manufactured by Toei Industry Co., Ltd.). As a result, the saturation magnetization Ms was 180 emu / g, and the coercive force Hc was 1200 A / m.

(2)磁心の作製
以下のようにして、磁心を作製した。まず前記原料粉末と、更にそれを篩にて分級し平均粒径d50が異なる2種の原料粉末を準備した。原料粉末それぞれに対して、PVA(株式会社クラレ製ポバールPVA−205;固形分10%)をバインダーとし、溶媒としてイオン交換水を投入し、攪拌混合して泥漿(スラリー)とした。スラリー濃度は80質量%である。前記原料粉末100重量部に対してバインダーの添加量を異ならせて0.75〜1.66重量部とし、た。それを120℃で10時間乾燥し、乾燥後の混合粉を篩に通して平均粒径とバインダー量の異なる造粒粉を得た。この造粒粉に、原料粉末100重量部に対して0.4重量部の割合でステアリン酸亜鉛を添加、混合した。
(2) Production of magnetic core A magnetic core was produced as follows. First, the raw material powder was further classified with a sieve to prepare two raw material powders having different average particle diameters d50. For each raw material powder, PVA (Poval PVA-205 manufactured by Kuraray Co., Ltd .; solid content: 10%) was used as a binder, ion-exchanged water was added as a solvent, and the mixture was stirred and mixed to form a slurry. The slurry concentration is 80% by mass. The amount of binder added was changed to 0.75 to 1.66 parts by weight with respect to 100 parts by weight of the raw material powder. It was dried at 120 ° C. for 10 hours, and the dried mixed powder was passed through a sieve to obtain granulated powder having different average particle diameter and binder amount. To this granulated powder, zinc stearate was added and mixed at a ratio of 0.4 parts by weight with respect to 100 parts by weight of the raw material powder.

得られた造粒粉を用いてプレス機を使用して、室温にて加圧成形し、トロイダル(円環)形状と円板形状の成形体を得た。成形時の圧力は490MPa(5ton/cm)〜1453MPa(14.8ton/cm)とした。この成形体を熱処理炉に投入し、大気中740℃の熱処理温度で2分保持して熱処理を施し、試料No.1〜9の磁心を得た。磁心の外形寸法は、外径φ13.4mm、内径φ7.7mm、高さ2.0mmと外径φ13.5mm、高さ2.0mmであった。 The obtained granulated powder was subjected to pressure molding at room temperature using a press machine to obtain molded bodies having a toroidal (annular) shape and a disk shape. The pressure during molding was 490 MPa (5 ton / cm 2 ) to 1453 MPa (14.8 ton / cm 2 ). This molded body was put into a heat treatment furnace, subjected to heat treatment by holding it in the atmosphere at a heat treatment temperature of 740 ° C. for 2 minutes. 1 to 9 magnetic cores were obtained. The outer dimensions of the magnetic core were an outer diameter of 13.4 mm, an inner diameter of 7.7 mm, a height of 2.0 mm, an outer diameter of 13.5 mm, and a height of 2.0 mm.

(3)評価方法および結果
以上の工程により作製した磁心について以下のA〜Gの評価を行った。評価結果を表1に示す。表1において、比較例の試料には試料No.に*を付与して区別している。また、図4に本発明の磁心を含む直流磁界Hsatと磁束密度Bsatとの関係を示すグラフを示す。
(3) Evaluation method and result The following AG was evaluated about the magnetic core produced by the above process. The evaluation results are shown in Table 1. In Table 1, Sample No. Are distinguished by adding *. FIG. 4 is a graph showing the relationship between the DC magnetic field Hsat including the magnetic core of the present invention and the magnetic flux density Bsat.

A.占積率Pf(相対密度)
円環状の磁心に対し、その寸法と質量から体積重量法により密度(kg/m)を算出し、密度dsとした。密度dsをFe基軟磁性合金の真密度で除して磁心の占積率(相対密度)[%]を算出した。
A. Space factor Pf (relative density)
The density (kg / m 3 ) was calculated from the dimensions and mass of the annular magnetic core by the volume weight method, and was defined as the density ds. The density ds was divided by the true density of the Fe-based soft magnetic alloy to calculate the space factor (relative density) [%] of the magnetic core.

B.比抵抗ρv
円板状の磁心を被測定物とし、その対向する二平面に導電性接着剤を塗り、乾燥し固化した後、被測定物を電極の間にセットする。電気抵抗測定装置(株式会社エーディーシー製5451)を用いて、100Vの直流電圧を印加し、抵抗値R(Ω)を測定する。被測定物の平面の面積A(m2)と厚みt(m)とを測定し、次式により比抵抗ρv(Ωm)を算出した。
比抵抗ρv(Ωm)=R×(A/t)
B. Specific resistance ρv
A disk-shaped magnetic core is used as an object to be measured, and a conductive adhesive is applied to two opposing flat surfaces, dried and solidified, and then the object to be measured is set between the electrodes. A resistance value R (Ω) is measured by applying a DC voltage of 100 V using an electrical resistance measuring device (5451 manufactured by ADC Corporation). The planar area A (m2) and thickness t (m) of the object to be measured were measured, and the specific resistance ρv (Ωm) was calculated by the following equation.
Specific resistance ρv (Ωm) = R × (A / t)

C.磁心損失Pcv
環状体の磁心を被測定物とし、一次側巻線と二次側巻線とをそれぞれ15ターン巻回し、岩通計測株式会社製B−HアナライザSY−8218により、最大磁束密度30mT、周波数300kHzの条件で磁心損失Pcv(kW/m)を室温で測定した。
C. Magnetic core loss Pcv
The magnetic core of the annular body is the object to be measured, and the primary side winding and the secondary side winding are wound by 15 turns, respectively, and the maximum magnetic flux density is 30 mT and the frequency is 300 kHz by BH analyzer SY-8218 manufactured by Iwatatsu Measurement Co., Ltd. Under these conditions, the core loss Pcv (kW / m 3 ) was measured at room temperature.

D.実効透磁率μe
環状体の磁心を被測定物とし、導線を30ターン巻回し、LCRメータ(アジレント・テクノロジー株式会社性4284A)により、室温にて周波数100kHzで測定したインダクタンスから次式により求めた。直流磁界を0.4A/mとした条件で得られた値を実効透磁率μeの初期値とした。
初透磁率μe=(le×L)/(μ×Ae×N
(le:磁路長、L:試料のインダクタンス(H)、μ:真空の透磁率=4π×10−7(H/m)、Ae:磁心の断面積、N:コイルの巻数)
D. Effective permeability μe
Using the magnetic core of the annular body as the object to be measured, the conducting wire was wound for 30 turns, and the inductance was measured at room temperature using a LCR meter (Agilent Technology Co., Ltd., 4284A) at a frequency of 100 kHz. The value obtained under the condition that the DC magnetic field was 0.4 A / m was used as the initial value of the effective permeability μe.
Initial permeability μe = (le × L) / (μ 0 × Ae × N 2 )
(Le: magnetic path length, L: sample inductance (H), μ 0 : vacuum permeability = 4π × 10 −7 (H / m), Ae: cross-sectional area of magnetic core, N: number of turns of coil)

E.直流重畳特性
環状体の磁心を被測定物とし、導線を30ターン巻回してコイル部品とし、直流印加装置(42841A:ヒューレットパッカード社製)で20kA/mまで、1kA/mステップで直流磁界を印加した状態にて、LCRメータ(アジレント・テクノロジー株式会社社製4284A)によりインダクタンスLを周波数100kHzで室温にて測定した。得られたインダクタンスから得られた直流磁界での実効透磁率μeから直流重畳特性を得た。
E. DC superimposition characteristics An annular magnetic core is the object to be measured, and a conducting wire is wound 30 turns to form a coil component, and a DC magnetic field is applied in steps of 1 kA / m up to 20 kA / m with a DC application device (42841A: manufactured by Hewlett Packard). In this state, the inductance L was measured at room temperature with a frequency of 100 kHz using an LCR meter (4284A manufactured by Agilent Technologies). A DC superposition characteristic was obtained from the effective permeability μe in a DC magnetic field obtained from the obtained inductance.

前述の図2は表1中の試料No.*2の直流重畳特性を示していて、各試料についても同様に直流重畳特性を得た。各試料の実効透磁率μeの初期値からμe80を算出し、前記直流重畳特性から実効透磁率μeが初期値から80%に低下する直流磁界Hsatを求めた。具体的には、μe80となる前後の測定ステップにおける直流磁界とμeとの関係から一次近似により算出することが出来る。   The above-mentioned FIG. * 2 shows the DC superimposition characteristics, and the DC superimposition characteristics were similarly obtained for each sample. Μe80 was calculated from the initial value of the effective permeability μe of each sample, and a DC magnetic field Hsat at which the effective permeability μe decreased from the initial value to 80% was determined from the DC superposition characteristics. Specifically, it can be calculated by primary approximation from the relationship between the DC magnetic field and μe in the measurement steps before and after μe80.

F. 初磁化曲線
消磁状態の環状体の磁心を被測定物とし、一次巻線を30ターン、二次巻線を10ターン巻回し、メトロン技研株式会社製直流磁化特性試験装置(SK110)により、印加磁界10kA/mの条件で初磁化曲線を室温で測定した。巻数はトロイドダルコアの透磁率及び寸法に応じて適宜増減することができる。
F. Initial magnetization curve The magnetic core of the demagnetized annular body is the object to be measured, the primary winding is wound 30 turns, the secondary winding is wound 10 turns, and the applied magnetic field is measured by a DCT magnetic property test apparatus (SK110) manufactured by Metron Engineering Co., Ltd. The initial magnetization curve was measured at room temperature under the condition of 10 kA / m. The number of turns can be appropriately increased or decreased depending on the permeability and dimensions of the toroidal core.

前述の図3は表1中の試料No.*2の初磁化曲線を示していて、各試料についても同様に初磁化曲線を得た。各試料の前記直流磁界Hsatに対応する磁束密度Bsatを初磁化曲線から得た。具体的には、直流磁界Hsatの前後の測定ステップにおける直流磁界と磁束密度との関係から一次近似により算出することが出来る。   The above-mentioned FIG. * 2 shows the initial magnetization curve, and the initial magnetization curve was similarly obtained for each sample. The magnetic flux density Bsat corresponding to the DC magnetic field Hsat of each sample was obtained from the initial magnetization curve. Specifically, it can be calculated by primary approximation from the relationship between the DC magnetic field and the magnetic flux density in the measurement steps before and after the DC magnetic field Hsat.

G(組織観察、組成分布)
トロイダル形状の磁心を切断し、切断面を走査型電子顕微鏡(SEM/EDX)により観察した。
G (structure observation, composition distribution)
The toroidal magnetic core was cut and the cut surface was observed with a scanning electron microscope (SEM / EDX).

Figure 2018137349
Figure 2018137349

得られた試料の磁心について、走査電子顕微鏡(SEM)を用いた断面観察による評価の結果、何れの試料でも合金粒子間は粒界により結合していた。また組成マッピング(SEM/EDX)による評価では粒子内部の合金相よりもAlの比率が高い酸化物が粒界に形成されていることが確認された。また、この磁心の比抵抗ρvは何れも1×10Ωm以上の高い値が得られた。 About the magnetic core of the obtained sample, as a result of evaluation by cross-sectional observation using a scanning electron microscope (SEM), alloy particles were bonded by grain boundaries in any sample. In addition, evaluation by composition mapping (SEM / EDX) confirmed that oxides having a higher Al ratio than the alloy phase inside the grains were formed at the grain boundaries. In addition, the specific resistance ρv of the magnetic core was as high as 1 × 10 5 Ωm or more.

また、実施例である試料No.5〜7,9では、周波数100kHzにおける実効透磁率μeの初期値(直流磁界0.4A/m)が34以上で、実効透磁率μeが前記初期値に対して80%となる直流磁界Hsatが5.6kA/m以上で、前記直流磁界Hsatにおける初磁化曲線上の磁束密度Bsatが400mT以上であった。表1に示すように、試料No.6,7,9では合金粒子の平均粒径が小さくて、成形時のバインダー量が多いほうが磁心損失Pcvは小さく、図4に示すように、実効透磁率μe80での直流磁界Hsat、及び直流磁界Hsatに対する磁束密度Bsatを大きく出来た。但し、試料No.8ではバインダー量(PVA量)が多く、かつ合金の平均粒径が小さいため、設定された成形圧力では磁心の占積率85%を超えず、実効透磁率μeの初期値も34以上とならなかった。また平均粒径が同じ原料粉末で、バインダー量を同じとして得られた試料では、占積率が高くなるに従い直流磁界Hsatは低下するものの、初期の実効透磁率μeを高く出来て磁束密度Bsatを大きく出来た。また、実施例(試料No.5,7,9)の磁心では、図1に示すように比較例(試料No.2)に対して実効透磁率μeの初期値、直流磁界Hsatが大きく、また比較例(試料No.3)に対して直流磁界Hsatが大きく優れた直流重畳特性が得られ、本発明により得られた磁心はコイル部品として優れた直流重畳特性を得る上で有利であることが分かった。

In addition, sample No. 5 to 7 and 9, the initial value (DC magnetic field 0.4 A / m) of the effective permeability μe at a frequency of 100 kHz is 34 or more, and the DC magnetic field Hsat at which the effective permeability μe is 80% with respect to the initial value. The magnetic flux density Bsat on the initial magnetization curve in the DC magnetic field Hsat was 400 mT or more at 5.6 kA / m or more. As shown in Table 1, sample no. 6, 7, and 9, the average particle size of the alloy particles is small, and the core loss Pcv is smaller when the amount of binder at the time of molding is larger, and as shown in FIG. The magnetic flux density Bsat with respect to Hsat could be increased. However, sample No. In No. 8, since the binder amount (PVA amount) is large and the average particle diameter of the alloy is small, the space factor of the magnetic core does not exceed 85% at the set molding pressure, and the initial value of the effective permeability μe is 34 or more. There wasn't. Moreover, in the sample obtained with the same average particle size raw material powder and the same binder amount, the DC magnetic field Hsat decreases as the space factor increases, but the initial effective magnetic permeability μe can be increased to increase the magnetic flux density Bsat. It was big. Further, in the magnetic cores of the examples (sample Nos. 5, 7, and 9), the initial value of the effective magnetic permeability μe and the DC magnetic field Hsat are larger than those of the comparative example (sample No. 2) as shown in FIG. Compared with the comparative example (sample No. 3), the DC magnetic field Hsat is large and excellent DC superimposition characteristics can be obtained, and the magnetic core obtained by the present invention is advantageous in obtaining excellent DC superimposition characteristics as a coil component. I understood.

Claims (4)

Fe基軟磁性合金の粒子が前記合金を構成する元素の酸化物層を介して結合した磁心であって、
直流電流が重畳した交流電流で励磁され、
占積率が85%超で、周波数100kHzにおける実効透磁率μeの初期値が34以上であり、
実効透磁率μeが前記初期値に対して80%となる直流磁界Hsatが5.6kA/m以上で、
且つ、前記直流磁界Hsatにおける初磁化曲線上の磁束密度Bsatが400mT以上である直流重畳特性に優れた磁心。
A magnetic core in which particles of an Fe-based soft magnetic alloy are bonded through an oxide layer of an element constituting the alloy,
Excited by alternating current superimposed with direct current,
The space factor exceeds 85%, and the initial value of the effective permeability μe at a frequency of 100 kHz is 34 or more,
The DC magnetic field Hsat at which the effective permeability μe is 80% of the initial value is 5.6 kA / m or more,
In addition, the magnetic core having excellent DC superposition characteristics in which the magnetic flux density Bsat on the initial magnetization curve in the DC magnetic field Hsat is 400 mT or more.
請求項1に記載の磁心であって、
前記Fe基軟磁性合金は、Feを主成分とし、Feよりも酸化しやすい元素M(MはSi,Cr,Alの少なくとも1種)を含む磁心。
The magnetic core according to claim 1,
The Fe-based soft magnetic alloy is a magnetic core containing Fe as a main component and containing an element M (M is at least one of Si, Cr, and Al) that is easier to oxidize than Fe.
請求項2に記載の磁心であって、
前記Fe基軟磁性合金が、組成式:aFebAlcCrdSiで表され、質量%で、a+b+c+d=100、75≦a<100、0≦b<13.8、0≦c≦7、0≦d≦5である磁心。
The magnetic core according to claim 2,
The Fe-based soft magnetic alloy is represented by a composition formula: aFebAlcCrdSi, and by mass%, a + b + c + d = 100, 75 ≦ a <100, 0 ≦ b <13.8, 0 ≦ c ≦ 7, 0 ≦ d ≦ 5 A magnetic core.
請求項1〜3のいずれか一項に記載の磁心と、前記磁心に巻かれたコイルを備えたコイル部品。

The coil component provided with the magnetic core as described in any one of Claims 1-3, and the coil wound around the said magnetic core.

JP2017031113A 2017-02-22 2017-02-22 Magnetic core and coil component Pending JP2018137349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017031113A JP2018137349A (en) 2017-02-22 2017-02-22 Magnetic core and coil component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031113A JP2018137349A (en) 2017-02-22 2017-02-22 Magnetic core and coil component

Publications (1)

Publication Number Publication Date
JP2018137349A true JP2018137349A (en) 2018-08-30

Family

ID=63365648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031113A Pending JP2018137349A (en) 2017-02-22 2017-02-22 Magnetic core and coil component

Country Status (1)

Country Link
JP (1) JP2018137349A (en)

Similar Documents

Publication Publication Date Title
JP6260508B2 (en) Dust core
JP6365670B2 (en) Magnetic core, magnetic core manufacturing method, and coil component
JP6358491B2 (en) Dust core, coil component using the same, and method for manufacturing dust core
US10573441B2 (en) Method for manufacturing magnetic core
JP6601389B2 (en) Magnetic core, coil component, and manufacturing method of magnetic core
JP6471881B2 (en) Magnetic core and coil parts
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2014175580A (en) Dust core, coil component using the same and method of producing dust core
JP2010222670A (en) Composite magnetic material
JP6460505B2 (en) Manufacturing method of dust core
JP6471882B2 (en) Magnetic core and coil parts
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
JP2012222062A (en) Composite magnetic material
WO2018174268A1 (en) Terminal-attached dust core and method for manufacturing same
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP2011211026A (en) Composite magnetic material
JP6478141B2 (en) Magnetic core manufacturing method, magnetic core and coil component using the same
JP2018137349A (en) Magnetic core and coil component
JP2010185126A (en) Composite soft magnetic material and method for producing the same