JP2010236020A - Soft magnetic composite material, method for producing the same, and electromagnetic circuit component - Google Patents

Soft magnetic composite material, method for producing the same, and electromagnetic circuit component Download PDF

Info

Publication number
JP2010236020A
JP2010236020A JP2009085348A JP2009085348A JP2010236020A JP 2010236020 A JP2010236020 A JP 2010236020A JP 2009085348 A JP2009085348 A JP 2009085348A JP 2009085348 A JP2009085348 A JP 2009085348A JP 2010236020 A JP2010236020 A JP 2010236020A
Authority
JP
Japan
Prior art keywords
alloy
pure iron
particle
particles
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009085348A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
寛 田中
Kazunori Igarashi
和則 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Diamet Corp
Original Assignee
Mitsubishi Materials Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Diamet Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009085348A priority Critical patent/JP2010236020A/en
Publication of JP2010236020A publication Critical patent/JP2010236020A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft magnetic composite material which has all properties of high magnetic permeability, low coercive force and low iron loss that an Fe-3Si alloy particle phase or an Fe-Si-Al alloy particle phase has, while keeping high saturation magnetic flux density that a pure iron particle originally has, and to provide a method for producing the soft magnetic composite material. <P>SOLUTION: The soft magnetic composite material is produced by compacting the mixture of the Fe-3Si alloy particle, the Fe-Si-Al alloy particle and a pure iron particle and firing the compacted mixture and has a plurality of the Fe-3Si alloy particle phases, a plurality of the Fe-Si-Al alloy particle phases and a plurality of pure iron particle phases each of which is present on the grain boundary surrounded by at least three of Fe-3Si alloy particle phases or Fe-Si-Al alloy particle phases. The content of the pure iron particle phases is 3-10 mass% to the whole mass of the Fe-3Si alloy particle phase, the Fe-Si-Al alloy particle phase and the pure iron particle phase. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、絶縁処理された純鉄粒子とFe−3Si合金粒子とFe−Si−Al合金粒子とを混合圧密し、焼成してなる複合軟磁性材料及びその製造方法と電磁気回路部品に関する。   The present invention relates to a composite soft magnetic material obtained by mixing, compacting, and firing pure iron particles, Fe-3Si alloy particles, and Fe-Si-Al alloy particles that have been subjected to insulation treatment, a method for manufacturing the same, and an electromagnetic circuit component.

インバータやトランスのコア、チョークコイルなどの電子機器用電磁気部品は、電子機器の小型化、高性能化に伴い、より厳しい材料特性が求められるようになってきている。このような部品に用いられる軟磁性材料として、従来、Fe−Si−Al系合金やケイ素鋼などの金属磁性材料、フェライトなどの酸化物磁性材料料が使用されてきた。しかし、Fe−Si−Al系合金の金属磁性材料は、粉末とした場合の硬度が高く、粉末成形により高密度化することが難しい問題がある。
例えば、粉末成形による高密度複合軟磁性材料の製造では、先ず、絶縁皮膜を有する金属軟磁性粉末と、必要に応じて添加される潤滑剤粉末とバインダーからなる原料粉末を金型のキャビティに充填した後、加圧成形することによって目的の形状の圧粉体を作製し、その後、圧粉体を焼成することによって複合軟磁性材料が製造されている。
Electromagnetic components for electronic devices such as inverters, transformer cores, and choke coils are required to have stricter material properties as electronic devices become smaller and have higher performance. Conventionally, metal magnetic materials such as Fe—Si—Al alloys and silicon steel, and oxide magnetic material materials such as ferrite have been used as soft magnetic materials used for such parts. However, the metal magnetic material of Fe-Si-Al alloy has a high hardness when powdered, and there is a problem that it is difficult to increase the density by powder molding.
For example, in the production of high-density composite soft magnetic materials by powder molding, first, a metal soft magnetic powder having an insulating film, and a raw material powder consisting of a lubricant powder and a binder added as necessary are filled in a mold cavity. After that, a green compact having a desired shape is produced by pressure molding, and then the green compact is fired to produce a composite soft magnetic material.

従って、成形に用いる粉末自体の硬度が高い場合、圧粉体として高い圧密度を得ることが困難となり易い問題がある。例えば、Fe−Si−Al系合金は室温で加工する場合、塑性変形が極めて少なく、粉砕による微粉末化は可能であるが、板状には成形困難なものである。従って、磁心などの磁気部品に成形しようとして、粉末状態で成形しても、ほとんど塑性変形しないことから、Fe−Si−Al系合金粒子は添加した結合剤で単純に結びついている状態となっているのみであり、Fe−Si−Al系合金粉末自体の透磁率は高くとも、圧粉磁心とした場合に高い透磁率を得ることができない問題がある。   Therefore, when the hardness of the powder itself used for molding is high, there is a problem that it is difficult to obtain a high density as a green compact. For example, an Fe—Si—Al alloy has very little plastic deformation when processed at room temperature and can be pulverized by pulverization, but it is difficult to form into a plate shape. Therefore, even if it is molded into a magnetic part such as a magnetic core, it is hardly plastically deformed even if it is molded in a powder state. Therefore, the Fe-Si-Al alloy particles are simply connected with the added binder. However, even if the magnetic permeability of the Fe—Si—Al-based alloy powder itself is high, there is a problem that a high magnetic permeability cannot be obtained when a dust core is used.

そこで従来、酸化物磁性材料と金属磁性材料を混合し、複合化して、高性能化しようとする試みがなされている。
例えば、パーマロイなどの金属磁性粉末をフェライトなどの酸化物磁性材料で被覆し、その後に成形して熱処理する方法が知られている。(特許文献1参照)
また、アスペクト比を規定したFe-Si系合金粉末と扁平状Fe粉末混合し、圧密後に焼成処理してなる複合磁性材料が知られている。(特許文献2参照)
更に、5〜8質量%のSiを含むFe−Si系合金粉末と純鉄粉末とこれらの混合粉末間に存在する無機絶縁バインダーにより構成され、純鉄粉末の全体に対する重量比が10〜55%の範囲にある圧粉磁心が知られている。(特許文献3参照)
また、2種類の軟磁性粉末を混合圧密してなる軟磁性材料であって、軟磁性粉末がFe−Si合金粉末とFe−Si−Al合金粉末である磁性混合物が知られている。(特許文献4参照)
また、絶縁層で被覆した複数の複合磁性粒子からなり、複合磁性粒子の一部が絶縁被覆した高圧縮性軟磁性粒子であり、他の複合磁性粒子が絶縁得被覆した合金粒子であり、合金粒子と高圧縮性軟磁性粒子の平均粒径が3μm〜300μmである軟磁性材料が知られている。(特許文献5参照)
Therefore, conventionally, attempts have been made to improve the performance by mixing an oxide magnetic material and a metal magnetic material to form a composite.
For example, a method is known in which a metal magnetic powder such as permalloy is coated with an oxide magnetic material such as ferrite and then molded and heat-treated. (See Patent Document 1)
Also known is a composite magnetic material obtained by mixing an Fe—Si based alloy powder having a defined aspect ratio and a flat Fe powder, followed by sintering and sintering. (See Patent Document 2)
Furthermore, it is comprised by the inorganic insulating binder which exists between the Fe-Si type alloy powder containing 5-8 mass% Si, pure iron powder, and these mixed powders, and the weight ratio with respect to the whole pure iron powder is 10-55%. Powder magnetic cores in the range of are known. (See Patent Document 3)
There is also known a magnetic mixture obtained by mixing and compacting two types of soft magnetic powders, wherein the soft magnetic powders are Fe-Si alloy powder and Fe-Si-Al alloy powder. (See Patent Document 4)
In addition, it is composed of a plurality of composite magnetic particles coated with an insulating layer, a part of the composite magnetic particles is a high-compressible soft magnetic particle with an insulating coating, and another composite magnetic particle is an alloy particle coated with an insulating layer, A soft magnetic material in which the average particle size of the particles and the highly compressible soft magnetic particles is 3 μm to 300 μm is known. (See Patent Document 5)

特開昭56−38402号公報JP-A-56-38402 特開平6−236808号公報JP-A-6-236808 特開2008−192897号公報JP 2008-192897 A 特開2002−110413号公報JP 2002-110413 A 特開2006−135164号公報JP 2006-135164 A

前記パーマロイなどの金属磁性粉末をフェライトなどの酸化物磁性材料で被覆して製造される軟磁性複合材料は、熱処理するとそれらの界面で金属とフェライトが反応し易いので、磁気特性が劣化するという問題を有していた。
また、Fe−Si−Al系合金粉末と他の軟磁性金属粉末を混合する方法にあっては、Fe−Si−Al系合金粉末が非常に硬いために、圧縮性の良好な軟磁性金属粉末を混合したとしても、20ton/cm程度の高圧成形技術が必要となり、ダストコアなど、円筒形のような単純な形状の製品しか得られないという問題を有していた。
更に、使用する周波数により磁性材料の使い分けを行う場合があり、低周波数領域では主に鉄系の材料が使用される。鉄系の材料は、高飽和磁束密度の長所を有するが、損失が大きいという欠点を有している。また、高周波数領域は酸化物系の磁性材料が多用されている。この酸化物系の材料は、低鉄損失の長所を有するが、鉄系の金属の半分ほどの飽和磁束密度しか得られないと言う問題がある。従って従来、要求特性に合わせて、飽和磁束密度ができるだけ高く得られる材料の選択を行うか、鉄損の少ない材料の選択を行うか、あるいは材料加工を行うか、要求特性に応じた材料を選択するなどの手段を採用することが一般的であったが、更に諸得性をバランスさせて高次元で両立することができる技術の提供が望まれていた。
The soft magnetic composite material produced by coating the metal magnetic powder such as permalloy with an oxide magnetic material such as ferrite has a problem that the magnetic properties are deteriorated because the metal and ferrite easily react at the interface when heat-treated. Had.
Also, in the method of mixing Fe-Si-Al alloy powder and other soft magnetic metal powder, since the Fe-Si-Al alloy powder is very hard, soft magnetic metal powder having good compressibility Even if mixed, a high-pressure molding technique of about 20 ton / cm 2 is required, and there is a problem that only a product having a simple shape such as a cylindrical shape such as a dust core can be obtained.
Furthermore, the magnetic material may be properly used depending on the frequency to be used, and iron-based materials are mainly used in the low frequency region. Iron-based materials have the advantage of high saturation magnetic flux density, but have the disadvantage of high loss. In the high frequency region, oxide-based magnetic materials are frequently used. Although this oxide-based material has the advantage of low iron loss, there is a problem that only a saturation magnetic flux density about half that of an iron-based metal can be obtained. Therefore, conventionally, according to the required characteristics, select a material that can obtain a saturation magnetic flux density as high as possible, select a material with low iron loss, or perform material processing, or select a material that meets the required characteristics. However, it has been generally desired to provide a technique that can balance various advantages and achieve a high level of compatibility.

本発明は、このような従来の事情に鑑み提案されたものであり、その目的は、軟磁性合金粉末に対し純鉄粉末を混合し、それらの添加量の範囲、それぞれの粒径範囲を好適に選択し、最適な配合とすることにより、純鉄粉末が本来有する高い飽和磁束密度を生かして飽和磁束密度の向上を図り、損失を低く抑えることができる複合軟磁性材料とその製造方法の提供を目的とする。
また、本発明は、純鉄粉末とFe−Si−Al合金粉末とFe−3Si合金粉末の添加量の範囲、それぞれの粒径範囲を好適に選択し、最適な配合とすることにより、純鉄粉末が本来有する高い飽和磁束密度を生かしながら、Fe−Si−Al合金粉末が本来有する低保磁力、低鉄損失を生かし、Fe−3Si合金粉末が本来有する低保磁力と大きな比抵抗の特性を併せ持つことができるようにした複合軟磁性材料とその製造方法の提供を目的とする。
The present invention has been proposed in view of such conventional circumstances. The purpose of the present invention is to mix pure iron powder with soft magnetic alloy powder and to suit the range of their addition amount and the respective particle size range. The composite soft magnetic material which can improve the saturation magnetic flux density by utilizing the high saturation magnetic flux density inherent in pure iron powder and keep the loss low by selecting the optimum composition and the manufacturing method thereof With the goal.
In addition, the present invention provides pure iron powder, an Fe-Si-Al alloy powder, and an Fe-3Si alloy powder added in a range of added amounts, each particle size range is suitably selected and an optimum blend is obtained. Utilizing the low coercivity and low iron loss inherent in Fe-Si-Al alloy powder while taking advantage of the high saturation magnetic flux density inherent in the powder, Fe-3Si alloy powder inherently has the characteristics of low coercivity and large specific resistance. It is an object of the present invention to provide a composite soft magnetic material that can be combined and a method for producing the same.

上記目的を達成するために、本発明に係る複合軟磁性材料は、複数のFe−3Si合金粒子とFe−Si−Al合金粒子と純鉄粒子が圧密され、焼成されてなる複合軟磁性材料であり、複数のFe−3Si合金粒子相及びFe−Si−Al合金粒子相と、前記複数のFe−3Si合金粒子相及びFe−3Si−Al合金粒子相のうち、少なくとも3つ以上の粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有し、前記純鉄粒子相の含有率が、前記Fe−3Si合金粒子相とFe−Si−Al合金粒子相と純鉄粒子相の全量に対して2%以上10%以下であることを特徴とする。   In order to achieve the above object, a composite soft magnetic material according to the present invention is a composite soft magnetic material in which a plurality of Fe-3Si alloy particles, Fe-Si-Al alloy particles, and pure iron particles are consolidated and fired. A plurality of Fe-3Si alloy particle phases and Fe-Si-Al alloy particle phases, and at least three of the plurality of Fe-3Si alloy particle phases and Fe-3Si-Al alloy particle phases. A plurality of pure iron particle phases present in the enclosed grain boundary, and the content of the pure iron particle phase is the Fe-3Si alloy particle phase, the Fe-Si-Al alloy particle phase, and the pure iron particle phase. It is characterized by being 2% or more and 10% or less with respect to the total amount.

本発明に係る複合軟磁性材料は、前記Fe−3Si合金粒子相及びFe−Si−Al合金粒子相の平均粒径が各々100〜150umであることを特徴とする。
本発明に係る複合軟磁性材料は、前記純鉄粒子相の平均粒径が、10μm以上、50μm以下であることを特徴とする。
本発明に係る複合軟磁性材料は、前記Fe−Si−Al合金粒子相と純鉄相とFe−3Si合金粒子相が、(2〜10%):(2〜10%):(81〜95%)の割合であることを特徴とする
The composite soft magnetic material according to the present invention is characterized in that the average particle diameters of the Fe-3Si alloy particle phase and the Fe-Si-Al alloy particle phase are 100 to 150 um, respectively.
The composite soft magnetic material according to the present invention is characterized in that an average particle diameter of the pure iron particle phase is 10 μm or more and 50 μm or less.
In the composite soft magnetic material according to the present invention, the Fe—Si—Al alloy particle phase, the pure iron phase, and the Fe-3Si alloy particle phase are (2 to 10%): (2 to 10%): (81 to 95). %)

本発明に係る複合軟磁性材料は、Fe−3Si合金相比率80〜100%、Fe−Si−Al合金相比率0〜20%、純鉄粒子相比率0〜20%を示す三角組成図(図3に示す)において、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が85:10:5の(1)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が81:9:10の(2)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が91:2:7の(3)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が95:3:2の(4)点で囲まれる領域内の組成比である。   The composite soft magnetic material according to the present invention has a triangular composition diagram showing an Fe-3Si alloy phase ratio of 80 to 100%, an Fe-Si-Al alloy phase ratio of 0 to 20%, and a pure iron particle phase ratio of 0 to 20% (Fig. 3), Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio 85: 10: 5 (1) point, Fe-3Si alloy phase ratio: Fe-Si -Al alloy phase ratio: (2) point of pure iron particle phase ratio 81: 9: 10; Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio 91: 2: The composition ratio in the region surrounded by the (3) point of 7 and the Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio of 95: 3: 2 (4) point. .

本発明に係る複合軟磁性材料は、前記Fe−3Si合金粒子と前記Fe−3Si−Al合金粒子が共に800℃以上1000℃以下の温度で焼鈍されていることを特徴とする。
本発明に係る複合軟磁性材料は、前記Fe−3Si合金粒子相同士、Fe−Si−Al合金粒子相同士の粒界、前記純鉄粒子同士の粒界および前記Fe−3Si系合金粒子相とFe−Si−Al系合金粒子相と前記純鉄粒子相の粒界の少なくともいずれかに、絶縁層を有することを特徴とする。
The composite soft magnetic material according to the present invention is characterized in that both the Fe-3Si alloy particles and the Fe-3Si-Al alloy particles are annealed at a temperature of 800 ° C. or higher and 1000 ° C. or lower.
The composite soft magnetic material according to the present invention includes the Fe-3Si alloy particle phases, the grain boundaries between Fe-Si-Al alloy particle phases, the grain boundaries between the pure iron particles, and the Fe-3Si alloy particle phase. It has an insulating layer in at least one of the grain boundaries of the Fe—Si—Al alloy particle phase and the pure iron particle phase.

本発明に係る複合軟磁性材料の製造方法は、平均粒径が100〜150μmのFe−3Si合金粒子及びFe−Si−Al合金粒子と、純鉄粒子とを、該純鉄粒子の含有率がこれらの全粒子に対し2%以上10%以下となるように混合することによって混合粒子を得る第1の工程と、前記混合粒子を加圧成形することによって成形体を得る第2の工程と、前記成形体を焼成することによって、複数のFe−3Si合金粒子相と、複数のFe−Si−Al合金粒子相と、前記複数のFe−3Si合金粒子相と複数のFe−Si−Al合金粒子相のうち、少なくとも3つ以上の粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有する複合軟磁性材料を得る第3の工程とを有することを特徴とする。
本発明に係る複合軟磁性材料の製造方法は、前記Fe−Si−Al合金粒子相と純鉄相とFe−3Si合金粒子相を(2〜10%):(2〜10%):(81〜95%)の割合で混合することを特徴とする。
本発明に係る複合軟磁性材料の製造方法は、前記純鉄粒子の表面が平滑化されて2%以上10%以下となるように混合されてなることを特徴とする。
本発明に係る複合軟磁性材料の製造方法は、前記純鉄粒子のかさ密度(A.D)が平滑化する前の純鉄粒子よりも0.09〜0.25Mg/m高いことを特徴とする。
本発明に係る複合軟磁性材料の製造方法は、前記Fe−3Si合金粒子、Fe−Si−Al合金粒子および前記純鉄粒子の少なくともいずれかに、絶縁被膜を形成する工程を有することを特徴とする。
本発明の電磁気回路部品は、先のいずれかに記載の複合軟磁性材料を備えることを特徴とする。
The method for producing a composite soft magnetic material according to the present invention includes Fe-3Si alloy particles and Fe-Si-Al alloy particles having an average particle diameter of 100 to 150 μm, and pure iron particles, and the content of the pure iron particles is A first step of obtaining mixed particles by mixing so as to be 2% or more and 10% or less with respect to all the particles, and a second step of obtaining a molded body by press-molding the mixed particles, By firing the molded body, a plurality of Fe-3Si alloy particle phases, a plurality of Fe-Si-Al alloy particle phases, a plurality of Fe-3Si alloy particle phases and a plurality of Fe-Si-Al alloy particles And a third step of obtaining a composite soft magnetic material having a plurality of pure iron particle phases present at grain boundaries surrounded by at least three or more particle phases among the phases.
In the method for producing a composite soft magnetic material according to the present invention, the Fe—Si—Al alloy particle phase, the pure iron phase, and the Fe-3Si alloy particle phase are (2 to 10%): (2 to 10%): (81 ˜95%).
The method for producing a composite soft magnetic material according to the present invention is characterized in that the surface of the pure iron particles is smoothed and mixed so as to be 2% or more and 10% or less.
The method for producing a composite soft magnetic material according to the present invention is characterized in that the bulk density (AD) of the pure iron particles is 0.09 to 0.25 Mg / m 3 higher than that of the pure iron particles before smoothing. And
The method for producing a composite soft magnetic material according to the present invention includes a step of forming an insulating film on at least one of the Fe-3Si alloy particles, Fe-Si-Al alloy particles, and the pure iron particles. To do.
The electromagnetic circuit component of the present invention is characterized by comprising the composite soft magnetic material described above.

本発明によれば、複合軟磁性材料の主要成分としてFe−3Si合金粒子相に加えFe−Si−Al合金粒子相と純鉄粒子相を用いているため、保磁力が低く、比抵抗が大きく、鉄損が小さく抑えられ、飽和磁束密度も高い、優れた圧粉磁心などの複合軟磁性材料を提供できる。
また、複数のFe−3Si合金粒子相及び複数のFe−Si−Al合金粒子相のうち、少なくとも3つ以上の粒子相に囲まれた粒界に純鉄粒子相を存在させ、この純鉄粒子相の含有率を所定の範囲としているため、Fe−3Si合金粒子相またはFe−Si−Al合金粒子相の間の隙間を磁性体(純鉄粒子相)で確実に埋めることができる。このため、本発明の複合軟磁性材料は、高い飽和磁束密度も発揮することができる。
更に、本発明の複合軟磁性材料であるならば、従来のFe−3Si合金粒子あるいはFe−Si−Al合金粒子の成形に必要としていた高い成形力を要することなく一般的な粉末成形に必要な程度の圧力で圧密成形が可能であって、上述の優れた諸特性を発揮できる複合軟磁性材料とその製造方法を提供することができる。
According to the present invention, since the Fe-Si-Al alloy particle phase and the pure iron particle phase are used in addition to the Fe-3Si alloy particle phase as the main component of the composite soft magnetic material, the coercive force is low and the specific resistance is large. In addition, it is possible to provide a composite soft magnetic material such as an excellent dust core that has a small iron loss and a high saturation magnetic flux density.
Moreover, a pure iron particle phase is present at a grain boundary surrounded by at least three or more particle phases among a plurality of Fe-3Si alloy particle phases and a plurality of Fe-Si-Al alloy particle phases. Since the phase content is in a predetermined range, the gap between the Fe-3Si alloy particle phase or the Fe-Si-Al alloy particle phase can be reliably filled with a magnetic material (pure iron particle phase). For this reason, the composite soft magnetic material of the present invention can also exhibit a high saturation magnetic flux density.
Furthermore, if it is the composite soft magnetic material of this invention, it is required for general powder shaping | molding, without requiring the high shaping force required for shaping | molding of the conventional Fe-3Si alloy particle or Fe-Si-Al alloy particle. It is possible to provide a composite soft magnetic material that can be compacted at a moderate pressure and that can exhibit the above-described excellent characteristics, and a method for producing the same.

図1は、実施例で得られた複合軟磁性材料の一例を示す金属組織写真の模写図。FIG. 1 is a copy of a metallographic photograph showing an example of the composite soft magnetic material obtained in the example. 図2は、実施例で得られた複合軟磁性材料の他の例を示す金属組織写真の模写図。FIG. 2 is a copy of a metallographic photograph showing another example of the composite soft magnetic material obtained in the example. 図3は、Fe−3Si合金粒子相とFe−Si−Al合金粒子相と純鉄粒子相の配合組成を示す三角組成図。FIG. 3 is a triangular composition diagram showing the composition of the Fe-3Si alloy particle phase, the Fe-Si-Al alloy particle phase, and the pure iron particle phase. 図4は、本発明に係る複合軟磁性材料の製造工程の一例を示す工程図である。FIG. 4 is a process diagram showing an example of the manufacturing process of the composite soft magnetic material according to the present invention. 図5は、本発明の圧粉磁心を適用した電磁気回路部品(リアクトル)を示す斜視図である。FIG. 5 is a perspective view showing an electromagnetic circuit component (reactor) to which the dust core of the present invention is applied. 図6は、図5に示すリアクトルが備えるリアクトルコアを示す斜視図である。FIG. 6 is a perspective view showing a reactor core provided in the reactor shown in FIG. 図7は、実施例においてメカノフュージョン装置にて表面平滑化を行った場合の純鉄粒子の状態を示すもので、(A)は処理前の元粒子を示す顕微鏡写真、(B)は2分処理後の状態を示す顕微鏡写真、(C)は4分処理後の状態を示す顕微鏡写真、(D)は6分処理後の状態を示す顕微鏡写真、(E)は8分処理後の状態を示す顕微鏡写真、(F)は10分処理後の状態を示す顕微鏡写真である。FIG. 7 shows the state of the pure iron particles when the surface is smoothed by a mechanofusion apparatus in the examples. (A) is a micrograph showing the original particles before treatment, and (B) is 2 minutes. A photomicrograph showing the state after treatment, (C) a photomicrograph showing the state after treatment for 4 minutes, (D) a photomicrograph showing a state after treatment for 6 minutes, (E) a state after treatment for 8 minutes. A photomicrograph (F) is a photomicrograph showing the state after 10 minutes of treatment. 図8は、メカノフュージョン装置にて表面平滑化を行った場合の実施例の純鉄粒子のかさ密度と平滑化時間の関係を示す図である。FIG. 8 is a diagram showing the relationship between the bulk density of the pure iron particles and the smoothing time in the example when the surface smoothing is performed by the mechanofusion apparatus. 図9は、純鉄粒子の平滑化を行った実施例において得られた圧粉磁心において、平滑化時間と比抵抗の関係を示す図である。FIG. 9 is a diagram showing the relationship between the smoothing time and the specific resistance in the dust core obtained in the example in which pure iron particles were smoothed.

以下、本発明の複合軟磁性材料、その製造方法および電磁気回路部品を添付図面に示す好適な実施形態に基づいて説明する。
<複合軟磁性材料>
まず、本発明に係る複合軟磁性材料としての圧粉磁心について説明する。
図1は、本発明に係る複合軟磁性材料としての圧粉磁心の一実施形態を示す断面模式図であり、図1は後述する実施例において得られた試料の1000倍拡大図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a composite soft magnetic material, a manufacturing method thereof, and an electromagnetic circuit component of the present invention will be described based on preferred embodiments shown in the accompanying drawings.
<Composite soft magnetic material>
First, the dust core as the composite soft magnetic material according to the present invention will be described.
FIG. 1 is a schematic cross-sectional view showing an embodiment of a powder magnetic core as a composite soft magnetic material according to the present invention, and FIG. 1 is an enlarged view of a sample obtained in an example described later, 1000 times.

図1に示す組織を有する複合軟磁性材料(圧粉磁心)1は、複数のFe−3Si合金粒子相2Aおよび複数のFe−Si−Al合金粒子相2Bと、複数のFe−3Si合金粒子相2Aと複数のFe−Si−Al合金粒子相2Bのうち、いずれかの3つ以上の合金粒子相2A、2Bに囲まれた粒界2aに存在する複数の純鉄粒子相3とを有している。
Fe−3Si合金粒子相2AおよびFe−Si−Al合金粒子相2Bは、それぞれ、粒状をなし、隣り合うFe−3Si合金粒子相2A同士、あるいは、隣り合うFe−Si−Al合金粒子相2B同士、あるいは、隣り合うFe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bとが圧密され、更に、上述の3つ以上の合金粒子相に囲まれた粒界2aに純鉄粒子相3が存在されている。
A composite soft magnetic material (dust core) 1 having a structure shown in FIG. 1 includes a plurality of Fe-3Si alloy particle phases 2A, a plurality of Fe-Si-Al alloy particle phases 2B, and a plurality of Fe-3Si alloy particle phases. 2A and a plurality of Fe-Si-Al alloy particle phases 2B, and a plurality of pure iron particle phases 3 existing at a grain boundary 2a surrounded by any three or more alloy particle phases 2A, 2B. ing.
Each of the Fe-3Si alloy particle phase 2A and the Fe-Si-Al alloy particle phase 2B has a granular shape, and the adjacent Fe-3Si alloy particle phases 2A or the adjacent Fe-Si-Al alloy particle phases 2B. Alternatively, the adjacent Fe-3Si alloy particle phase 2A and the Fe-Si-Al alloy particle phase 2B are consolidated, and further, a pure iron particle phase is formed at the grain boundary 2a surrounded by the above three or more alloy particle phases. 3 is present.

本発明で用いるFe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bの平均粒径は、100〜150μmの範囲とされている。Fe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bの平均粒径が100μmより小さいと、圧粉磁心1の飽和磁束密度Bsが小さくなる。また、Fe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bの平均粒径が150μmを超えると、粒内渦電流損が大きくなる。
さらに、Fe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bの平均粒径のより好ましい範囲は、110〜140μmである。Fe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bの平均粒径がこのような範囲であることにより、粒内渦電流損をより小さく抑えることができ、また、圧粉磁心1の飽和磁束密度Bsをより高くすることができる。なお、本明細書中において「平均粒径」とは、D50を示す。
なお、Fe−Si−Al合金粒子相を構成するのはセンダスト合金が望ましく、例えばFe−9.6Si−5.4Alの組成のセンダスト合金を適用することができる。
The average particle diameters of the Fe-3Si alloy particle phase 2A and the Fe-Si-Al alloy particle phase 2B used in the present invention are in the range of 100 to 150 μm. When the average particle diameter of the Fe-3Si alloy particle phase 2A and the Fe-Si-Al alloy particle phase 2B is smaller than 100 μm, the saturation magnetic flux density Bs of the dust core 1 is decreased. In addition, when the average particle diameter of the Fe-3Si alloy particle phase 2A and the Fe-Si-Al alloy particle phase 2B exceeds 150 μm, the intragranular eddy current loss increases.
Furthermore, the more preferable range of the average particle diameter of the Fe-3Si alloy particle phase 2A and the Fe—Si—Al alloy particle phase 2B is 110 to 140 μm. When the average particle diameter of the Fe-3Si alloy particle phase 2A and the Fe-Si-Al alloy particle phase 2B is within such a range, the intragranular eddy current loss can be further reduced, and the dust core 1 The saturation magnetic flux density Bs can be made higher. In the present specification, “average particle diameter” indicates D50.
The Fe-Si-Al alloy particle phase is preferably a sendust alloy. For example, a sendust alloy having a composition of Fe-9.6Si-5.4Al can be applied.

各純鉄粒子相3は、それぞれ、鉄の含有率が99.5質量%を超える粒子状の相である。これら純鉄粒子相3は、3つ以上のFe−3Si合金粒子相2Aに囲まれた粒界、3つ以上のFe−Si−Al合金粒子相2Bに囲まれた粒界、あるいは、複数のFe−3Si合金粒子相2Aと複数のFe−Si−Al合金粒子相2Bのうち、いずれか3つ以上の粒子相が構成する粒界2aに存在している。以上の組織とすることにより、次のような効果を得ることができる。
すなわち、後述する如くFe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bと純鉄粒子相3は、Fe−3Si合金粒子とFe−Si−Al合金粒子と純鉄粒子の混合処理と圧密処理と焼成処理により形成されるのであるが、Fe−Si系合金粒子、Fe−Si−Al系合金粒子は、純鉄粒子に比べて圧縮性が悪いため、これらの粒子を単独で加圧成形し、焼成することによって圧粉成形体を製造した場合、Fe−Si系合金粒子、Fe−Si−Al系合金粒子の粒子形状がそのまま製品中に保持され易い。この場合、特に、純鉄粒子が多すぎると、合金粒子よりも純鉄粒子の方が圧縮性が良好であり、合金粒子よりも純鉄粒子の方が飽和磁束密度は大きくなり、密度と飽和磁束密度の面で有利となるが、純鉄粒子の短所でもある比抵抗が小さいことが原因となって、全体の比抵抗が急激に小さくなり、小さくなった分、渦電流損失が増加し、圧粉磁心1としてのトータル的な鉄損の増加を引き起こす問題がある。
Each pure iron particle phase 3 is a particulate phase in which the iron content exceeds 99.5% by mass. These pure iron particle phases 3 include grain boundaries surrounded by three or more Fe-3Si alloy particle phases 2A, grain boundaries surrounded by three or more Fe-Si-Al alloy particle phases 2B, or a plurality of grain boundaries. Of the Fe-3Si alloy particle phase 2A and the plurality of Fe-Si-Al alloy particle phases 2B, any three or more particle phases exist at the grain boundary 2a. By setting it as the above structure, the following effects can be acquired.
That is, as will be described later, the Fe-3Si alloy particle phase 2A, the Fe-Si-Al alloy particle phase 2B, and the pure iron particle phase 3 are mixed with Fe-3Si alloy particles, Fe-Si-Al alloy particles, and pure iron particles. However, Fe-Si alloy particles and Fe-Si-Al alloy particles are less compressible than pure iron particles, so these particles are added alone. When a green compact is produced by compacting and firing, the particle shape of Fe—Si based alloy particles and Fe—Si—Al based alloy particles is easily retained in the product. In this case, in particular, when there are too many pure iron particles, pure iron particles have better compressibility than alloy particles, and pure iron particles have a higher saturation magnetic flux density than alloy particles. Although it is advantageous in terms of magnetic flux density, due to the small specific resistance, which is also a disadvantage of pure iron particles, the overall specific resistance suddenly decreases, the amount of eddy current loss increases, There is a problem that causes an increase in total iron loss as the dust core 1.

これに対して、図1に示すように、3つ以上のFe−3Si合金粒子相2Aに囲まれた粒界、3つ以上のFe−Si−Al合金粒子相2Bに囲まれた粒界、あるいは、複数のFe−3Si合金粒子相2Aと複数のFe−Si−Al合金粒子相2Bのうち、3つ以上の粒子相が構成する粒界2aに純鉄粒子相3が適切な量存在していると、粒子相同士の隙間が磁性体である純鉄粒子相3で埋められるため、Fe−3Si合金粒子相のみ、あるいは、Fe−Si−Al合金粒子相のみによって構成された圧粉成形体に比べて、高い飽和磁束密度Bsを得ることができる。
ここで、純鉄粒子相3は、2つのFe−3Si合金粒子相2Aによってのみ挟まれた粒界、2つのFe−Si−Al合金粒子相2Bによってのみ挟まれた粒界、Fe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bによってのみ挟まれた粒界のいずれかの粒界2bには実質的に存在しないことが好ましい。このような粒界2bに純鉄粒子相3が実質的に存在しない組織とすることにより、圧粉磁心1の飽和磁束密度の低下を防ぐことができる。
On the other hand, as shown in FIG. 1, a grain boundary surrounded by three or more Fe-3Si alloy particle phases 2A, a grain boundary surrounded by three or more Fe-Si-Al alloy particle phases 2B, Alternatively, an appropriate amount of the pure iron particle phase 3 exists in the grain boundary 2a formed by three or more particle phases out of the plurality of Fe-3Si alloy particle phases 2A and the plurality of Fe-Si-Al alloy particle phases 2B. Since the gap between the particle phases is filled with the pure iron particle phase 3 which is a magnetic material, the powder compacting formed only of the Fe-3Si alloy particle phase or only the Fe-Si-Al alloy particle phase Compared with the body, a high saturation magnetic flux density Bs can be obtained.
Here, the pure iron particle phase 3 includes a grain boundary sandwiched only by two Fe-3Si alloy particle phases 2A, a grain boundary sandwiched only by two Fe-Si-Al alloy particle phases 2B, and an Fe-3Si alloy. It is preferable that there is substantially no grain boundary 2b between grain boundaries sandwiched only by the particle phase 2A and the Fe—Si—Al alloy particle phase 2B. By setting it as the structure | tissue which the pure iron particle phase 3 does not exist substantially in such a grain boundary 2b, the fall of the saturation magnetic flux density of the dust core 1 can be prevented.

純鉄粒子相3の平均粒径は、10μm以上、50μm以下であるのが好ましい。純鉄粒子相3の平均粒径が10μmより小さいと、圧粉磁心1の保磁力Hcが大きくなり、鉄損が大きくなる。また、純鉄粒子相3の平均粒径が50μmを超えると、後述するようにFe−Si系合金粒子と純鉄粒子よりなる混合粒子を加圧成形する際、その成形密度が低くなる。その結果、この加圧成形体を焼成して得られる圧粉磁心1の飽和磁束密度Bsが低くなる。   The average particle size of the pure iron particle phase 3 is preferably 10 μm or more and 50 μm or less. When the average particle size of the pure iron particle phase 3 is smaller than 10 μm, the coercive force Hc of the dust core 1 is increased and the iron loss is increased. On the other hand, when the average particle diameter of the pure iron particle phase 3 exceeds 50 μm, as will be described later, when the mixed particles composed of Fe—Si based alloy particles and pure iron particles are formed by pressure, the forming density thereof becomes low. As a result, the saturation magnetic flux density Bs of the dust core 1 obtained by firing this pressure-molded body is lowered.

また、本発明では、Fe−Si−Al合金粒子相2Aにおいては、Fe−Si−Al合金粒子相2AとFe−3%Si合金粒子相2Bの総量に対して3〜10質量%の割合とされ、純鉄粒子相3については、Fe−Si−Al合金粒子相2AとFe−3%Si合金粒子相2Bと純鉄粒子相3の総量に対して2〜10質量%の割合、より好ましくは3〜10質量%の割合とされている。
純鉄粒子相3の含有率が2質量%より小さいと、純鉄粒子相3を添加する効果、すなわち、圧粉磁心1の飽和磁束密度Bsを向上させる効果が十分に得られなくなる。また、純鉄粒子相3の含有率が10質量%を超えると、3つ以上の粒子相で囲まれた粒界2aに収容し切れない過剰の純鉄粒子が発生し、これらが2つの粒子相で挟まれた粒界2bに隙間4を生じさせるようになる(図2参照)。
このため、純鉄粒子相3の含有率が10質量%以下の範囲では、純鉄粒子相3の含有率を増加させても鉄損はほとんど変化せず、比較的低い値に保持されるが、純鉄粒子相3の含有率が10質量%以上になると、その含有率の増加に依存して圧粉磁心1の鉄損が増大する傾向となる。
Moreover, in this invention, in the Fe-Si-Al alloy particle phase 2A, the ratio of 3-10 mass% with respect to the total amount of Fe-Si-Al alloy particle phase 2A and Fe-3% Si alloy particle phase 2B; The pure iron particle phase 3 is more preferably a ratio of 2 to 10% by mass with respect to the total amount of the Fe—Si—Al alloy particle phase 2A, the Fe-3% Si alloy particle phase 2B and the pure iron particle phase 3. Is a ratio of 3 to 10% by mass.
When the content of the pure iron particle phase 3 is less than 2% by mass, the effect of adding the pure iron particle phase 3, that is, the effect of improving the saturation magnetic flux density Bs of the dust core 1 cannot be sufficiently obtained. When the content of the pure iron particle phase 3 exceeds 10% by mass, excess pure iron particles that cannot be accommodated in the grain boundary 2a surrounded by three or more particle phases are generated, and these two particles are generated. A gap 4 is generated in the grain boundary 2b sandwiched between the phases (see FIG. 2).
For this reason, in the range where the content of the pure iron particle phase 3 is 10% by mass or less, even if the content of the pure iron particle phase 3 is increased, the iron loss hardly changes and is kept at a relatively low value. When the content of the pure iron particle phase 3 is 10% by mass or more, the iron loss of the dust core 1 tends to increase depending on the increase of the content.

次に、本発明の圧粉磁心1に含有されるFe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bと純鉄粒子相3の比率について説明する。
本発明の圧粉磁心1において、純鉄粒子相3の比率については先に説明した如く2質量%以上10質量%以下が望ましいが、Fe−Si−Al合金粒子相2Bの比率についてはFe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bと純鉄粒子相3の全合計量に対し、2質量%以上、10質量%以下の範囲が好ましく、3質量%以上、10質量%以下の範囲がより好ましい。
Next, the ratio of the Fe-3Si alloy particle phase 2A, the Fe-Si-Al alloy particle phase 2B, and the pure iron particle phase 3 contained in the dust core 1 of the present invention will be described.
In the dust core 1 of the present invention, the ratio of the pure iron particle phase 3 is preferably 2% by mass or more and 10% by mass or less as described above, but the ratio of the Fe—Si—Al alloy particle phase 2B is Fe— The range of 2% by mass or more and 10% by mass or less is preferable with respect to the total total amount of 3Si alloy particle phase 2A, Fe-Si-Al alloy particle phase 2B and pure iron particle phase 3, and 3% by mass or more and 10% by mass. The following ranges are more preferable.

更に、これらFe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bと純純鉄粒子相3の合金相比率については、Fe−3Si合金相比率80〜100%、Fe−Si−Al合金相比率0〜20%、純鉄粒子相比率0〜20%を示す図3の三角組成図において、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が85:10:5の(1)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が81:9:10の(2)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が91:2:7の(3)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が95:3:2の(4)点で囲まれる領域内の組成比である。この範囲とすることが、飽和磁束密度と低損失を、確保する上において好ましい。
これらの合金相比率の範囲を外れる比率であると、鉄損、飽和磁束密度、渦電流損失のいずれかが低下する傾向となり易い。
また、上述の範囲内において、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が85:10:5の(1)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が81:9:10の(2)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が91:2:7の(3)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が94:3:3の(5)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が92:5:3の(6)点で囲まれる領域内の組成比であることがより好ましい。
Furthermore, the alloy phase ratio of these Fe-3Si alloy particle phase 2A, Fe-Si-Al alloy particle phase 2B and pure pure iron particle phase 3 is Fe-3Si alloy phase ratio 80-100%, Fe-Si-Al In the triangular composition diagram of FIG. 3 showing an alloy phase ratio of 0 to 20% and a pure iron particle phase ratio of 0 to 20%, Fe-3Si alloy phase ratio: Fe—Si—Al alloy phase ratio: pure iron particle phase ratio is 85. : (1) point of 10: 5, Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: (2) point of pure iron particle phase ratio of 81: 9: 10, and Fe-3Si alloy phase Ratio: Fe-Si-Al alloy phase ratio: Pure iron particle phase ratio 91: 2: 7 (3) point, Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio Is the composition ratio in the region surrounded by the point (4) of 95: 3: 2. This range is preferable in securing the saturation magnetic flux density and low loss.
When the ratio is out of the range of these alloy phase ratios, any of iron loss, saturation magnetic flux density, and eddy current loss tends to decrease.
Further, within the above range, Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio 85: 10: 5 (1) point, Fe-3Si alloy phase ratio: Fe -Si-Al alloy phase ratio: (2) point with a pure iron particle phase ratio of 81: 9: 10; and Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio of 91: 2: 7 point (3), Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio (5) point of 94: 3: 3, and Fe-3Si alloy phase ratio : Fe-Si-Al alloy phase ratio: Pure iron particle phase ratio is more preferably a composition ratio in a region surrounded by (6) point of 92: 5: 3.

以上説明した構造の圧粉磁心1において、鉄損は、ヒステリシス損失と渦電流損失の和となる。ヒステリシス損失は、純鉄粒子の結晶の大きさに依存し、結晶が大きいとヒステリシス損失が小さくなる。よって、純鉄粒子の含有量が増えると、比例して増加する傾向となる。渦電流損失は、比抵抗に依存し、粉末同士の抵抗が低いと導体に渦電流が増え、急激な増加に繋がると考えられる。このことから、比抵抗の大きなFe−3Si合金粒子の中に比抵抗の小さな純鉄粒子を含有させると、各純鉄粒子は絶縁皮膜されてはいるが、高圧力成形で絶縁皮膜が破れ易くなっており、被覆が破れた純鉄粒子同士が接触された場合、渦電流が大幅に増加し、結果、鉄損の急激な増大につながると思われる。よって、Fe−3Si合金粒子相2Aで囲まれた隙間に充填される純鉄粒子は成形によって、大きな変形は生じていないが、隙間に収容しきれなかった純鉄粒子は、大きな変形がなされたことにより皮膜が破れているものが多く、隙間に収容されなかった純鉄粒子であって絶縁被覆が破れた純鉄粒子の存在が比抵抗の低下の原因になっていると思われる。   In the dust core 1 having the structure described above, the iron loss is the sum of hysteresis loss and eddy current loss. The hysteresis loss depends on the crystal size of the pure iron particles. The larger the crystal, the smaller the hysteresis loss. Therefore, when the content of pure iron particles increases, it tends to increase in proportion. The eddy current loss depends on the specific resistance. If the resistance between the powders is low, the eddy current increases in the conductor, leading to a rapid increase. For this reason, when pure iron particles with a small specific resistance are contained in Fe-3Si alloy particles with a large specific resistance, each pure iron particle has an insulating film, but the insulating film is easily broken by high pressure molding. Therefore, when pure iron particles whose coating has been broken are brought into contact with each other, the eddy current is greatly increased, and as a result, it seems that the iron loss is rapidly increased. Therefore, the pure iron particles filled in the gap surrounded by the Fe-3Si alloy particle phase 2A are not greatly deformed by molding, but the pure iron particles that could not be accommodated in the gap were greatly deformed. In many cases, the coating is torn, and the presence of pure iron particles that have not been accommodated in the gap and the insulating coating has been broken is considered to cause a decrease in specific resistance.

従って、各Fe−3Si合金粒子相2A同士の粒界、各Fe−Si−Al合金粒子相2B同士の粒界、各純鉄粒子相3同士の粒界、および、各Fe−3Si合金粒子相2A及び各Fe−Si−Al合金粒子相2B同士の粒界と各純鉄粒子相3同士の粒界には、それぞれ、絶縁層が設けられているのが好ましい。これにより、圧粉磁心1の比抵抗ρが大きくなり、渦電流の発生が抑えられる。その結果、圧粉磁心1の渦電流損失に起因する鉄損を低減することができる。   Therefore, the grain boundaries between the Fe-3Si alloy particle phases 2A, the grain boundaries between the Fe-Si-Al alloy particle phases 2B, the grain boundaries between the pure iron particle phases 3, and the Fe-3Si alloy particle phases. It is preferable that an insulating layer is provided at each of the grain boundaries between 2A and each Fe-Si-Al alloy particle phase 2B and between each pure iron particle phase 3. As a result, the specific resistance ρ of the dust core 1 is increased, and the generation of eddy currents is suppressed. As a result, iron loss due to eddy current loss of the dust core 1 can be reduced.

絶縁層の構成材料としては、特に限定されないが、たとえばリン酸鉄、リン酸アルミニウム、リン酸マンガン、リン酸亜鉛、リン酸カルシウム、酸化ケイ素、酸化チタン、酸化アルミニウムまたは酸化ジルコニウム等の酸化物絶縁材料、シリコーンレジンあるいは、熱可塑性ポリアミド、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、ポリエチレン、ポリフェニレンサルファイド、ポリアミドイミド、ポリエーテルスルホン、ポリエーテルイミド、またはポリエーテルケトン等の熱可塑性樹脂等が挙げられ、このうち1種または2種以上を組み合わせて用いることができる。
このうち、絶縁層が熱可塑性樹脂を含んでいると、この熱可塑性樹脂が粒子同士を接合する接合材として機能し、機械的強度に優れた圧粉磁心1を得ることができる。
The constituent material of the insulating layer is not particularly limited. For example, an oxide insulating material such as iron phosphate, aluminum phosphate, manganese phosphate, zinc phosphate, calcium phosphate, silicon oxide, titanium oxide, aluminum oxide or zirconium oxide, Examples include silicone resins, thermoplastic resins such as thermoplastic polyamide, thermoplastic polyimide, thermoplastic polyamideimide, polyethylene, polyphenylene sulfide, polyamideimide, polyethersulfone, polyetherimide, or polyetherketone. Species or a combination of two or more can be used.
Among these, when the insulating layer contains a thermoplastic resin, the thermoplastic resin functions as a bonding material for bonding particles, and the powder magnetic core 1 having excellent mechanical strength can be obtained.

以上のような圧粉磁心1は、Fe−3Si合金粒子相2Aを主成分とし、Fe−Si−Alを含有していることにより、保磁力Hcが小さく、比抵抗ρが大きく、鉄損が小さく抑えられる。
また、少なくとも3つ以上の粒子相に囲まれた粒界2aに純鉄粒子相3が存在しており、この純鉄粒子相3の含有率が所定の範囲とされていることにより、Fe−3Si合金粒子相2A同士の隙間、Fe−Si−Al合金粒子相2B同士の隙間、あるいは、Fe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bの隙間のいずれかの隙間(粒界2a)が磁性体(純鉄粒子相3)で確実に埋まり、高い飽和磁束密度Bsを得ることができる。また、低保磁力のFe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bの含有比率を高くし、高保磁力の純鉄粒子相3の含有比率を少なくしているので、圧粉磁心1として低保磁力とすることができる。
The powder magnetic core 1 as described above is mainly composed of the Fe-3Si alloy particle phase 2A and contains Fe-Si-Al, so that the coercive force Hc is small, the specific resistance ρ is large, and the iron loss is low. Can be kept small.
Further, the pure iron particle phase 3 is present in the grain boundary 2a surrounded by at least three particle phases, and the content of the pure iron particle phase 3 is set within a predetermined range, whereby Fe- The gap between the 3Si alloy particle phases 2A, the gap between the Fe-Si-Al alloy particle phases 2B, or the gap between the Fe-3Si alloy particle phase 2A and the Fe-Si-Al alloy particle phase 2B (grain The field 2a) is reliably filled with the magnetic material (pure iron particle phase 3), and a high saturation magnetic flux density Bs can be obtained. Further, the content ratio of the low coercivity Fe-3Si alloy particle phase 2A and the Fe-Si-Al alloy particle phase 2B is increased, and the content ratio of the high coercivity pure iron particle phase 3 is decreased. The magnetic core 1 can have a low coercive force.

<圧粉磁心の製造方法>
次に、本発明の圧粉磁心の製造方法を、図1に示す圧粉磁心を製造する場合を例にして説明する。図4は、本発明の複合軟磁性材料の製造方法の一例を工程順に示す工程説明図である。以下、各工程について説明する。
[1]Fe−3Si合金粒子の前処理工程
まず、Fe−3Si系合金粒子を用意する(ステップS11)。このFe−3Si合金粒子は、最終的に圧粉磁心1のFe−3Si合金粒子相2Aとなるものである。次に、Fe−3Si合金粒子を、還元雰囲気下、800以上1000℃以下の温度で焼鈍処理する(ステップS12)。ここで行う焼鈍処理の目的は、歪低減による保磁力(ヒステリシス損失)の低減である。焼鈍処理の温度1000℃を超える温度で行うと、粉末同士が固着してしまうおそれがある。
次に、Fe−3Si合金粒子を、例えばステンレス篩を用い、平均粒径が100〜150μmとなるように分級する(ステップS13)。次に、Fe−3Si系合金粒子を絶縁被膜で被覆する(ステップS14)。絶縁被膜は、例えば、Fe−3Si系合金粒子を前述の絶縁層の構成材料またはその前駆体を含有する液状材料中に浸漬した後、乾燥し、必要に応じて後処理を行うことによって形成することができる。
<Method of manufacturing a dust core>
Next, the manufacturing method of the dust core of the present invention will be described by taking as an example the case of manufacturing the dust core shown in FIG. FIG. 4 is a process explanatory view showing an example of the method for producing the composite soft magnetic material of the present invention in the order of processes. Hereinafter, each step will be described.
[1] Pretreatment step of Fe-3Si alloy particles First, Fe-3Si alloy particles are prepared (step S11). The Fe-3Si alloy particles finally become the Fe-3Si alloy particle phase 2A of the dust core 1. Next, the Fe-3Si alloy particles are annealed at a temperature of 800 to 1000 ° C. in a reducing atmosphere (step S12). The purpose of the annealing treatment performed here is to reduce the coercive force (hysteresis loss) by reducing the strain. When the annealing is performed at a temperature exceeding 1000 ° C., the powders may be fixed to each other.
Next, the Fe-3Si alloy particles are classified using, for example, a stainless sieve so that the average particle diameter is 100 to 150 μm (step S13). Next, Fe-3Si alloy particles are coated with an insulating coating (step S14). The insulating coating is formed, for example, by immersing Fe-3Si-based alloy particles in a liquid material containing the constituent material of the insulating layer described above or a precursor thereof, followed by drying, and post-processing as necessary. be able to.

[2]純鉄粒子の前処理工程
まず、純鉄粒子を用意する(ステップS21)。この純鉄粒子は、最終的に圧粉磁心1の純鉄粒子相3となるものである。純鉄粒子を、例えばステンレス篩を用い、平均粒径が10〜50μmとなるように分級する(ステップS22)。次に、純鉄粒子を絶縁被膜で被覆する(ステップS23)。絶縁被膜の被覆方法および絶縁被膜の厚さは、Fe−Si系合金粒子の場合と同様である。なお、この例では、Fe−Si系合金粒子を絶縁被膜で被覆する工程と、純鉄粒子を絶縁被膜で被覆する工程とを、別工程で行っているが、絶縁被膜を形成する前のFe−Si系合金粒子および純鉄粒子を所定の混合比で混合した後、これら各粒子に、同時に絶縁被膜を形成する処理を施してもよい。
なお、本発明において、純鉄粒子に対し表面平滑化を行っても良い。この表面平滑化については、純鉄粉末のみをメカノフュージョンで時間変量し、高回転で圧縮、剪断を行うことにより、純鉄粉末の表面を平滑化し、角の少ない純鉄粒子を得ることができる。また、純鉄粒子を平滑化していると、純鉄粉末粒子の流動性も同時に改善することができる。この処理により、圧密後の密度を向上させて特性を向上させることができる。
[2] Pure Iron Particle Pretreatment Step First, pure iron particles are prepared (step S21). The pure iron particles finally become the pure iron particle phase 3 of the dust core 1. The pure iron particles are classified using, for example, a stainless sieve so that the average particle size is 10 to 50 μm (step S22). Next, pure iron particles are covered with an insulating coating (step S23). The coating method of the insulating coating and the thickness of the insulating coating are the same as in the case of Fe—Si based alloy particles. In this example, the step of coating the Fe—Si-based alloy particles with the insulating coating and the step of coating the pure iron particles with the insulating coating are performed in separate steps, but the Fe before forming the insulating coating is performed. -After mixing Si-type alloy particles and pure iron particles at a predetermined mixing ratio, these particles may be subjected to a treatment for simultaneously forming an insulating coating.
In the present invention, the surface of the pure iron particles may be smoothed. As for this surface smoothing, only pure iron powder is time-varying with mechanofusion, and the surface of pure iron powder is smoothed by compressing and shearing at high rotation, and pure iron particles with few corners can be obtained. . Further, when the pure iron particles are smoothed, the fluidity of the pure iron powder particles can be improved at the same time. By this treatment, the density after consolidation can be improved and the characteristics can be improved.

[3]Fe−Si−Al合金粒子の前処理工程
まず、Fe−Si−Al系合金粒子を用意する(ステップS31)。このFe−Si−Al系合金粒子は、最終的に圧粉磁心1のFe−Si−Al合金粒子相2Bとなるものである。次に、Fe−Si−Al系合金粒子を、還元雰囲気下、800℃以上1000℃以下の温度で焼鈍理する(ステップS32)。ここで行う焼鈍処理の目的は、歪低減による保磁力(ヒステリシス損失)の低減である。焼鈍処理の温度を1000℃を超える温度で行うと、粉末同士が固着してしまうおそれがある。
[3] Pre-treatment process of Fe-Si-Al alloy particles First, Fe-Si-Al alloy particles are prepared (step S31). The Fe—Si—Al-based alloy particles finally become the Fe—Si—Al alloy particle phase 2B of the dust core 1. Next, the Fe—Si—Al-based alloy particles are annealed at a temperature of 800 ° C. or higher and 1000 ° C. or lower in a reducing atmosphere (step S32). The purpose of the annealing treatment performed here is to reduce the coercive force (hysteresis loss) by reducing the strain. When the annealing treatment is performed at a temperature exceeding 1000 ° C., the powders may be fixed to each other.

次に、Fe−Si−Al系合金粒子を、例えばステンレス篩を用い、平均粒径が100〜150μmとなるように分級する(ステップS33)。次に、Fe−Si−Al系合金粒子を絶縁被膜で被覆する(ステップS34)。絶縁被膜は、例えば、Fe−Si−Al系合金粒子を前述の絶縁層の構成材料またはその前駆体を含有する液状材料中に浸漬した後、乾燥し、必要に応じて後処理を行うことによって形成することができる。
なお、前記前処理工程において、Fe−3Si合金粒子の前処理工程とFe−Si−Al合金粒子の前処理工程は、同じで良いが、いずれの工程においても、粉末分級と熱処理の順番が入れ替わっても差し支えなく、粉末分級を(ステップS12及びS32)とし、熱処理を(ステップS13及びS33)で行っても良い。
Next, the Fe—Si—Al-based alloy particles are classified using, for example, a stainless sieve so that the average particle size is 100 to 150 μm (step S33). Next, the Fe—Si—Al-based alloy particles are covered with an insulating coating (step S34). The insulating coating is obtained by, for example, immersing the Fe—Si—Al-based alloy particles in the liquid material containing the constituent material of the insulating layer or the precursor thereof, and then drying and performing post-processing as necessary. Can be formed.
In the pretreatment step, the pretreatment step of Fe-3Si alloy particles and the pretreatment step of Fe-Si-Al alloy particles may be the same, but in either step, the order of powder classification and heat treatment is switched. However, the powder classification may be (Steps S12 and S32) and the heat treatment may be performed (Steps S13 and S33).

[4]Fe−3Si合金粒子と純鉄粒子とFe−Si−Al合金粒子の成形・焼成工程
次に、前記工程[1]、[2]、[3]で前処理が施されたFe−Si系合金粒子と純鉄粒子とFe−Si−Al合金粒子を混合し、混合粒子を得る(ステップS41、ステップS42)。Fe−Si系合金粒子と純鉄粒子との混合比は、上述の割合とする。
次に、得られた混合粒子を金型に入れ、大気中において温間加圧成形することによって成形体を得る(ステップ43)。ここで、加圧成形の圧力は785MPa程度である。
[4] Molding / firing step of Fe-3Si alloy particles, pure iron particles, and Fe-Si-Al alloy particles Next, Fe- pretreated in the steps [1], [2], and [3] Si-based alloy particles, pure iron particles, and Fe—Si—Al alloy particles are mixed to obtain mixed particles (steps S41 and S42). The mixing ratio of the Fe—Si based alloy particles and the pure iron particles is set to the above-described ratio.
Next, the obtained mixed particles are put into a mold and warm-pressed in the atmosphere to obtain a molded body (step 43). Here, the pressure of the pressure molding is about 785 MPa.

次に、成形体を焼成(熱処理)することによって、圧粉磁心を得る(ステップ44)。熱処理は、焼成までの間、粉末に歪が起こるのでこの歪を取って特性を向上させるために行う。焼成温度は例えば800℃とすることができる。焼成の雰囲気は真空中で行っても良いし、非酸化性雰囲気であれば、窒素雰囲気中、アルゴンガス雰囲気中などで行っても良い。
この熱処理により、図1に示すように、3つ以上のFe−3Si合金粒子相2Aが構成する粒界、3つ以上のFe−Si−Al合金粒子相2Bが構成する粒界、あるいは、複数のFe−3Si合金粒子相2Aと複数のFe−Si−Al合金粒子相2Bのうち、3つ以上の粒子相が構成する粒界のいずれかに純鉄粒子相3が存在する圧粉磁心1が得られる。
Next, the compact is fired (heat treated) to obtain a dust core (step 44). The heat treatment is performed in order to improve the characteristics by removing the distortion since the powder is distorted until the baking. The firing temperature can be set to 800 ° C., for example. The firing atmosphere may be performed in a vacuum, or may be performed in a nitrogen atmosphere or an argon gas atmosphere as long as it is a non-oxidizing atmosphere.
As a result of this heat treatment, as shown in FIG. 1, grain boundaries formed by three or more Fe-3Si alloy particle phases 2A, grain boundaries formed by three or more Fe-Si-Al alloy particle phases 2B, or a plurality of Of the Fe-3Si alloy particle phase 2A and a plurality of Fe-Si-Al alloy particle phases 2B in which a pure iron particle phase 3 is present at any of grain boundaries formed by three or more particle phases 1 Is obtained.

以上のようにして製造された圧粉磁心1は、Fe−3Si合金粒子相2Aを主成分とし、適量のFe−Si−Al合金粒子相2Bと、適量の純鉄粒子相3により構成されていることにより、保磁力Hcが小さく、比抵抗ρが大きく、鉄損が小さく抑えられる。
また、少なくとも3つ以上のFe−3Si合金粒子相2AあるいはFe−Si−Al合金粒子相2Bに囲まれた粒界2aに純鉄粒子相3が存在しており、この純鉄粒子相3の含有率が所定の範囲とされていることにより、Fe−3Si合金粒子相2同士の隙間(粒界2a)、Fe−Si−Al合金粒子相2B同士の隙間、あるいは、これらの混在した粒子相の隙間が、磁性体(純鉄粒子相3)で確実に埋まるので、高い飽和磁束密度Bsを得ることができる。
The dust core 1 manufactured as described above is mainly composed of the Fe-3Si alloy particle phase 2A, and is composed of an appropriate amount of Fe-Si-Al alloy particle phase 2B and an appropriate amount of pure iron particle phase 3. As a result, the coercive force Hc is small, the specific resistance ρ is large, and the iron loss can be suppressed small.
Further, the pure iron particle phase 3 exists in the grain boundary 2a surrounded by at least three Fe-3Si alloy particle phases 2A or Fe-Si-Al alloy particle phases 2B. When the content is within a predetermined range, the gap between the Fe-3Si alloy particle phases 2 (grain boundary 2a), the gap between the Fe-Si-Al alloy particle phases 2B, or a particle phase in which these are mixed Is surely filled with the magnetic material (pure iron particle phase 3), so that a high saturation magnetic flux density Bs can be obtained.

<電磁気回路部品>
次に、本発明に係る複合軟磁性材料としての圧粉磁心を適用した電磁気回路部品について、リアクトルを例にして説明する。
図5は、本発明の圧粉磁心を適用したリアクトルを示す斜視図、図6は、図5のリアクトルが備えるリアクトルコアを示す斜視図である。
図5に示すリアクトル10は、リアクトルコア11と、リアクトルコア11に巻装された2つのコイル12を有している。
<Electromagnetic circuit components>
Next, an electromagnetic circuit component to which a dust core as a composite soft magnetic material according to the present invention is applied will be described by taking a reactor as an example.
FIG. 5 is a perspective view showing a reactor to which the dust core of the present invention is applied, and FIG. 6 is a perspective view showing a reactor core included in the reactor of FIG.
A reactor 10 shown in FIG. 5 has a reactor core 11 and two coils 12 wound around the reactor core 11.

図5に示すように、リアクトルコア11は、平面視でU字状をなす一対のU型コア11a、11bと、一対のU型コア11a、11bの間に、間隔を置いて配設された複数の矩形状のコア(I型コア)11cと、U型コア11a、11bとI型コア11cとの間およびI型コア11c、11c同士の間に介装されたギャップ板14と、ギャップ板14同士を接着する接着剤層15を有しており、全体として横長円環形状をなしている。このリアクトルコア11では、コイル12に電流を流したとき、この円環方向に磁気回路が形成される。
図5に示すように、各コイル12は、それぞれ、多数回巻回された導線よりなり、リアクトルコア11の長手方向の直線区間に巻装されている。このリアクトル10では、リアクトルコア11が本発明の圧粉磁心によって構成されている。
As shown in FIG. 5, the reactor core 11 is disposed with a space between a pair of U-shaped cores 11a and 11b having a U shape in a plan view and the pair of U-shaped cores 11a and 11b. A plurality of rectangular cores (I-type cores) 11c, a gap plate 14 interposed between the U-type cores 11a and 11b and the I-type core 11c, and between the I-type cores 11c and 11c, and a gap plate It has the adhesive bond layer 15 which adhere | attaches 14, and has comprised the horizontal ellipse shape as a whole. In the reactor 11, when a current is passed through the coil 12, a magnetic circuit is formed in the annular direction.
As shown in FIG. 5, each coil 12 is made of a conducting wire wound many times, and is wound around a straight section in the longitudinal direction of the reactor core 11. In the reactor 10, the reactor core 11 is constituted by the dust core of the present invention.

このようなリアクトル10では、リアクトルコア11が、保磁力Hcが低く、比抵抗ρが大きく、鉄損が小さく抑えられており、また、高い飽和磁束密度Bsを有する。このため、例えば、コイル12に大電流が供給されても、リアクトルコア11が磁気飽和し難く、また、電気エネルギーの損失が小さく抑えられ、リアクトル10として高い性能を得ることができる。   In such a reactor 10, the reactor core 11 has a low coercive force Hc, a large specific resistance ρ, a small iron loss, and a high saturation magnetic flux density Bs. For this reason, for example, even when a large current is supplied to the coil 12, the reactor core 11 is not easily magnetically saturated, the loss of electric energy is suppressed small, and high performance as the reactor 10 can be obtained.

なお、前記実施形態において、圧粉磁心および電磁気回路部品を構成する各部、圧粉磁心の製造方法の各工程は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することができる。   In addition, in the said embodiment, each process of the manufacturing method of each part which comprises a powder magnetic core and an electromagnetic circuit component, and a powder magnetic core is an example, Comprising: It can change suitably in the range which does not deviate from the scope of the present invention.

次に、本発明の具体的実施例について説明する。なお、本発明は以下の実施例によって制限されるものではない。
まず、Fe−3%Si合金粒子を用意し、水素雰囲気下、1000℃の温度で3時間加熱後徐冷する焼鈍処理を施した。次に、熱処理が施された合金粒子を、ステンレス篩を用いて分級し、平均粒径が106〜150μmの合金粒子のみを回収した。次に、合金粒子を、0.6%のレジン溶液中に浸漬し、乾燥することにより、シリコーンレジンによって被覆した。Fe−9.6Si−5.4Al合金粒子についても同等の前処理を施し、同等粒径の粒子のみを回収し、シリコーンレジンによって被覆した。
Next, specific examples of the present invention will be described. In addition, this invention is not restrict | limited by a following example.
First, Fe-3% Si alloy particles were prepared and subjected to an annealing treatment in which a heat treatment was performed at a temperature of 1000 ° C. for 3 hours in a hydrogen atmosphere and then gradually cooled. Next, the heat-treated alloy particles were classified using a stainless steel sieve, and only alloy particles having an average particle size of 106 to 150 μm were collected. The alloy particles were then coated with a silicone resin by dipping in a 0.6% resin solution and drying. Fe-9.6Si-5.4Al alloy particles were also subjected to the same pretreatment, and only particles having the same particle diameter were collected and coated with a silicone resin.

次に、リン酸被膜付きの純鉄粒子(ヘガネス社製 商品名ソマロイ110i)を用意した。そして、この純鉄粒子を、ステンレス篩を用いて分級し、平均粒径が50μm以下の純鉄粒子を回収した。次に、純鉄粒子を、0.6%のレジン溶液中に浸漬し、乾燥することによって、シリコーンレジンによって被覆した。
次に、Fe−Si−Al合金粒子においては、Fe−Si−Al合金粒子とFe−3%Si合金粒子の総量に対して3〜10質量%の割合で混合し、純鉄粒子については、Fe−Si−Al合金粒子とFe−3%Si合金粒子と純鉄粒子の総量に対して3〜10質量%の割合になるように混合して混合粒子を調製し、この混合粒子を、加圧成形することによって成形体を得た。加圧成形の条件は、温度150℃、圧力785MPaである。
Next, pure iron particles with a phosphoric acid coating (trade name Somaloy 110i manufactured by Höganäs) were prepared. And this pure iron particle was classified using the stainless steel sieve, and the pure iron particles whose average particle diameter is 50 micrometers or less were collect | recovered. The pure iron particles were then coated with a silicone resin by dipping in a 0.6% resin solution and drying.
Next, in the Fe-Si-Al alloy particles, the Fe-Si-Al alloy particles and the Fe-3% Si alloy particles are mixed at a ratio of 3 to 10% by mass with respect to the total amount of the Fe-Si-Al alloy particles. The mixed particles are prepared by mixing the Fe-Si-Al alloy particles, Fe-3% Si alloy particles, and pure iron particles at a ratio of 3 to 10% by mass, and the mixed particles are added. A compact was obtained by pressure molding. The conditions for pressure molding are a temperature of 150 ° C. and a pressure of 785 MPa.

次に、これらの成形体を、真空下、800℃の温度で1時間焼成し、焼成体(圧粉磁心)を得た。以上の工程により、3〜10質量%の純鉄粒子相あるいはFe−Si−Al合金粒子相を含有する圧粉磁心試料を複数製造した。なお、Fe−3Si合金粒子とFe−Si−Al合金粒子は純鉄粒子よりも硬いので、上述の加圧力程度では圧密し焼成した後も粒径の変化や形状の変化は少なく、分級した際の粒径や形状がある程度維持される。したがって、圧密前に粒子として配合した各粒子の配合量と焼成後に得られる軟磁性複合材料における粒子相の比率は同等であると見なすことができる。   Next, these compacts were fired at a temperature of 800 ° C. for 1 hour under vacuum to obtain a fired body (a dust core). A plurality of dust core samples containing 3 to 10% by mass of pure iron particle phase or Fe—Si—Al alloy particle phase were produced by the above-described steps. In addition, since Fe-3Si alloy particles and Fe-Si-Al alloy particles are harder than pure iron particles, there is little change in particle size or shape after compaction and firing at the above-mentioned pressurization level. The particle size and shape of the are maintained to some extent. Therefore, it can be considered that the blending amount of each particle blended as particles before compaction and the ratio of the particle phase in the soft magnetic composite material obtained after firing are equivalent.

[評価]
以上のようにして各実施例および各比較例で製造された圧粉磁心について、直流特性(飽和磁束密度Bs)および交流特性(鉄損失Pcm)を測定した。
ここで、直流特性は、B−Hトレーサー(横河社製 直流磁化測定装置B積分ユニット:TYPE3257)を用い、最大磁界Hm:10kA/mの条件で測定した。また、交流特性は、B−Hアナライザー(岩通計測社製 SY−8232)を用い、飽和磁束密度Bm:0.1T、周波数f:10kHzの条件で測定した。
その結果を以下の表1に示す。
[Evaluation]
As described above, the direct current characteristics (saturation magnetic flux density Bs) and the alternating current characteristics (iron loss Pcm) were measured for the dust cores manufactured in the examples and the comparative examples.
Here, the direct current characteristics were measured under the condition of the maximum magnetic field Hm: 10 kA / m using a BH tracer (DC magnetization measuring device B integration unit: TYPE 3257 manufactured by Yokogawa). In addition, the AC characteristics were measured using a BH analyzer (SY-8232, manufactured by Iwatatsu Measurement Co., Ltd.) under the conditions of saturation magnetic flux density Bm: 0.1 T and frequency f: 10 kHz.
The results are shown in Table 1 below.

表1に示す結果から、本発明で規定する望ましい範囲内の試料は、いずれも飽和磁束密度が高く、鉄損が少ないという優れた特性を両立できている。   From the results shown in Table 1, all of the samples within the desirable range defined in the present invention have both excellent characteristics of high saturation magnetic flux density and low iron loss.

次に、表1に示した各試料の組成比について、図3に示す三角組成図を利用し、各試料毎の粒子相の質量比について検討した。
即ち、先に図3の説明において記載した如く、Fe−3Si合金粒子相2AとFe−Si−Al合金粒子相2Bと純鉄粒子相3の統括的質量比について、Fe−3Si合金相比率80〜100%、Fe−Si−Al合金相比率0〜20%、鉄粒子相比率0〜20%を示す図3の三角組成図において、各試料の粒子相質量比率をプロットした。
図3に示す結果から、Fe−3Si合金相比率80〜100%、Fe−Si−Al合金相比率0〜20%、純鉄粒子相比率0〜20%を示す図3の三角組成図において、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が85:10:5の(1)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が81:9:10の(2)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が91:2:7の(3)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が95:3:2の(4)点で囲まれる領域内の組成比である。この範囲とすることが、飽和磁束密度と低損失を、確保する上において好ましいことが判明した。
また、この範囲内であっても、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が85:10:5の(1)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が81:9:10の(2)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が91:2:7の(3)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が94:3:3の(5)点と、Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が92:5:3の(6)点で囲まれる領域内の組成比であることが、飽和磁束密度と低損失を確保する上においてより好ましい範囲であることが判明した。
Next, regarding the composition ratio of each sample shown in Table 1, the mass ratio of the particle phase for each sample was examined using the triangular composition diagram shown in FIG.
That is, as previously described in the explanation of FIG. 3, the overall mass ratio of the Fe-3Si alloy particle phase 2A, the Fe-Si-Al alloy particle phase 2B, and the pure iron particle phase 3 is as follows. In the triangular composition diagram of FIG. 3 showing ˜100%, Fe—Si—Al alloy phase ratio 0-20%, and iron particle phase ratio 0-20%, the particle phase mass ratio of each sample was plotted.
From the results shown in FIG. 3, in the triangular composition diagram of FIG. 3 showing the Fe-3Si alloy phase ratio 80-100%, the Fe-Si-Al alloy phase ratio 0-20%, and the pure iron particle phase ratio 0-20%, Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio (1) point of 85: 10: 5, Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: (2) point of pure iron particle phase ratio 81: 9: 10 and (3) point of Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio 91: 2: 7 And Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio is a composition ratio in a region surrounded by (4) points of 95: 3: 2. It has been found that this range is preferable in securing the saturation magnetic flux density and low loss.
Even within this range, Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio (1) point of 85: 10: 5 and Fe-3Si alloy phase ratio : Fe-Si-Al alloy phase ratio: (2) point with a pure iron particle phase ratio of 81: 9: 10 and Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio (3) point of 91: 2: 7, Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: (5) point of pure iron particle phase ratio of 94: 3: 3, and Fe-3Si alloy Phase ratio: Fe—Si—Al alloy phase ratio: pure iron particle phase ratio is a composition ratio in a region surrounded by (6) point of 92: 5: 3, which ensures saturation magnetic flux density and low loss. It was found that this is a more preferable range.

<平滑化試験>
前記実施例にて利用したリン酸被膜付きの純鉄粒子(ヘガネス社製 商品名ソマロイ110i)を用意した。この純鉄粒子を(ホソカワミクロン(株)製:型番AMS−30F)のメカノフュージョン装置にて表面平滑化を行った。装置の運転条件は、回転数1500rpm、処理時間、2分、4分、6分、8分、1バッチあたり、10kgの純鉄粒子(純鉄粉末)を平滑化する条件とした。
得られた純鉄粉末の平滑化について、元の純鉄粒子と2分処理後の純鉄粒子、4分処理後の純鉄粒子、6分処理後の純鉄粒子、8分処理後の純鉄粒子、10分処理後の純鉄粒子について、1500倍に拡大した顕微鏡写真を図7に示す。また、平滑化時間に対する、かさ密度を測定した結果を図8に示す。図7と図8に示す結果から、処理時間が長くなるほどかさ密度が向上し、純鉄粒子の表面を平滑化できているので、メカノフュージョン装置による留処理時間を調整することでかさ密度と表面の平滑状態を制御できることが明らかである。
<Smoothing test>
Pure iron particles with a phosphoric acid coating (trade name Somaloy 110i manufactured by Höganäs) used in the above examples were prepared. The pure iron particles were subjected to surface smoothing using a mechanofusion apparatus (manufactured by Hosokawa Micron Corporation: model number AMS-30F). The operating conditions of the apparatus were such that the rotational speed was 1500 rpm, the processing time was 2 minutes, 4 minutes, 6 minutes, 8 minutes, and 10 kg of pure iron particles (pure iron powder) were smoothed per batch.
Regarding smoothing of the obtained pure iron powder, the original pure iron particles, pure iron particles after 2 minutes treatment, pure iron particles after 4 minutes treatment, pure iron particles after 6 minutes treatment, pure after 8 minutes treatment FIG. 7 shows a micrograph magnified 1500 times with respect to the iron particles and the pure iron particles treated for 10 minutes. Moreover, the result of having measured the bulk density with respect to smoothing time is shown in FIG. From the results shown in FIGS. 7 and 8, the bulk density is improved as the treatment time is increased, and the surface of the pure iron particles is smoothed. Therefore, the bulk density and the surface density can be adjusted by adjusting the distillation treatment time by the mechanofusion apparatus. It is clear that the smooth state can be controlled.

次に、Fe−3Si合金粒子とFe−9.6Si−5.4Al合金粒子と上述の表面平滑化した純鉄粒子を用い、Fe−3Si合金粒子とFe−9.6Si−5.4Al合金粒子と純鉄粒子を配合比83.7:9.3:7の割合で混合した。各粒子は、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社商品名:YR3370)のレジン0.6%溶液に粉末を浸漬し、乾燥・焼付けを行った。なお、0.6%溶液に粉末を浸漬することは0.6重量%のシリコーンレジンを添加したことを意味する。
また、純鉄粉末のメカノフュージョン加工は、1500rpmにて0分(処理無し)、2分、4分、6分、8分、10分それぞれ1バッチあたり、10kgの純鉄粉末を平滑化する条件として各種試料を用意した。
Next, Fe-3Si alloy particles, Fe-9.6Si-5.4Al alloy particles, and the above-mentioned surface-smoothed pure iron particles were used, and Fe-3Si alloy particles and Fe-9.6Si-5.4Al alloy particles were used. And pure iron particles were mixed at a mixing ratio of 83.7: 9.3: 7. Each particle was dried and baked by immersing the powder in a 0.6% resin solution of Momentive Performance Materials Japan GK (trade name: YR3370). In addition, immersing the powder in the 0.6% solution means that 0.6% by weight of the silicone resin was added.
In addition, the mechano-fusion processing of pure iron powder is a condition for smoothing 10 kg of pure iron powder per batch at 1500 rpm for 0 minute (no treatment), 2 minutes, 4 minutes, 6 minutes, 8 minutes, 10 minutes each. Various samples were prepared.

次に、前述のFe−3Si合金粒子と純鉄粒子とを、純鉄粒子の含有率が7質量%となるように混合して混合粒子を調製し、この混合粒子を、温間成形することによって成形体を得た。温間成形の条件は、温度150℃、圧力785MPaである。
次に、成形体を、真空下、800℃の温度で1時間焼成し、焼成体(圧粉磁心)を得た。以上の工程により、7質量%の純鉄粒子を含有する圧粉磁心を製造した。
Next, the aforementioned Fe-3Si alloy particles and pure iron particles are mixed so that the content of pure iron particles is 7% by mass to prepare mixed particles, and the mixed particles are warm-formed. A molded body was obtained. The conditions for warm forming are a temperature of 150 ° C. and a pressure of 785 MPa.
Next, the compact was fired at a temperature of 800 ° C. for 1 hour under vacuum to obtain a fired body (a dust core). The dust core containing 7 mass% pure iron particles was manufactured by the above process.

以上のようにして製造された圧粉磁心について、平滑化時間と比抵抗の関係を求めた結果を図9に示す。
この測定結果から、平滑化時間が4分を超えて増加するとともに比抵抗が向上し、平滑化時間の増加とともに渦電流損失が減少し、鉄損も若干減少する傾向が得られた。また、これらの測定結果において、図8に示す純鉄粒子のかさ密度(A.D)の対比から、平滑化する前の純鉄粒子に対し、0.09〜0.25Mg/mの範囲高い純鉄粒子をFe−3Si合金粒子とFe−9.6Si−5.4Al合金粒子に3〜10質量%添加すると、比抵抗が高くなり、損失が少なくなることが分かった。
FIG. 9 shows the result of determining the relationship between the smoothing time and the specific resistance of the dust core manufactured as described above.
From this measurement result, it was found that the smoothing time increased beyond 4 minutes and the specific resistance was improved, the eddy current loss decreased and the iron loss also decreased slightly as the smoothing time increased. Moreover, in these measurement results, the range of 0.09 to 0.25 Mg / m 3 with respect to the pure iron particles before smoothing from the comparison of the bulk density (AD) of the pure iron particles shown in FIG. It was found that when 3 to 10% by mass of high pure iron particles are added to Fe-3Si alloy particles and Fe-9.6Si-5.4Al alloy particles, the specific resistance increases and the loss decreases.

これは、純鉄粒子をメカノフュージョン装置により表面平滑化したことにより、図7(A)に示す如く大きな異形状となっている純鉄粒子表面が滑らかになる結果、この表面滑らかな粒子どうしの圧密がなされるので、表面が異形状の純鉄粒子どうしの圧密に比べ、粒子表面に形成したレジン等のコーティング層が破れ難くなる結果と思われる。圧密時に異形状の純鉄粒子同士が押圧されると、表面に被覆されているレジン層に異形状の純鉄粒子の角が押し付けられるので亀裂が生成され易くなり、結果的に比抵抗が低下すると思われる。よって平滑化の効果が現れているものと思われる。   This is because the surface of the pure iron particles having a large irregular shape as shown in FIG. 7 (A) is smoothed by smoothing the surface of the pure iron particles with a mechanofusion device. Since the compaction is performed, it seems that the resin or other coating layer formed on the particle surface is less likely to be broken than the compaction of pure iron particles having irregular shapes on the surface. When the deformed pure iron particles are pressed together during consolidation, the corners of the deformed pure iron particles are pressed against the resin layer coated on the surface, so that cracks are easily generated, resulting in a decrease in specific resistance. It seems to be. Therefore, it seems that the smoothing effect appears.

Claims (12)

複数のFe−3Si合金粒子とFe−Si−Al合金粒子と純鉄粒子が圧密され、焼成されてなる複合軟磁性材料であり、複数のFe−3Si合金粒子相及びFe−Si−Al合金粒子相と、前記複数のFe−3Si合金粒子相及びFe−3Si−Al合金粒子相のうち、少なくとも3つ以上の粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有し、前記純鉄粒子相の含有率が、前記Fe−3Si合金粒子相とFe−Si−Al合金粒子相と純鉄粒子相の全量に対して2%以上10%以下であることを特徴とする複合軟磁性材料。   A composite soft magnetic material in which a plurality of Fe-3Si alloy particles, Fe-Si-Al alloy particles and pure iron particles are consolidated and fired, and a plurality of Fe-3Si alloy particle phases and Fe-Si-Al alloy particles And a plurality of pure iron particle phases present at a grain boundary surrounded by at least three or more particle phases among the plurality of Fe-3Si alloy particle phases and Fe-3Si-Al alloy particle phases. The content of the pure iron particle phase is 2% or more and 10% or less with respect to the total amount of the Fe-3Si alloy particle phase, the Fe-Si-Al alloy particle phase, and the pure iron particle phase. Composite soft magnetic material. 前記Fe−3Si合金粒子相及びFe−Si−Al合金粒子相の平均粒径が各々100〜150μmであることを特徴とする請求項1に記載の複合軟磁性材料。   2. The composite soft magnetic material according to claim 1, wherein an average particle size of each of the Fe-3Si alloy particle phase and the Fe—Si—Al alloy particle phase is 100 to 150 μm. 前記純鉄粒子相の平均粒径が、10μm以上、50μm以下であることを特徴とする請求項1または2に記載の複合軟磁性材料。   3. The composite soft magnetic material according to claim 1, wherein an average particle size of the pure iron particle phase is 10 μm or more and 50 μm or less. 前記Fe−Si−Al合金粒子相と純鉄相とFe−3Si合金粒子相が、(2〜10%):(2〜10%):(81〜95%)の割合であることを特徴とする請求項1〜3のいずれかに記載の複合軟磁性材料。   The Fe-Si-Al alloy particle phase, the pure iron phase, and the Fe-3Si alloy particle phase are in a ratio of (2 to 10%) :( 2 to 10%) :( 81 to 95%). The composite soft magnetic material according to claim 1. Fe−3Si合金相比率80〜100%、Fe−Si−Al合金相比率0〜20%、純鉄粒子相比率0〜20%を示す三角組成図(図3に示す)において、
Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が85:10:5の(1)点と、
Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が81:9:10の(2)点と、
Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が91:2:7の(3)点と、
Fe−3Si合金相比率:Fe−Si−Al合金相比率:純鉄粒子相比率が95:3:2の(4)点とで囲まれる領域内の組成比であることを特徴とする請求項1〜3のいずれかに記載の複合軟磁性材料。
In the triangular composition diagram (shown in FIG. 3) showing the Fe-3Si alloy phase ratio 80-100%, Fe-Si-Al alloy phase ratio 0-20%, pure iron particle phase ratio 0-20%,
Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio (1) point of 85: 10: 5;
Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio (2) point of 81: 9: 10;
(3) point of Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio of 91: 2: 7;
The Fe-3Si alloy phase ratio: Fe-Si-Al alloy phase ratio: pure iron particle phase ratio is a composition ratio in a region surrounded by (4) point of 95: 3: 2. The composite soft magnetic material in any one of 1-3.
前記Fe−3Si合金粒子と前記Fe−3Si−Al合金粒子が共に800℃以上1000℃以下の温度で焼鈍されていることを特徴とする請求項1〜5のいずれかに記載の複合軟磁性材料。   6. The composite soft magnetic material according to claim 1, wherein both the Fe-3Si alloy particles and the Fe-3Si-Al alloy particles are annealed at a temperature of 800 ° C. or higher and 1000 ° C. or lower. . 前記Fe−3Si合金粒子相同士、Fe−Si−Al合金粒子相同士の粒界、前記純鉄粒子同士の粒界および前記Fe−3Si系合金粒子相とFe−Si−Al系合金粒子相と前記純鉄粒子相の粒界の少なくともいずれかに、絶縁層を有することを特徴とする請求項1〜6のいずれかに記載の複合軟磁性材料。   Grain boundaries between the Fe-3Si alloy particle phases, Fe-Si-Al alloy particle phases, grain boundaries between the pure iron particles, and the Fe-3Si alloy particle phase and Fe-Si-Al alloy particle phase The composite soft magnetic material according to claim 1, further comprising an insulating layer in at least one of grain boundaries of the pure iron particle phase. 平均粒径が100〜150μmのFe−3Si合金粒子及びFe−Si−Al合金粒子と、純鉄粒子とを、該純鉄粒子の含有率がこれらの全粒子に対し2%以上10%以下となるように混合することによって混合粒子を得る第1の工程と、前記混合粒子を加圧成形することによって成形体を得る第2の工程と、前記成形体を焼成することによって、複数のFe−3Si合金粒子相と、複数のFe−Si−Al合金粒子相と、前記複数のFe−3Si合金粒子相と複数のFe−Si−Al合金粒子相のうち、少なくとも3つ以上の粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有する複合軟磁性材料を得る第3の工程とを有することを特徴とする複合軟磁性材料の製造方法。   Fe-3Si alloy particles and Fe-Si-Al alloy particles having an average particle diameter of 100 to 150 μm, and pure iron particles, the content of the pure iron particles being 2% or more and 10% or less with respect to all these particles A first step of obtaining mixed particles by mixing, a second step of obtaining a molded body by press-molding the mixed particles, and firing the molded body to thereby provide a plurality of Fe- Surrounded by at least three or more particle phases among the 3Si alloy particle phase, the plurality of Fe-Si-Al alloy particle phases, and the plurality of Fe-3Si alloy particle phases and the plurality of Fe-Si-Al alloy particle phases And a third step of obtaining a composite soft magnetic material having a plurality of pure iron particle phases existing at the grain boundaries. 前記Fe−Si−Al合金粒子相と純鉄相とFe−3Si合金粒子相を(2〜10%):(2〜10%):(81〜95%)の割合で混合することを特徴とする請求項8に記載の複合軟磁性材料の製造方法。   The Fe—Si—Al alloy particle phase, the pure iron phase, and the Fe-3Si alloy particle phase are mixed at a ratio of (2 to 10%) :( 2 to 10%) :( 81 to 95%). A method for producing a composite soft magnetic material according to claim 8. 前記純鉄粒子のかさ密度(A.D)が平滑化する前の純鉄粒子よりも0.09〜0.25Mg/m高いことを特徴とする請求項8または請求項9に記載の複合軟磁性材料の製造方法。 10. The composite according to claim 8, wherein the bulk density (AD) of the pure iron particles is 0.09 to 0.25 Mg / m 3 higher than that of the pure iron particles before smoothing. A method for producing a soft magnetic material. 前記Fe−3Si合金粒子、Fe−Si−Al合金粒子および前記純鉄粒子の少なくともいずれかに、絶縁被膜を形成する工程を有することを特徴とする請求項8〜10のいずれかに記載の複合軟磁性材料の製造方法。   The composite according to any one of claims 8 to 10, further comprising a step of forming an insulating film on at least one of the Fe-3Si alloy particles, Fe-Si-Al alloy particles, and the pure iron particles. A method for producing a soft magnetic material. 請求項1〜7のいずれかに記載の複合軟磁性材料を備えることを特徴とする電磁気回路部品。   An electromagnetic circuit component comprising the composite soft magnetic material according to claim 1.
JP2009085348A 2009-03-31 2009-03-31 Soft magnetic composite material, method for producing the same, and electromagnetic circuit component Withdrawn JP2010236020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085348A JP2010236020A (en) 2009-03-31 2009-03-31 Soft magnetic composite material, method for producing the same, and electromagnetic circuit component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085348A JP2010236020A (en) 2009-03-31 2009-03-31 Soft magnetic composite material, method for producing the same, and electromagnetic circuit component

Publications (1)

Publication Number Publication Date
JP2010236020A true JP2010236020A (en) 2010-10-21

Family

ID=43090624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085348A Withdrawn JP2010236020A (en) 2009-03-31 2009-03-31 Soft magnetic composite material, method for producing the same, and electromagnetic circuit component

Country Status (1)

Country Link
JP (1) JP2010236020A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151179A (en) * 2011-01-17 2012-08-09 Tdk Corp Dust core
WO2013073180A1 (en) * 2011-11-18 2013-05-23 パナソニック株式会社 Composite magnetic material, buried-coil magnetic element using same, and method for producing same
CN103943296A (en) * 2013-01-23 2014-07-23 Tdk株式会社 Soft magnetic body composition, manufacturing method thereof, magnetic core, and coil-type electronic component
JP2020088037A (en) * 2018-11-19 2020-06-04 大同特殊鋼株式会社 Soft magnetic metal powder
JP2020155672A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
CN113543908A (en) * 2019-03-22 2021-10-22 日本特殊陶业株式会社 Dust core
JP7268521B2 (en) 2019-07-25 2023-05-08 Tdk株式会社 Soft magnetic powders, magnetic cores and electronic components
JP2023085967A (en) * 2021-12-09 2023-06-21 株式会社タムラ製作所 Soft magnetic powder and dust core

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151179A (en) * 2011-01-17 2012-08-09 Tdk Corp Dust core
WO2013073180A1 (en) * 2011-11-18 2013-05-23 パナソニック株式会社 Composite magnetic material, buried-coil magnetic element using same, and method for producing same
CN103943296A (en) * 2013-01-23 2014-07-23 Tdk株式会社 Soft magnetic body composition, manufacturing method thereof, magnetic core, and coil-type electronic component
JP2020088037A (en) * 2018-11-19 2020-06-04 大同特殊鋼株式会社 Soft magnetic metal powder
JP2020155672A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
CN113543908A (en) * 2019-03-22 2021-10-22 日本特殊陶业株式会社 Dust core
JP7269046B2 (en) 2019-03-22 2023-05-08 日本特殊陶業株式会社 dust core
CN113543908B (en) * 2019-03-22 2023-05-23 日本特殊陶业株式会社 Powder magnetic core
JP7268521B2 (en) 2019-07-25 2023-05-08 Tdk株式会社 Soft magnetic powders, magnetic cores and electronic components
JP2023085967A (en) * 2021-12-09 2023-06-21 株式会社タムラ製作所 Soft magnetic powder and dust core
JP7405817B2 (en) 2021-12-09 2023-12-26 株式会社タムラ製作所 Soft magnetic powder and dust core

Similar Documents

Publication Publication Date Title
JP6075605B2 (en) Soft magnetic material and manufacturing method thereof
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP6365670B2 (en) Magnetic core, magnetic core manufacturing method, and coil component
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP5063861B2 (en) Composite dust core and manufacturing method thereof
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP6471881B2 (en) Magnetic core and coil parts
JP2012222062A (en) Composite magnetic material
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
JP6471882B2 (en) Magnetic core and coil parts
JP2009032880A (en) Iron-based soft magnetic powder for dust core for high frequency, and dust core
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP4701531B2 (en) Dust core
JP2005079511A (en) Soft magnetic material and its manufacturing method
JP2009272615A (en) Dust core, and manufacturing method thereof
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP7254449B2 (en) Soft magnetic materials, dust cores, and inductors
JP2011211026A (en) Composite magnetic material
JP2004327762A (en) Composite soft magnetic material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605